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Abstract
This paper presents an in silico optimization method of metabolic pathway production. The

metabolic pathway can be represented by a mathematical model known as the generalized

mass action model, which leads to a complex nonlinear equations system. The optimization

process becomes difficult when steady state and the constraints of the components in the

metabolic pathway are involved. To deal with this situation, this paper presents an in silico
optimization method, namely the Newton Cooperative Genetic Algorithm (NCGA). The

NCGA used Newton method in dealing with the metabolic pathway, and then integrated ge-

netic algorithm and cooperative co-evolutionary algorithm. The proposed method was ex-

perimentally applied on the benchmark metabolic pathways, and the results showed that

the NCGA achieved better results compared to the existing methods.

Introduction
Recently, computational system biology has gained attention from many researchers and be-
come an important research area. The computational system biology has contributed to the un-
derstanding on the process of the complex biology where it enables the biological process to act
as a system. It can be achieved by utilizing the techniques and knowledge in the molecular biol-
ogy and genetics where it allows living cell to be manipulated as a real factory and gives insights
to researchers into ways to improve cell production. One way to improve cell production is by
in silico optimization of metabolic pathway production. Metabolic pathway can be defined as a
series of chemical reactions that occur within the microorganism cell. The computational sys-
tem biology has enable the metabolic pathway to be represented by mathematical model. Due
to that, it is possible to perform the optimization process using computer simulation (in silico
optimization).
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The in silico optimization of metabolic pathway production can be seen as the search for a
set of components (chemical reactions) for maximizing production rate. It works by altering
and tuning the value of the components in the metabolic pathway in order to find the maxi-
mum production rate. Similar to the production, the total of the component concentrations in-
volved also needs to be considered. When minimum value of component concentrations are
involved, the production cost can be reduced [1, 2]. Recently, many successful works have been
published on the in silico optimization of metabolic pathway production. Most of these works
used continuous optimization approach, such as linear programming method [2–4] and geo-
metric programming method [5, 6]. These approaches usually involve equality and inequality
constraints. They also require the definition of the decision variable that requires expert knowl-
edge. Moreover, the search process in the continuous optimization approach totally depends
on the decision variable, and this can lead to convergence problem if the decision variable is
not accurate [7].

In contrast to the continuous optimization approach, the combinatorial optimization ap-
proach works by finding the optimal solution from a finite set of objects. The method functions
by using a stochastic operator on a pool of candidate solutions for the optimization problem
and makes it more efficient and robust [8]. Due to its stochastic nature, the method does not
require any assumption regarding the structure of the model and the definition of the decision
variable. This is because the stochastic operator uses randommethod to determine the search
direction, which makes it more robust. For this reason, the present study uses the combinatori-
al optimization approach for the in silico optimization of metabolic pathway production. In
this optimization process, metabolic pathway can be viewed as a nonlinear equations system.
This is because the metabolic pathway can be described as mathematical model. There are
many methods that can be used in dealing with the nonlinear equations system, including nu-
merical, evolutionary and swarm intelligence methods. The Newton method, which is a nu-
merical method, is the most popular method used [9, 10]

Newton method is an iterative method used to find an optimum point to real-valued roots.
The utilization of the Newton method for the in silico optimization of metabolic pathway pro-
duction is a good choice because of the fast convergence speed of the Newton method [11]. In
this work, Newton method views metabolic pathway as a nonlinear equations system. Applying
only the Newton method is not sufficient for the optimization process because the variables in
the nonlinear equations system need to be tuned. This is because all the metabolic pathway
components are represented by many variables in the nonlinear equations system. Therefore, a
method is needed to represent and tune the variables. To overcome this problem, genetic algo-
rithm (GA) is applied. This approach can be performed by representing the variables in the
nonlinear equations system as a chromosome. Then, the chromosome is evolved and tuned.
However, several issues occur when this method is applied on a complex metabolic pathway
that involves many metabolic pathway components. This can cause complex representation of
the solution as many metabolic pathway components need to be represented by GA. In addi-
tion, evaluating the solution is time consuming. Therefore, a method needs to be embodied
into the GA to simplify the representation of the solution. It has been found that applying the
cooperative co-evolutionary algorithm (CCA) is the best choice, where the CCA method works
by dividing the representation of the solution into multiple sub-solutions [12–14].

