Rapid Determination of Sildenafil and Its Analogues In Dietary Supplements Using Gas Chromatography–Triple Quadrupole Mass Spectrometry

S.U. Mokhtara,b, S.-T. Chinc, C.-L. Keec, M.-Y. Lowc, O.H. Drummerd, P.J. Marriotta

a Australian Centre of Research on Separation Science, School of Chemistry, Faculty of Science, Monash University, Clayton, VIC 3800, Australia
b Faculty of Chemical Engineering and Natural Resources, Universiti Malaysia Pahang, 26300 Pahang, Malaysia
c Pharmaceutical Laboratory, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore 169078, Singapore
d Department of Forensic Medicine, Monash University, Clayton, VIC 3800, Australia

ABSTRACT

Current traveling wave ultrasonic motor (TWUSM) utilizes comb-teeth structure as deflection amplifier. The position of the stator neutral axis to the stator contact surface is one of the factors that influences the deflection amplifier. Stator deflection directly effects on motor performance. In this study, the modification of the comb-teeth stator design is proposed to see its effect on motor efficiency. The modification is done so that the neutral axis position is further distance from the stator top contact surface. The proposed solution is to remove a selected mass element from the comb-teeth structure. Modeling, simulation and experimental work of the proposed concept is carried out utilizing Shinsei USR60 as the chosen TWUSM. The modeling and analyses are conducted through multi-physic finite element simulation MSC Marc Mentat. The results of the analyses and experimental work reveal that the modified comb-teeth stator increases the position of the neutral axis from the stator top surface. Due to the neutral axis shifting, the results also confirm that the proposed modified motor has higher efficiency compared to the non-modified motor.

KEYWORDS: GC-QQQMS; Phosphodiesterase-5; Sildenafil; Chemical ionisation; MRM; Dietary supplements

DOI: 10.1016/j.ultras.2015.09.002