CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

One of the most common methods of converting plastics from the raw material form to an article of use is the process of injection molding. This process is most typically used for thermoplastic materials which may be successively melted, reshaped and cooled. Injection molded components are a feature of almost every functional manufactured article in the modern world, from automotive products through to food packaging. This versatile process allows us to produce high quality, simple or complex components on a fully automated basis at high speed with materials that have changed the face of manufacturing technology over the last 50 years or so.

1.2 OBJECTIVE

The objectives are:

(i) To investigate best process injection molding parameter values for a name card holder minimizing warpage

(ii) Analysis and optimize warpage using neural network method

1.3 PROJECT SCOPE

This project is confined to the following scopes of study:

(i) To develop Finite Element (FE) model using MoldFlow to get predicted warpage value
(ii) Using data from MoldFlow to optimize warpage using Artificial Neural Network

1.4 PROBLEM STATEMENT

Injection molding is the most widely used process in manufacturing plastic products. It is an important issue in plastic injection molding to predict the warpage problem before manufacturing takes place. Below is example that faced by the plastic industry regarding warpage that occur in injection molding process:

Medical device companies are always under pressure in two key areas: time and cost. Time delays in the production cycle can substantially affect product introduction timetables, and consequently, revenue. One area where medical device companies often lose valuable time, experience cost overruns, and face production delays is in poor design of injection molded components related to the mechanical functioning of the mold.

Injection mold fabrication is widely used in medical device manufacturing because of its versatility. Many different types of plastics can be used for injection molding, and once a mold is made, an extremely large number of pieces can be manufactured with it. Because of this, injection molding manufacturing is extremely cost effective in high volume production. But the properties of injection molding (plastic resin is fed into the injection machine, heated, and forced at high pressure into the mold by a screw and cures on cooling), and the mechanics of molding, dictate that designers pay particular attention to certain principals to ensure successful manufacture. Often medical device designers know basic injection mold design rules but this may not be enough to ensure smooth manufacture of parts and guarantee that the mechanical functioning of the mold does not cause problems.

Much of the specifics of mold design have to do with the particular characteristics of thermoplastics. Thermoplastics are heated, melted, and then injected at high pressure into the mold. They cure upon cooling and parts shrink during this cooling time. The variation in shrinkage that can occur must be a major consideration for a
designer in order to achieve dimension control, hold tolerances, and avoid warpage. This shrinkage is due to a number of variables:

(i) The type of plastic used
(ii) The rate of cooling in the mold
(iii) The wall section dimensions
(iv) The gate location and the related flow characteristics in the mold
(v) The molding machine process parameters (such as temperature and pressure)

Article from: http://www.manufacturing.net/article.aspx?id=7818&menuid=280

One of the problems is injection molding process parameter that affects the parts quality. Since the quality of injection molded plastic parts are mostly influenced by process conditions, how to determine the optimum process conditions becomes the key to improving the part quality.

1.5 PROBLEM SOLVING

From this study, warpage that occur in plastic injection molding industry can be minimized. Then the losses caused by rejected part due to warpage can be solved. This study is one of the solutions that can minimize problem that face in plastic industry. The optimization methodology in this study can be employed to improve part design and determine appropriate material properties in injection molding of other plastic parts as well.