In this paper, an improved method, namely the Newton Cooperative Genetic Algorithm
(NCGA), was utilized for the in silico optimization of metabolic pathway production. This
method uses the Newton method to deal with metabolic pathway. GA is then used in the opti-
mization process and CCA is embodied into the GA to decompose the solution into multiple
sub-solutions. Furthermore, this study introduced concepts for representing the solution,
namely NCGA representation which includes sub-chromosome representation and
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cooperative chromosome representation. The sub-chromosome is part of the cooperative chro-
mosome, while the cooperative chromosome is a complete solution. The NCGA representation
concept ensures that the NCGA is able to increase the production. In addition, this study also
introduced a two-level evaluation of the solution, namely sub-chromosome evaluation and co-
operative chromosome evaluation where this concept minimizes the total of the component
concentrations involved. In the following section, the theory of the metabolic pathway is dis-
cussed, where the modelling of the metabolic pathway and the optimization problem are de-
scribed. This is followed by a discussion of the proposed method and two case studies of the
optimization of ethanol production in Saccharomyces cerevisiae (S. cerevisiae) pathway and the
optimization of tryptophan (trp) biosynthesis in Escherichia coli (E. Coli) pathway. Finally, the
results are presented and discussed before a brief conclusion is made.

Modeling of metabolic pathway
In this study, the mathematical model used to represent the metabolic pathway is generalized
mass action (GMA) models. The representation of GMA has the following form:

dX
dt

¼ svðxÞ ð1Þ

where s represents the stoichiometric matrix of the system and v(x) denotes the vector that
contains reaction rate. There are two types of reactions, which are dependent and independent
variables. The dependent variable usually represents the metabolite concentrations, while the
independent variable is the enzyme activity. These variables are usually in the form of nonline-
ar functions. The reaction rate v(x) can be represented by using the power-law function, which
has the following form [6, 15]:

vi ¼ gi
Y
j

x
fij
j ð2Þ

In this representation, coefficient γi is denoted as the rate constant for vi and coefficient fij is the
kinetic order. These two coeffcients are derived from the Taylor series in the logarithmic space
around a steady state [6, 16]. They can be defined as follows:

gi ¼ jvij0 ð3Þ

fij ¼
����� dvidxj

xj
vj

����� ð4Þ

where the subscript 0 refers to the value at the steady state condition.

Problem statement for optimization
The in silico optimization of metabolic pathway production is always constrained by steady
state condition. In the steady state condition, all the variables in the metabolic pathway are in
static values. This condition forces all GMAmodels to be equal to 0, and thus produces models
as follows:

dXn

dt
¼ svðxÞ1; . . . svðxÞn
� � ¼ 0 ð5Þ
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This leads to the solving of a nonlinear equations system, which can be defined as follows
[1, 9, 10, 17]:

f ðxÞ ¼ ½f ðxÞ1; f ðxÞ2; . . . ; f ðxÞn� ¼ 0 ð6Þ

where x = (x1, x2� � �xn) denotes n equations and n variables, while f1, f2� � �fn are the nonlinear
functions. In order to solve a nonlinear equations system, all the equations f(x)1, f(x)2� � �f(x)n
must be equal to 0. This situation is similar to the in silico optimization of metabolic pathway
production. Therefore, the in silico optimization of metabolic pathway production can be con-
sidered as a method for solving a nonlinear equations system.

Besides the steady state condition, the constraint of the components in the metabolic path-
way also needs to be considered. This constraint exists in order to ensure the concentrations of
the components remain within the boundaries to maintain the survival of the microorganism
cell [1, 6]. Thus, the in silico optimization of metabolic pathway production involves improving
the pathway production and at the same time tries to reduce the component concentration in-
volved. The optimization problem can be written as follows:

max F1 ðvÞ ð7Þ

min F2

Xn
j¼1

xj

 !
ð8Þ

where objective function F1 is the production (maximum function) and objective function,
while F2 is the total of the component concentrations involved.

Newton cooperative genetic algorithm
In this section, NCGAmethod is discussed. The NCGA is used for the in silico optimization of
metabolic pathway production. The proposed method treats the metabolic pathway as a non-
linear equations system. In dealing with a nonlinear equations system, the Newton method is
applied, and then GA is used to represent the variables in the system. This is necessary in order
to tune the variables to search for the optimum set. GA loses its effectiveness when it is applied
in a complex metabolic pathway as the representation of the solution becomes complex and
difficult to evaluate. Hence, CCA is applied to overcome this particular problem.

