
PERPUSTAKAAN UMP 

U 1111 ID ID ID 111OH 11111 
0000092773 

ANALYSIS or urj,ij'tj rnrii-i v i'jur'.. uN WEB GIRDER.

NORSHAMIERA AFZAN BINTI ISMAIL 

Thesis submitted in fulfillment of the requirements for the award of the degree of 
B.ENG (HONS.) CIVIL ENGINEERING 

Faculty of Civil Engineering and Earth Resources 
UNIVERSITI MALAYSIA PAHANG 

JULY 2014



vi 

ABSTRACT 

Normally, an economical and effective design of web plat girder requires thin 
webs. However, thin and very slender web plat girder will cause it to buckle. 
Corrugated web girder or Trapezoidal Web Plate (TWP) is used to overcome this 
situation. This project aims to produce a finite element model and studying the web 
profile of the beam by using LUSAS Modeller 14.0. There were three model produced 
to be analyse in this project. The dimension of each model are 1500mm x 200mm x 
900mm. Each model is simply supported with fixed support and pinned support. The 
type of mesh used for each model is Quadrilateral Thin Shell with 8 nodes (QSL8). 
LUSAS, Modeller 14.0 finite element software is able to carry out linear analysis to 
determine deformed mesh, maximum stress and strain under axial load. Besides, critical 
buckling load can be predicted under the linear buckling analysis. The results show that 
the TWP2 has highest strength compared to TWP 1 and Flat Web beam. The results also 
show that TWP of web can sustain higher buckling load compared to Flat Web 
girder.Error! Bookmark not defmed.
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ABSTRAK 

Biasanya, suatu reka bentuk web plat galang yang ekonomi dan berkesan 
memerlukan web nipis. Walau bagaimanapun, web plat galang yang nipis dan sangat 
langsing akan menyebabkan ia rebah. Galang web beralun atau Trapezoid Plate Web 
(TWP) digunakan untuk mengatasi keadaan mi. Projek mi bertujuan untuk 
menghasilkan satu model unsur terhingga dan mengkaji profil web rasuk dengan 
menggunakan pereka bentuk model LUSAS 14.0. Terdapat tiga model yang dihasilkan 
untuk dianalisis dalam projek mi. Dimensi setiap model adalah 1500mm x 200mm x 
900mm. Setiap model yang disokong dengan sokongan tetap dan sokongan disematkan. 
Jenis mesh digunakan untuk' setiap model yang Quadrilateral nipis Shell dengan 8 nod 
(QSL8). LUSAS 14.0 pereka bentuk model perisian unsur terhingga dapat menjalankan 
analisis linear untuk menentukan jaringan cacat, tegasan maksimum dan terikan di 
bawah beban paksi. Selain itu, beban lengkokan kritikal boleh diramalkan di bawah 
analisis lengkokan linear. Keputusan menunjukkan bahawa TWP2 mempunyai kekuatan 
paling tinggi berbanding dengan TWP1 dan Web rasuk datar . Keputusan juga 
menunjukkan bahawa TWP web boleh menampung beban lengkokan yang lebih tinggi 
berbanding dengan Web rasuk datar.
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

In the past few decades, corrugated web girder or also called as 1 rapezoiaal 

Web Plate (TWP) had represented as a new structural system. The corrugated girders 

have a corrugated shape profile, with aligned parts in two parallel planes in the 

longitudinal direction and tilted parts between them. The design of girder and beam 

requires thin webs if it want to be an economical design. However, the plate buckling 

problem may arise due to extremely slender of web. It is obvious that the usage of 

thicker plates or adding web stiffener will increase the cost of fabrication. As the 

increasing usage of corrugated web in the industry, it is shows that the corrugated web 

is success in replacing steel plate web. Corrugated web girder has a potential to replace 

the costly web stiffness. 

