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ABSTRACT 

Coefficients of roughness, n are characterized as parameters representing the channel 
roughness and flow resistance. The Manning equation has been recognized as the most 
proper formulae to represent the open channel flow application. This study is about 
determining the mean roughness coefficients for an open channel with different bed and 
side walls roughness. The experiments were conducted at the Hydraulic and Hydrology 
Laboratory in Universiti Malaysia Pahang. The experiments were performed on a 
rectangular open channel with glass sides and a flat bed. The size of the rectangular 
open channel was lOm long, 0.3 m wide and 0.46m deep. The experiments were carried 
out using two different types of roughness; 5mm gravel and 2 mm gravel. There were 
two channel conditions, bed and sidewalls having the same roughness, and only the 
channel bed had the roughness while the sidewalls were smooth. For both conditions; 
experiments were conducted with certain three fixed slope gradients which are 1:100, 
1:300, and 1:500. The fixed flow rates, 4m 3 1s, 8 m3 /s and 12 m 31 were also set by 
adjusting the water pump. The data obtained was converted into graph form before 
performing the analysis. The heights and velocities were recorded at the upper stream 
and lower stream of the open channel under different roughness conditions. The results 
showed that the coefficient of roughness for the open channel with wall roughness is 
higher than the channel without sidewall roughness and larger grain size will give 
higher roughness coefficient. It also can be concluded that channel slope and surface 
roughness were the main factors in determining the roughness coefficient.
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ABSTRAK 

Pekali kekasaran, n mempunyai ciri-ciri sebagal parameter yang mewakili kekasaran 
saluran dan mengalir rintangan. Persamaan Manning telah diiktiraf sebagai formula 
paling sesuai untuk mewakili permohonan aliran saluran terbuka. Kajian mi adalah kira-
kira menentukan pekali kekasaran min bagi saluran terbuka dengan katil yang berbeza 
dan dinding sebelah rouglmess.This eksperimen dijalankan di Hidraulik dan Hidrologi 
Makmal di Universiti Malaysia Pahang. Kajian mi menggunakan satu saluran segiempat 
tepat dengan sisi kaca dengan katil yang rata. Saiz segi empat tepat saluran terbuka 
adalah lOm paxjang, 0.3 m lebar dan 0.46m dalam. Kajian mi telah dijalankan dengan 
menggunakan dua kekasaran yang berbeza itu'; Kerikil 5mm dan 2 mm kerikil. Akan 
ada dua syarat saluran, katil dan sisi mempunyai kekasaran yang sama dan hanya katil 
mempunyai permukaan kekasaran whiles yang sisi adalah permukaan hem. Bagi kedua-
dua keadaan, eksperimen dijalankan dengan kecerunan tiga cerun tetap tertentu yang 
1:100, 1:300, dan 1:500. Kadar aliran tetap, 4 m3 / s, 8 m3 / s dan 12 m3s juga 
diwujudkan dengan melaraskan tahap pam air. Data yang diperolehi ditukar kepada 
bentuk graf sebelum ia anahisis. Ketinggian dan halaju direkodkan pada ahiran atas dan 
aliran lebih rendah saluran terbuka dengan syarat kekasaran yang berbeza. Keputusan 
menunjukkan bahawa saluran kekasaran pekali dengan dinding adalah lebih tinggi 
daripada saluran tanpa sisi dan saiz butiran yang lebih besar mempunyai pekahi 
kekasaran yang lebih tinggi. Ia juga boleh membuat kesimpulan bahawa cerun saluran 
dan kekasaran permukaan yang kehihatan sebagai faktor utama dalam menentukan 

pekali kekasaran.
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Water asset projects and hydraulic engineering design works are rapidly being 

developed all over the world, therefore forecast of channel roughness coefficients is 

turning into a significant criterion for the planning and design of hydraulic related 

structures like open channels and dams. Understanding open channel hydraulics is 

crucial for all engineers in the design and planning when it comes to hydraulic 

structures. 

Flow in open channel is divided into two categories, steady flow and unsteady 

flow. Furthermore, the steady flow is subdivided into uniform and varied flow. The 

theory of uniform flow is fundamental to the understanding and solution for most issues 

in open channel hydraulics. In most cases, open channels, from natural stream beds to 

lined artificial channels, show distinctive and unique coefficient of roughness, 

depending upon the state of the channel 

The roughness characteristics of open channel have been widely studied and 

applied. Coefficients of roughness, n are characterized a parameters representing the 

channel roughness and flow resistance. The Manning equation has been recognized as 

the most proper forniulae to represent open channel flow application. 