The present study introduces a modified GA, which includes the NGCA representation con-
cepts and the two-level fitness evaluation. Fig 1 shows the simplified flow chart of the NCGA.
In the figure, the concepts of the NCGA representation and the two-level fitness evaluation are
highlighted by the dashed lines. The detailed flow of the algorithm is as follows:

Step 1. Generate the initial N sub-chromosome in N sub-population. Each sub-chromosome
represents each variable in the nonlinear equations system. The number of N sub-populations
depends on the number of variables in the nonlinear equations system. The example of repre-
sentation of all variables in nonlinear equations system by sub-chromosomes can be viewed in
Fig 2. The sub-chromosome is in binary representation.

Step 2. Evaluate the sub-chromosomes. In this step, a representative of the sub-chromosome
from all the sub-populations is selected based on the fitness value, where the sub-solution with
the lowest fitness value is selected first. This is done to ensure that the representatives from all
the sub-populations will combine with each other in order to minimize the total component
concentrations involved. This step is referred to as the sub-chromosome evaluation.

Step 3. Form the cooperative chromosome. After all the representatives are selected from
their sub-populations, they are combined with each other to form a complete solution known
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as the cooperative chromosome. This concept, referred to as the cooperative chromosome re-
presentation, is pictured in Fig 3.

Step 4. Evaluate the cooperative chromosome. In this step, the cooperative chromosome is
tested by the Newton method. A condition at this stage is whether or not termination has oc-
curred. The termination condition can occur in two conditions; when the maximum number
of generations has been reached, and when the component concentration constraint is in the
optimum range. If the termination condition is achieved, then the process skips directly to
Step 8.

Fig 1. The flow chart of the NCGA. The NCGA starts with representation of the solution by GA and CCA.
Then the Newton method is applied in order to evaluate the solution.

doi:10.1371/journal.pone.0126199.g001
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Fig 2. The representation of nonlinear equations system variables by sub-chromosomes. Each variable in nonlinear equations system represented by
sub-chromosome and evolve in their own sub-population.

doi:10.1371/journal.pone.0126199.g002

Fig 3. Cooperative chromosome representation. A representative was selected from all sub-population in order to form the cooperative chromosome.

doi:10.1371/journal.pone.0126199.g003
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Step 5. Transform the cooperative chromosome back into sub-chromosomes. In this step,
the cooperative chromosome is decomposed back into sub-solutions with all the sub-chromo-
somes are going back into their own sub-population. The purpose of this step is to select sub-
chromosomes in order to perform the reproduction process.

Step 6. Select the sub-chromosome. The selection process is based on the fitness values of
the sub-chromosome, whereby the sub-chromosome with the lowest fitness value is selected
first. This is intended to minimize the total of the component concentrations involved by mak-
ing all sub-solutions that have lowest fitness value combine with each other. The process is per-
formed until the last sub-chromosome has been selected.

Step 7. Reproduce a new generation. Crossover and mutation procedures are applied on the
selected sub-chromosomes. This is performed in order to produce a new generation that has
better quality compared to the previous generation. Then, the new generation goes back to
Step 2.

Step 8. Return the best solution. This step decodes the cooperative chromosome into the so-
lution. Fig 4 shows the NCGA algorithm in pseudocode format.

Case studies
To prove the effectiveness of the NCGA, a program was used and tested on the metabolic path-
way benchmark, namely the optimization of ethanol production in S. cerevisiae and the optimi-
zation of trp production in E. coli pathway. The program written in Java language that is
known as jMetal [18] was used. Besides that, JAMA version 1.0.3 [19] was used to handle the
nonlinear equations system and integrate with the jMetal program. The jMetal program can be
downloaded from http://jmetal.sourceforge.net/index.html while JAMA version 1.0.3 from
http://math.nist.gov/javanumerics/jama/.