The corrugated steel plates have their own characteristics. Be ignored the 

bending capacity and sufficient out or plane stiffness are the primary characteristics of 

the corrugated steel plates. This is because it has no stiffness perpendicular to the 

direction of corrugation. Lateral torsional buckling and local buckling of compression

1 
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flange are the failure modes that might occur for steel beam with corrugated web 

(Elgaaly et al. 1997). 

Generally, trapezoidal profile is commonly used corrugation profile for 

corrugated web plates. The girder with the trapezoidal corrugated web has a higher 

load-carrying capacity compared to plate girders with the stiffened flat web. The girder 

with trapezoidal corrugated web also has small deflection compared with girder with the 

stiffened flat web. (Abdullah Tohamy et al. 2013). 

Finite element analysis had widely used by the engineer to do an analysis and 

solve the structural problems or any engmeering problems. The finite element model 

were applied to analyzed the maximum moment of set off lateral buckling of corrugated 

beam.

Previous research had shown that trapezoidal web can support a bigger loading 

than common plate girder of the same dimension and spacing. 

1.2 Problem Statement 

Studies on buckling resistance of web girder had been carrying out by previous 

researchers. Research on corrugated webs was started by Elgaaly (1989). Yi et al. 

(2008, p.13) states that shear buckling behavior depends on geometric characteristics of 

corrugated web. Research that had been done by Elgaaly (1996) found that the 

mechanism of failure of girder which under different loading modes, called shear mode, 

bending mode and compression patch load (Elgaaly et. al. 1996). Previous research 

done by Robert et al. (2006) found that the corrugated web had failed in shear by 
instability, and local and global buckling modes.



In heavy constriction, girders are used for very long spans. Corrugated web 

girders have been recognized as effective load carrying members. The plate web girder 

has to use thick web plate when construct. The thickness of corrugated web is lesser 

than plate web when construct. Thus, corrugated web girder replaces the plate web 

girder in order to be competitive and cost effective. To better understand the buckling 

behavior of web girder, an analysis must be done. Besides that, the study of the strength 

of corrugated web girder also can be analyzed. 

For corrugated web, analysis can be done to prove the strength of corrugated 

web girder is more than plate web girder. It is expected that corrugated web girder 

provides high strength and stiffener than plate web girder. 

1.3 Objectives Of Study 

The objectives of this analysis are: 

i. To investigate the buckling behavior of web girder. 

ii. To identify the load carrying capacity in web girder. 

iii. To compare the buckling behavior of corrugated web girder and flat web girder. 

1.4 Scope Of Study 

The scope of study of this research is to do an analysis on simply supported web 

girders subjected to shear load. This analysis will be conducted by using software which 

is London University Stress Analysis System, (LUSAS). The scope of this research is to 

study different type of corrugated shape and compare with the flat plate girder.
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1.5Significant Of Study 

Generally, the usage of corrugated web girder is not widely used in Malaysia 

compared to flat web girder. This is because trapezoidal web shape is complicated 

shape which require it to use the art machine to design it. Therefore, the production of 

corrugated web is quite expensive. Using finite element analysis, time and cost of 

products can be saved compared to laboratory test. The significance of this study is to 

analyze the performance of the corrugated web girder. This analysis can anticipate the 

shear capacity and strength capacity of the corrugated web girder and plate web girder. 

Thus, the shear capacity and shear capacity of the web girder can be compared.



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Girders are supported beam used in construction. Plate girders are used in 

bridges and buildings where heavy loads and large spans are required. Normally, the 

plate girders are designed by welding together to form an I-section. Generally, plate 

girders are required for the span above 15 metres and recently numerous plate girders 

which span 60 to 1000 metres have been constructed. Reinforcing the web may use the 

stiffeners. (Clarke et.al , 1987). It have been notice that using stiffened thin plate in 

girder have higher manufacturing cost and possibility reducing life span due to fatigue 

cracking which may begin at the welded connection between the stiffeners and flange. 