Understanding the effects of roughness coefficient on flow conditions has 

become an integral part of river restoration projects. Roughness compositions are vital 

components in natural ecological systems.
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Channel properties, obstruction, vegetation, silting and scouring are examples of factors 

that may create different roughness conditions. Velocity distribution relies on the 

condition and roughness of the channel. Height, velocity and bed roughness are 

important to determine the calculation of the velocity profile. 

In open channel conditions, Manning's equation has been widely studied and 

applied to determine the roughness coefficient, n. The influence of bed conditions will 

affect the flow rate and also the roughness characteristics. This equation has been 

studied and verified by many engineers but there are still many uncertainties remaining 

that concern the effect and determination the precise channel roughness coefficients 

value for computation of discharge in open channel hydraulics. 

1.2 PROBLEM STATEMENT 

The determination of n turned out to be a challenge because the values cannot be 

figured equivalent for all types of open channel. There are many laws of friction put 

forward by Chezy, Darcy, Sticklers and other hydraulic engineers for uniform 

roughness of the whole surface of closed or open conduits but it is difficult when it 

comes to determining the roughness when the channel has different roughness of bed 

and sidewalls. 

1.3 OBJECTIVES 

i. To obtain the mean roughness coefficients for an open channel with different 

bed and side walls roughness. 

ii. To investigate the relationship between roughness coefficient, discharge and bed 

slope. 

1.4 SCOPE OF STUDY 

The experiments were conducted at the Hydraulic and Hydrology Laboratory in 

Universiti Malaysia Pahang. The experiments used a rectangular open channel with 

glass sides and a flat bed. The size of the rectangular open channel is 10m long, 0.3 m



wide and 0.46m deep. The , experiments were carried out using two different roughnesses 

with a certain fixed slope gradient and fixed flow rate by adjusting the water pump level. 

Two types of conditions were tested; the bed and sidewalls with the same roughness and the 

bed is rough while the sidewalls are smooth. 

1.5 IMPORTANCE OF THE STUDY 

It is difficult when it comes to determination of n because different types of open 

channels do not compute the same. According to the law of friction by Chezy, Darcy, 

Strickler and other hydraulic engineers, the equation provided were giYen for uniform 

roughness of the whole surface of closed or open conduits. Hence 'a study is needed to 

determine the roughness of an channel when it has different roughness between bed and 

sidewalls as well as the factors that affects the roughness coefficients



CHAPTER 2 

LITERATURE REVIEW 

2.1 THEORETICAL REVIEW 

In this part incorporates a point of view to the theories about the velocity profile 

and roughness height. Moreover, depiction of flow resistance is given in this chapter. At 

the beginning of this chapter, there is a review on the common and basic theories based 

on the project tittle and after that the specifics details theories and equation used for the 

research experiment. 

2.2 TYPES OF FLOW 

There are three basic methods to depict the types of 110w. The methods are 

individual and could be utilized independently. The decision which technique ought to 

be utilized relies on upon the context. The methods are briefly depicted below. 

2.2.1 Change of Depth Versus Time and Space 

If the time is the characterization criteria, then a flow could be delegated being 

either steady, which suggests that the depth of flow (Figure 2.1) does not change with 

time (8h1& = 0), or unsteady, which suggests that the depth does change with time 

(öK/ôt :A 0). Though if space is utilized as the criteria, then a flow could be delegated 

uniform if the depth of flow does not change with distance (ôhIôx = 0) or as non-

uniform if the depth differs with distance (ahlox :A 0) (French, 1986).
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Figure 2.1: Cross section of channel bed. A is the projected area of the flow [m2], h is 

distance of water surface from mean bed level (depth of flow) [m], Rh is the hydraulic 

radius [m], and B is the width of the channel [m]. (Smart, 2001) 

2.2.2 Turbulence of Stream 

Turbulence may be created by over flow rates, rough surfaces and curves in the 

channel. Chow (1959) characterizes that the flow is turbulent if the viscous forces are 

feeble with respect to the inertial forces. The impact of viscosity with respect to inertias 

can be written by the Reynolds number, stated as: 

D - 2!. Re 

Where, 

U	 = Mean speed of stream [m/s]; 

Rh	 = The pressure driven range [m]; 

Data obtained from the experiment laboratory for slope 1:500

(2.1)



The flow Reynolds number is utilized to group the flows as shown as follows: 

Table 2.1: Flows according to Reynolds number 

Laminar stream	 Re 500 

Transitional stream 500 Re 12 500. 