Case study 1: Optimization of ethanol production in S. cerevisiae
pathway

Modelling framework. The GMAmodel derived from the ethanol production by S. cerevi-
siae was used as the case study in order to observe the performance of NCGA. The GMA
model derived from the S. cerevisiae pathway was suspended in a cell culture at pH 4.5 as rec-
ommended by Galazzo and Bailey [20]. This pathway has been applied in many studies over
the years. Fig 5 depicts a schematic representation of the S. cerevisiae pathway. The GMA
model of this pathway is described as follows:

dX1

dt
¼ Vin � VHK

dX2

dt
¼ VHK � VPFK � VCarb

dX3

dt
¼ VPFK � VGAPD � 0:5VGro

dX4

dt
¼ 2VGAPD � VPK

dX5

dt
¼ 2VGAPD þ VPK � VHK � VCarb � VPFK � VATPase

ð9Þ
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Fig 4. The pseudocode of the Newton cooperative genetic algorithm.

doi:10.1371/journal.pone.0126199.g004
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The variables and the corresponding steady state are summarized in Table 1. At the initial
steady state, all the fluxes in the model were formulated in the following form:

Vin ¼ 0:8122X�0:2344
2 Y1

VHK ¼ 2:8632X0:7464
1 X0:0243

5 Y2

VPFK ¼ 0:5232X0:7318
2 X�0:3941

5 Y3

VCarb ¼ 8:904� 10�4X8:6107
2 Y7

VGAPD ¼ 7:6092� 10�2X0:6159
3 X0:1308

5 Y4

VGro ¼ 9:272� 10�2X0:05
3 X0:533

4 X�0:0822
5 Y8

VPK ¼ 9:471� 10�2X0:05
3 X0:533

4 X�0:0822
5 Y5

VATPase ¼ X5Y6

ð10Þ

Fig 5. Anaerobic fermentation pathway in S. cerevisiae.

doi:10.1371/journal.pone.0126199.g005
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Optimization problem. The performance of the method proposed in this work can be as-
sessed by the rate of ethanol production given by the flux of pyruvate kinase, VPK. In addition,
the total of the component concentrations involved must be considered. Thus, the optimization
problem of this case study can be defined as follows:

max F1 ðvÞ ¼ VPK ð11Þ

min F2 ¼
X5
j¼1

Xj þ
X6
j¼6

Yj ð12Þ

The optimization problem was subjected to the steady state condition, where all the GMA
models were equal to 0:

Vin � VHK ¼ 0

VHK � VPFK � VCarb ¼ 0

VPFK � VGAPD � 0:5VGro ¼ 0

2VGAPD � VPK ¼ 0

2VGAPD þ VPK � VHK � VCarb � VPFK � VATPase ¼ 0

ð13Þ

The constraint of the component concentrations involved was also considered. This is to en-
sure that the microorganism is still workable. In this case study, the components were catego-
rized into two groups, which are metabolite and enzyme. The metabolites (X1 − X5) were set
approximately 20% from their steady state values, which were in the range of 0.8–1.2. For the
enzymes, not all enzymes were tuned as only Y1 − Y6 were involved. The values for enzymes
were set in the range of 0–50 [1, 21].

Case study 2: Optimization of trp biosynthesis in E. Coli pathway
Modelling framework. In this pathway, NCGA was used to optimize the trp production.

This pathway is introduced by Xiu et al. and detailed description can be found in [22]. This

Table 1. Summary of metabolites and enzymes in case study 1.

Metabolite Acronym Symbol Initial Steady State

Glucose (internal) Glcin X1 0.0345

Glucose-6-phosphate G6P X2 1.0110

Fructose-1,6-phosphate FDP X3 9.1440

Phosphoenolpyruvate PEP X4 0.0095

Adenosine triphosphate ATP X5 1.1278

Enzyme Acronym Symbol Initial Steady State

Glucose transport Vin Y1 19.70

Hexokinase VHK Y2 68.50

Phosphofructo-1-kinase VPFK Y3 31.70

Glyceraldehyde dehydrogenase VGAPD Y4 49.90

Pyruvate kinase VPK Y5 3440.00

ATPase VATPase Y8 25.10

Polysaccharide biosynthesis VCarb Y6 14.31

Polyol biosynthesis VGro Y7 203.00

doi:10.1371/journal.pone.0126199.t001
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pathway is depicted in Fig 6 and the detail is given in Table 2. This pathway has the following
GMAmodel:

dX1

dt
¼ V11 � V12

dX2

dt
¼ V21 � V22

dX3

dt
¼ V31 � V32 � V33 � V34

ð14Þ

Fig 6. Tryptophan biosynthesis in E. coli pathway.