Using stiffened thin plates in girders may cause to some disadvantages. It have 

been noticed that high fabrication cost and life expectancy may be reduced due to 

fatigue cracks that start at a welded connection between the stiffeners and the flanges. 

Just recently, the uses of fairly thin corrugated webs have been possible due to advanced 

welding technology. The corrugations in the beam act as transverse stiffeners that allow 

the use of a thin plate with a significant weight reduction. Nevertheless, the high
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slenderness ratio of corrugated web plate leads to primary concerned for the stability in 

shear buckling. (H.W, Mok 2007) 

Research has shown that when the girders with corrugated webs are compared 

with stiffened flat webs, the trapezoidal corrugation in the web permit the use of thinner 

webs and reduce the cost of using expensive web stiffeners. It was found that corrugated 

beams have 9% to 13% less weight than current traditional stiffened girders with flat 

webs. (Hamada, 1984). 

Table 2.1: Lightweight fabrication by corrugated web I-beam, (Hamada, 1984) 

Welded I-beam depth, web 

width,	 web	 thickness, 

flange thickness (mm)

Corrugated web I-beam 

(Corrugation width) (mm)

Section modulus ratio per 

unit width (corrugated web 

I-beam) 

H200 x 1 00x 3.2 x 4.5 200x100x1.6x2.5(150) 1.09 

H250 x 125 x 4.5 x 6.0 250 x 125 x2.0 x 6.0 (180) 1.13 

H300 x 150 x4.5 x 6.0 300 x 150 x 2.3 x 6.0 (220) 1.10 

[H400 x 200 x 4.0 x 12.0 400 x 150 x 2.7 x 12.0(300) 1.09

It is found that corrugated plates had increased in its application as girder webs. 

The corrugated web only required stiffening on its supports. Local buckling and global 

buckling must be counted in order to obtain shear capacity. (Lindner et.al , 1991). 

Preliminary study about the profiled web is more on the vertically trapezoidal 

corrugation. Kbaljd et. al., in his study said that there are three failure mechanism found 

in the profiled 'veb beam which are shear mode, bending mode and compressive patch 

load. Patch load failure relies on the position of loading and the corrugation's 

Parameters. (Khalid et. al., 2004). In other research by Li et. Al., which is experimental 

testing, it is found that the corrugated profiled web girder has higher buckling resistance 

compared to conventional web type. 
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2.2 Advantages Of Flat Plate Girder 

A plate girder has an I-type cross section. Rather than being hot-rolled, however 

the girder is constructed from steel plate elements which are connected together with 

welds, bolts, or rivets. A greater economy of material can be obtained as the designer 

has the ability to specify the section properties of the stringer to accommodate the local 

forces. The development of highly automated workshop in recent years has reduced the 

fabrication costs of plate girders very considerably. Plate girders are aesthetically more 

pleasing than trusses and are easier to transport and erect (Bashar S.). However, due to 

features Of corrugation, the application of corrugated web leads to more advantageous 

for bridge structures. 

2.3 Advantages Of Trapezoidal Web Girder 

Many researchers had implemented the study to identify the shear capacity of 

corrugated web. The application of corrugated web leads to many advantages for 

composite bridge structures due to the features of corrugation. Other advantages of 

using corrugated steel web are prestressing force remain in concrete chords due to small 

stiffness in longitudinal direction of the web. (Kovesdi et. al., 2010). 