Turbulent stream	 Re > 12 500: 

In laminar flow, the water particles seem to move in clear smooth ways, or 

streamlines and imperceptibly thin layers of liquid appear to slide over contiguous 

layers. In turbulent flow, the water particles move in spasmodic ways, which are not 

smooth or altered, yet which in the total still represent the forward movement of the 

whole stream. Between the laminar and turbulent states there is a transitional state 

(Chow, 1959). In natural channel, all flows are essentially turbulent. 

2.2.3 Impact of Gravity 

As indicated by Chow (1959) the impact of gravity upon the state of flow is 

represented by a degree of inertial forces to the gravity forces. This degree is 

represented by the Froude number, characterized as 

1
- ;Rh
	 (2.2) 

Where, 

g speeding up because of gravity [m2/s 

The Froude number is utilized to characterize the flow as stated (Chow, 1959; French, 

1986; Qraf, 1998) as shows in Table 2.2.
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Table 2.2: Characteristic of flow. 

Subcritical (fluvial) flow	 Fr < 1 

Supercritical (torrential) flow	 Fr> 1 

Critical flow	 Fr= 1 

In subcritical state of flow, the gravity forces is more purported; consequently 

the flow has a low velocity and is regularly portrayed as tranquil and streaming (Chow, 

1959). As indicated by French (1986) a wave can propagate upstream against the flow, 

and upstream zones are in hydraulic contact with the downstream zones. While in 

supercritical state of flow, the inertial forces get predominant; so the flow has a high 

velocity and is normally depicted as rapid, shooting, and torrential (Chow, 1959). As 

per French (1986) a wave cannot propagate upstream against the flow, and the upstream 

zones of the channel are not in hydraulic contact with the downstream zones. Between 

the subcritical and supercritical states there is a critical state (Chow, 1959). 

2.3 VELOCITY DISPERSION 

In an open-channel, the flow velocity is not unitOrmly dispersed. In this 

research, only vertical velocity profile is examined. If there an occurrence of gravel bed 

and turbulence flow, vertical velocity profile is regularly thought to be logarithmically 

conveyed (Chow, 1959; French, 1986; Graf 1998; and Ferro, 1999). 

To simplify the calculations, the velocity could be thought as uniform over the 

entire cross section. This assumption will simplify the calculations in correlation with 

the logarithmically distributed circumstances and the results are still satisfactory for a 

few circumstances. On the other hand, for most calculations and figuring this 

assumption gives off base results and distorts the characteristics of the channel.
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2.3.1 Introduction 

Velocity dispersion depends more to the shape and roughness of the channel. 

Friction velocity is a vital term in the estimation of velocity profile and roughness. The 

following is a portrayal of the fundamental speculations about the vertical velocity 

profile. 

2.3.1.1 Friction Velocity 

The friction velocity u is the liquid elevation at elevation, 

2 =
	

(2.3) 

Where, 

20	 = the height comparing the zero velocity [m] 

Ic	 = the von Kánnán steady: ic = 0.4. 

This is the trademark velocity for turbulent flows at a given wall shear stress 

(Schlichting and Gersten, 2000). 

As indicated by Chow (1959) the friction velocity could be characterized as 

US =Jij
	

(2.4) 

Where, 

To = bed-shear stress (bottom part shear stress) [Pa] 

P thickness of liquid [m3/s]. 

If there should be an occurrence of wide and shallow channel, the bed shear stress is:



t=pghS	 (2.5) 

Where, 

h =depth flow [in] 

S = surface slope tan P [rn/rn] like outlined in Figure 2.2 

Figure 2.2: Fluid forces in case of wide channel. Surface slope S is assumed to

be tan P. Bed shear stress to = t 0 

Inserting eq (2.4) into to eq (2.3), we get to the friction velocity,

(2.6) 

2.3.1.2 Flow Over Smooth or Rough Surface 

The flow might be using hydraulically either smooth or rough. Hydraulic 

smOoth flow happens when the surface irregularities are small to the point that all 

roughness components are altogether submerged in the laminar sub-layer (Chow, 1959). 