doi:10.1371/journal.pone.0126199.g006
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where X1 is the mRNA concentration, X2 is the enzyme concentration and X3 is the trp concen-
tration. In steady state condition, all components in this pathway (variables in Table 2) have
the following rate:

V11 ¼ 0:6403X�5:87�10�4

3 X�0:8332
5

V12 ¼ 1:0233X1X
0:0035
4 X0:9965

11

V21 ¼ X1

V22 ¼ 1:4854X2X
�0:1349
4 X0:8651

12

V31 ¼ 0:5534X2X
�0:5573
3 X0:5573

6

V32 ¼ X3X4

V33 ¼ 0:9942X7:0426�10�4

3 X7

V34 ¼ 0:8925X3:5�10�6

3 X0:9760
4 X8X

�0:0240
9 X�3:5�10�6

10

ð15Þ

Optimization problem. The first objective function was to maximize the trp production
given by the reaction of V34 [23]. In addition, the second objective function was to minimize
the total concentrations involved. Thus, the optimization problem of this case study can be de-
fined as follows:

max F1 ¼ V34 ð16Þ

min F2 ¼
X6
j¼1

Xj þ X8 ð17Þ

Similar to case study 1, the optimization problem was subjected to the steady state condi-
tion. Hence, this produced GMAmodels with the following form:

V11 � V12 ¼ 0

V21 � V22 ¼ 0

V31 � V32 � V33 � V34 ¼ 0

ð18Þ

Table 2. Details of component concentrations in case study 2.

Variable Initial Steady State

X1 0.184654

X2 7.986756

X3 1418.931944

X4 0.00312

X5 5

X6 2283

X7 0.011

X8 430

X9 7.5

X10 0.005

X11 0.9

X12 0.02

X13 0

doi:10.1371/journal.pone.0126199.t002
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In this case study, not all of the components were tuned. Only seven components were
tuned, which are X1 − X6 and X8. For X1 − X3, the component concentration constraints were
in the range of 0.8–1.2; for X4, the component concentration constraints were in the range of
0–0.00624; for X5, the component concentration constraints were in the range of 5–10; for X6,
the component concentration constraints were in the range of 500–5000 and for X8, the com-
ponent concentration constraints were in the range of 0–1000 [4–6].

Results and discussion
Results and discussion Many parameter settings were used while performing the experiments.
Table 3 summarizes the parameter settings used when the best result was obtained. For the
Newton method, fixed parameters were used; the maximum number of iterations was fixed to
50 and the tolerance was set to 10−6.

In case study 1, the full results obtained by the NCGA are presented in Table 4. The table
gave the best result achieved, the average of 100 experiments, the standard deviation and the
comparison with other works. For the best ethanol production, the NCGA was able to increase
the ethanol production up to 52.91 times from its initial steady state value. Several other works
were compared with the NCGA in order to assess its performance. As seen in the table, the
NCGA produced the highest amount of ethanol compared to the others. Besides that, the
NCGA was able to reduce the total amount of the component concentrations involved, with
the total concentration was only 294.80.

Table 3. Summary of parameter settings in producing the best result.

Parameter Case Study 1 Case Study 2

Number of sub-populations 11 7

Number of individuals in sub-populations 150 150

Maximum generation 300 350

Crossover point 2.0 1.0

Mutation rate 0.3 0.2

doi:10.1371/journal.pone.0126199.t003

Table 4. Best solution obtained using the NCGA in case study 1.

Variable Best Solution Average of 100 experiments Standard deviation Rodriguez-Acosta et al. [21] Xu [6] Ismail et al. [24]