A lot of researches that have been performed brings to the improvement of the 

structure by using new types of profiled girders. For example, the research that has been 

done in Japan in 1965 until 1986 brings to the first construction of Shinkai bridges using 

the corrugated web, in 1993. In 1980's the corrugated web bridge developed in France 

replaces the web of conventional pre-stressed concrete bridges. Basically, replacing the 

concrete webs with corrugated steel plates can reduce the self weight of the main 

girder, improved efficiency of the prestress and improved shear resistance.
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Previous research shows that corrugated web girder has less deflection than that 

of the equivalent in weight stiffened flat web girder. Since bridges represent the main 

subject for the use of girders due to the noticeable reduction in material and labor costs, 

then a testing and an analysis should be more suitable to evaluate the behavior of 

corrugated web girders. It is shown that vertical corrugated web gave a sturdy support 

against the flange buckling, compared to horizontally corrugated web and flat web 

girders. Recently, a finite element analysis had been done to investigate the behavior of 

beam with trapezoid web steel section (Fatimah et. al.,201 0). Finite elements were used 

to model beams with flat web, horizontally and vertically corrugated webs. The 

horizontally corrugated web more weaks to support against the flange buckling, 

compared to girder with vertical corrugated web and flat web. Earlier research by 

Elgaaly focused on the failure mode of corrugated beams under some loading modes 

which are bending mode, shear mode and compressive patch loads. Elgaaly found that 

the failure of the corrugated webs under bending mode and shear mode was sudden and 

due to buckling of the web (Elgaaly et. al., 1997). 

The shear strength of corrugated web girder is primarily a function of the web 

height and thickness, the corrugation geometry, and material properties, although initial 

web geometric imperfections may also play significant role. The corrugations gives 

solidity to the web, removing the need for the transverse stiffeners that have a primary 

impact on the shear strength of conventionally stiffened flat web plate girders (Robert 

G. et. al. ,2006) 

According to Sayed-Ahmed, the flexural strength of a steel girder with 

corrugated web plate is provided by the flanges with almost no contribution from the 

web and with no interaction between flexure and shear behavior. The corrugated web 

only provides the shear capacity of girders where the shear strength is controlled by 

buckling or steel yielding of the web. The flanges provide boundary supports for the 

web which lie somewhere between a simply supported boundary and a clamped one. 

(Sayed-Ahmed,2007)



2.4 Mode of Failure in Corrugated Web Girder. 

It is to be found that corrugated web girder had tailed in shear with three tailure 

mode, local buckling, global buckling and interactive buckling mode. Local buckling 

represents the buckling in the sub panel, while global buckling represents the buckling 

in the whole web. Interactive buckling which involved a few sub panels happened 

because of the interaction between local and global buckling ( Yi et. al., 2008). 

Figure 2.1: Local Buckling Mode 	 Figure 2.2: Global Buckling Mode 

Figure 2.3: Interactive Buckling Mode 

Normally, several types of local buckling begin the buckling process. 

Nevertheless, a local buckling mode, which started the buckling can reduce shear post-

buckling capacity. Furthermore, in the post-buckling stages, local buckling, either 

directly develop and transform to global buckling mode, causing failure or starting from 

a sub-panel to another, the first buckling mode of the zone and then change to a SO-

called tension field over the entire depth of the girder. (H. W. Mok, 2007).



ID 

The corrugated steel web plate failure occurs by the steel yielding of the web 

under a pure shear stress state. It also can occur by web buckling due to either local 

instability of any panel between two folds or overall instability of the web over two or 

more panels. Another possibility of failure mode that could be occurring between these 

different failure criteria is an interactive failure mode. Another criterion which affects 

the design strength of girders is local buckling of compression flange with corrugated 

web. Usually, local buckling of the compression flange of an I-section mainly depends 

on the flange out-stand-to thickness ratio. Limits are placed on this ratio such that the 

critical stress initiating local flange buckling will not be reached before reaching the 

yield stress ( Sayed-Ahmed, 2007). 