Hence, the bed roughness would not influence the velocity dispersion. As indicated by 

Graf (1998) and Schlichting & Gersten (2000) the stream is smooth if
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uk
(2.7) 

Where, 

u' = friction velocity [mis] 

k = the roughness height [mm] 

The flow is rough when bed roughness is large to the point that it produces 

whirlpools near to the bottom (Liu, 2001). There is no viscose sub-layer and the 

velocity dispersions are influenced just by bed roughness. As per Graf (1998) and 

Schlichting and Gersten (2000) the flow is hydraulically rough when 

7Ø<3L	
(2.8) 

For the term using hydraulically rough, also term completely rough is utilized 

(Schlichting and Gersten, 2000). The flow is in the transition region when

(2.9) 

Hence, the velocity dispersion is influenced by bed roughness and viscosity 

(Chow, 1959) 

2.3.2 Classification of Flow Layers 

As indicated by Liu (2001) there are two sorts of arrangements of flow layers: 
Scientific and engineering. 

In the scientific arrangement, the flow profile has been separated into four layers 
(Figure 2.3). Those are from the bottom to up: 

1. viscous sub-layer: flow is laminar. 
2. T

ransition layer: viscosity and turbulence are just as equally important.
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3. Turbulent logarithmic layer: viscous shear stress might be disregarded in this 

layer. It is expected that the turbulent shear stress is consistent and equivalent to 

lowest part shear stress. 

4. Turbulent outer layer: velocities are practically steady. 

T total shear stress 

	

Flow layer	 ;. viscous shear stress 
Velocity profile	 clssifacition	 t1 turbulent shear stress 

'turbulentonterlaver 	 I 

U(z)
	

tt 

	

turbulent logarithmic layer 	 t t, cciii 

	

transition layer	 t -'t, + 

	

viscous sublayer 	 t

I.' 
bottom shear stress t0 

Figure 2.3: Scientific classification of flow regions (Layer thickness is not in scale, 

turbulent logarithmic and outer layers account for 80% - 90% of the region). (Liu, 2001) 

In the engineering classification, rather a turbulent layer with the logarithmic 

velocity profile covers the transitional layer, the turbulent logarithmic layer and the 

turbulent external layer, Figure 2.4 (Graf, 1998). In examination, the vertical speed 

profile in instance of laminar flow and consistently appropriated velocity profile are 

represented in Figure 2.5. (Graf, 1998) presents additionally that in the circumstances of 
uniform, hydraulically rough flow there are internal and external area in the profile. 

Internal area's tallness is z = 0.2h and the profile is not logarithmically appropriated in 
that layer.
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Laminar  Flow	 Unifóimly distributed 
velocity profile 

U(Z)J 
________/• turbulent layer 

sediment diameter

kT 
ks = height of roughness element 

Hydraulically smooth flow 	 Hydraulically rough flow 

Figure 2.4: Engineering classification of flow region in case of turbulent flow (Layer 

thickness is not in scale). (Liu, 2001) 

Figure 2.5: Vertical velocity profiles in case of laminar flow and uniformly distributed 

velocity. (Graf, 1998) 

2.3.3 Velocity Dispersion in the Turbulent Layer 

The velocity dispersion in an uniform channel stream will become steady when 

the turbulent limit layer is completely created. In the turbulent limit layer, the dispersion 

might be indicated to be nearly logarithmic (Chow, 1959). The total stress increase 
simultaneously with depth refers to (Eq. 2.5).
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tt(Z)	 t (1 -	 (2.10) 

Where, 

z = separation from the bottom [m] 

(Figure 2.2) 

By PrandtPs mixing hypothesis, the shear stress at any point in a turbulent flow 

moving over a solid surface is stated as: 

tt = p.e2(!±)2
	

(2.11) 

Where, 

C	 = Characteristic length / the mixing length [m] 

duldz = velocity inclination at a typical distance z from the solid surface 

(Chow, 1959) 

As per Liu (2001) the mixing length might be characterized as 

C icz(1—)°5	 (2.12) 

Where, 

= von Karman constant (K = 0.4) 

For the district close to the solid surface, Prandtl presented two suspicions: (1) 

that the blending length is corresponding to z, and (2) that the shearing anxiety is 

consistent. The second presumption gives t = to. From these two assumptions and from 

mathematical statements (2.4), (2.10), (2.11) and (2.12) we get:

(2.13) 
dx	 scz
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