X1 1.1121 0.9940 0.1112 1.14 1.102 1.11

X2 1.0301 1.0000 0.1136 1.05 1.046 1.03

X3 1.1874 1.0057 0.1281 1.15 1.141 1.13

X4 1.1707 1.1273 0.0392 1.17 1.171 1.18

X5 0.9116 0.9839 0.1129 1.12 1.113 1.14

Y1 49.73 49.9811 0.0271 49.97 50 49.99

Y2 45.8097 45.0758 0.1806 44.77 45.953 45.83

Y3 48.8933 49.9056 0.1039 49.89 50 49.92

Y4 48.13 47.3806 0.1273 47.26 47.772 47.97

Y5 47.85 49.3487 0.5269 48 48.366 48.30

Y6 48.9782 49.7864 0.1262 49.75 50 49.79

F1 52.91 52.74 0.0133 52.0843 52.5118 52.57

F2 294.80 295.19 0.3274 295.27 297.664 297.384

doi:10.1371/journal.pone.0126199.t004
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The complete result achieved using NCGA in case study 2 is given by Table 5. The table
summarizes the best result achieved, the average of 100 experiments, the standard deviation
and the comparison with other works. For the best solution, NCGA was able to produce trp up
to 3.9759 times the initial steady state value. When the comparison was made with other
works, the result produced by NCGA was the highest. For the total component concentrations
involved, NCGA was able to reduce the total amount of the component concentrations in-
volved to 6006.5581, where it was the lowest value compared to other works.

In evaluating the concept of the NCGA representation, it was compared with the single
chromosome representation (traditional GA). Several experiments were conducted in evaluat-
ing this concept and the parameter settings as indicated in Table 3 were used. Fig 7 and Fig 8
give the comparison of the results. From both figures, it can be observed that all the production
results that utilized the NCGA representation concept were higher compared to the results that
only used single chromosome representation. This is because each variable in a nonlinear equa-
tions system was represented by multiple sub-chromosomes. In contrast to that, a single repre-
sentation of chromosome represents all the variables of nonlinear equations system into a
single chromosome. As the concept of NCGA representation allowed each variable in the non-
linear equations system to be represented by many sub-chromosomes and reproduced in their
own sub-population, this made all variables were tuned in order to produce the optimum re-
sult. This did not happen in the single representation of the solution, as there were possibilities
that not all variables were tuned because all variables were grouped together into only a single

Table 5. Best solution obtained using the NCGA in case study 2.

Variable Best
Solution

Average of 100
experiments

Standard
deviation

Marin-Sanguino et al.
[5]

Vera et al.
[4]

Xu [6] Ismail et al.
[24]

X1 0.9053 1.0741 0.0995 1.1900 1.2000 1.2000 1.1100

X2 0.8302 1.1091 0.0794 1.1480 1.1500 1.1150 1.1140

X3 0.8000 0.8000 1.56e−15 0.8000 0.8000 0.8000 0.8000

X4 0.0054 0.0054 1.14e−5 000041 0.0040 0.0054 0.00538

X5 4.0172 4.4736 0.3071 4.0000 4.0000 4.0110 4.7540

X6 5000 5000 0 5000 5000 5000 5000

X8 1000 1000 0 1000 1000 1000 1000

F1 3.9759 3.9614 0.0032 3.0620 3.0620 3.9460 3.9570

F2 6006.5581 6006.9621 0.4075 6007.1412 6007.1540 6007.1314 6007.7814

doi:10.1371/journal.pone.0126199.t005

Fig 7. The comparison results of the NCGA representation concept in case study 1.

doi:10.1371/journal.pone.0126199.g007
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representation. As a conclusion, applying the concept of sub-chromosome and cooperative
chromosome representation enables the improvement of the production.

In validating the two-level evaluation concept that was introduced in this study, several ex-
periments were conducted where the representatives from all sub-populations were selected
randomly based on their fitness value. The experiments used the parameter settings in Table 3
and the number of maximum generation was fixed to 300. The graph in Fig 9 and Fig 10 depict
the results obtained in case study 1 and case study 2 respectively. In both figures, it was found
that the representatives selected based on their fitness value were able to minimize the total of
the component concentrations involved compared to the representatives that were selected
randomly. Furthermore, the total of the component concentrations involved for the represen-
tatives that were selected based on the fitness value in Fig 9 and Fig 10 decreased slightly from
the 1st generation to the 300th generation. For the total of the component concentrations in-
volved of the randomly selected representatives, it was found that the total of component con-
centrations involved in the next generation sometimes were higher than the previous
generation. This might be due to the random element in selecting the representatives to form
cooperative chromosome. This could happen when a sub-chromosome in the current genera-
tion with higher fitness value compared to others in their sub-population was selected

Fig 8. The comparison results of the NCGA representation concept in case study 2.

doi:10.1371/journal.pone.0126199.g008

Fig 9. The result of two-fitness evaluation concept in case study 1.

doi:10.1371/journal.pone.0126199.g009
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randomly as a representative, and then combined with other representatives from other sub-
populations. This made the total of the component concentrations involved became higher in
the next generation. In conclusion, the two-level evaluation concept that was introduced in this
study was able to reduce the total of components concentrations involved and allow the NCGA
to perform the optimization process smoothly.