2.4.1 Local Buckling. 

This is review on local buckling stress that had been obtained from many 

observations and from some experimental result and theoretical on corrugated web 

girder. Previous researcher, (Driver et. al. 2006), had conducted a numerical and testing 

analysis on corrugated webs under shear. It was found that the specimens failed in local 

buckling mode. In the local buckling mode, the trapezoidal webs act as a series of flat 

sub-panels that supported each other along their vertical and are supported by flanges at 

horizontal edges. It is investigated that local buckling are using the elastic shear stress 

written as:

ir2.E	 w 
= k1	 _\2 

12.(1_V2) 

Where: 

E = elastic modulus 

v Poisson's ratio 

k1 = local shear buckling coefficient 

t = thickness of web

(2.1)



11 

w= maximum fold width 

In this case, k 1 lies between 5.34 (by assume the fold has simply supported edge) 

and 8.98 (by assume fixed edges). 

An analysis on trapezoidal webs under shear is continued to study the buckling 

mode were performed by Elgaaly and Hamilton (1996). It is found that in the local 

buckling mode, the corrugated web acts as series of flat panels that support each other 

along their vertical (longer) edges and the panels supported by the flanges along their 

horizontal (shorter) edges. The elastic buckling stress given by:

ks 12.(1_/L2) ()2
	 (2.2) Tcrl, = 

Where:

E = elastic modulus 

= Poisson's ratio 

k = buckling coefficient 

t thickness of web, 

w= flat panel width 

k is given by:

W2 
3 44 (-) + 8 39 k=5.34+2.31	

h	
• ()3,	 (2.3) 

for the simply supported, longer edges and short edges clamped. 

k3 8.98 + 5.6( h/)2 	 (2.4) 

for the all edges are clamped. 

In Case 'r>	 inelastic buckling will happen and inelastic stress can be calculated 
by:



Tcrj (0.8 x TcreXty)°5 < -r. 

From the previous experimental test done by Elgaaly, a conclusion was made 

that if corrugation of the web is coarse, the buckling of the panel is classified by local 

buckling of the flat folds if it is corrugation. The buckling stress formula for flat plate 

can be used to calculate the strength of trapezoid webs with a very good degree of 

accuracy. The finite element model was used in the numerical study that held by 

Elgaaly. This finite element model used to run a parametric study to investigate other 

corrugation configuration and panel dimension as well as different flange to wed 

thickness ratio. The predicted shear capacity from the numerical analysis showed a 

connection between the analytical and experimental results. 

2.4.2 Global Buckling. 

This is review on global buckling stress that had been obtained from many 

observations and from some experimental result and theoretical on corrugated web 

girder. Sayed-Ahmed in 2007 (Sayed-Ahmed, 2007) said that the critical shear stress of 

global buckling mode can be calculated from (Galambos, 1988): 

'	 ' D.D	 (2.6) 
Tcr,gkg. 

Where:

Kg = global shear buckling coefficient 

DOY = flexural stiffness 

It is stated that kg is 36 for steel girders (Sayed-Ahmed 2007). The factors of D 

and D are defined as follows: 

12 

(2.5) 

D =	 -	
bt[d tanoc] 2 + (tW tànci3)	 (2.7) 

C	 b+d	 4	 12sinoC



c Et	 b+d	 Et 
D =( ;)() = b+d/coso(X12) 

Where:

= second moment area of one "wave-length" 

c = projected length 

s = actual length 

= web thickness 

b = panel width 

d = horizontal projection of inclined panel 

o( = Corrugation angle 

Elgaaly et. al. in 1996 had performed a test on corrugates web girder where 

global buckling was in controls in the fine corrugation (Elgaaly et. al., 1996). The 

buckling stress for overall corrugated web panel can be calculated by using orthotropic-

plate buckling theory when the global buckling in controls. The global buckling stress 

can be calculated as:

N 
- (D)25(Dy)O.75	 (2.9) Tcreks	 th2 

Where:

D= 
(s)Et	 2.10) 

12 

D= 
Ely (2.11) 

= 2bt (ht/2)2 
+ II 

t(hr)3' 
'6sin01	

(2.12) 

k5 = buckling coefficient, equals to 31.6 for simply supported boundaries and 

59.2 for clamped boundaries.

13 
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