Several experiments were carried out in order to investigate the reliability of the results ob-
tained by the NCGA. The reliability of the results can be assessed by the average results that are
given in Table 4 for case study 1 and Table 5 for case study 2. For case study 1, it could be ob-
served that all component concentrations involved were in their optimum range, thus proved
that the NCGA was able to produce reliable results. In addition, the ethanol production rate
was higher and the total of the component concentrations involved was the lowest compared
to the previous works. Based on this observation, it can be concluded that the NCGA demon-
strated the reliability in handling the optimization problem in case study 1. In case study 2, it
was found that all component concentrations involved were placed in their optimal range,
therefore confirmed that the NCGA was capable of producing reliable result. Besides that, the
trp production rate was higher and the NCGA was able to reduce more for the total of the com-
ponent concentrations involved compared to previous works. Based on this finding, the NCGA
has shown its ability in the optimization of case study 2.

Besides comparing with previous works, the production of NCGA was also being compared
with the Newton method with traditional GA (single chromosome representation). 100 experi-
ments were performed and the best result, the average and the standard deviation were re-
corded. For the results that were produced by NCGA in case study 1 and case study 2 are given
in Table 4 and Table 5 5 respectively, while the result that was produced by the single chromo-
some representation is as follows; for case study 1, the best solution result for the ethanol pro-
duction rate is 52.57 and the total of the component concentrations involved is 297.38, the
average for the ethanol production rate is 52.40 and the total of the component concentrations
involved is 296.65, and the standard deviation for the ethanol production rate is 0.0826 and the
total of the component concentrations involved is 0.3944; for case study 2, the best result for
the trp production rate is 3.9570 and the total of the component concentrations involved is
6007.7884, the average for the trp production rate is 3.9510 and the total of the component
concentrations involved is 6007.9811, and the standard deviation for the trp production rate is

Fig 10. The result of two-fitness evaluation concept in case study 2.

doi:10.1371/journal.pone.0126199.g010
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0.0049 and the total of the component concentrations involved is 0.4872. It can be observed
that all the production result produced by NCGA was higher compared to the result that was
produced by traditional GA in terms of the best solution and the average for all case studies.
For the total of the component concentrations involved results (the best solution and the aver-
age), NCGA was able to reduce more compared to the Newton method with traditional GA.
For the standard deviation, NCGA was able to achieve smaller value of standard deviation
compared to the Newton method with traditional GA. This shows that the NCGA is able to
find the similar result. This is because with smaller value of the standard deviation points out
the consistency and precision of the NCGA.

Other than the production and the total of the component concentrations involved, the
computation time (in second) in performing experiment also needs to take into account.
Table 6 gives the comparison of the computation time taken in performing experiment for
NCGA and Newton method with traditional GA. Generally, the result shows that the NCGA
requires more computation time compared to the Newton method with traditional GA. This
might be due to the concept of the NCGA representation and the two-level evaluation concept
where NCGA needs more time to perform these two processes in order to obtain good results
compared to the Newton method with traditional GA.

Conclusion
In this paper, an improved method for in silico optimization of metabolic pathway production
known as NCGA has been proposed. The NCGA was developed to improve the metabolic
pathway production and at the same time minimize the total concentration of the components
involved. The NCGA comprises a combination of Newton method, GA and CCA. The Newton
method deals with the metabolic pathway and the GA is employed in the optimization process,
with the GA representing the components in the metabolic pathway as a solution. However, as
explained in this paper, the representation of the solution becomes complex when it is applied
in a complex metabolic pathway. To overcome this situation, the use of the CCA was proposed
in order to simplify the representation of the solution by decomposing the solution into multi-
ple sub-solutions. In addition, this study introduced two concepts to make the NCGA perform
well, namely the concept of representing the solution and a two-level evaluation of the solution.
The proposed method was applied in two case studies, and it showed better results than those
reported in previous studies.
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