PCO 2010, KUCHING, SARAWAK 2 – 4 DEC 2010

Dynamic Modeling of a Double-Pendulum Gantry Crane System Incorporating Payload (C17)

> Authors: R. M. T. Raja Ismail, M. A. Ahmad, M. S. Ramli, R. Ishak and M. A. Zawawi Faculty of Electrical & Electronics Engineering, Universiti Malaysia Pahang, Malaysia

ABSTRACT

- This paper presents dynamic modelling of a doublependulum gantry crane system based on closed-form equations of motion.
- A dynamic model of the system incorporating payload is developed and the effects of payload on the response of the system are discussed.
- Extensive results that validate the theoretical derivation are presented in the time and frequency domains.

PROBLEM STATEMENT

- Purpose of controlling a gantry crane:
 - To transport the load at short period of time (fast) without causing any excessive swing at the final position.
- Problems that arise:
 - Gantry crane results in a swing motion when the payload stops suddenly after a fast rope movement.
 - It requires more time (larger settling time) to minimize the swing motion (swing angle).
 - The needs for skillful operators to manually control and stop the swing at the right position*
- * Failure to control the crane might cause accident and may harm people and surrounding.

OBJECTIVES

- To study the dynamic modelling of a doublependulum gantry crane system based on closed-form equations of motion.
- To investigate the effects of payload on the dynamic behaviour of a double pendulum gantry crane system.

BRIEFING ON Gantry Crane Sys: Model structure

- The double-pendulum gantry crane system with its hook and load considered in this work is shown below.
- Where x is the cart position, m_c is the cart mass, m_h is the hook mass and m_p is the payload mass.
- Meanwhile, θ₁ is the hook swing angle, θ₂ is the load swing angle, l₁ and l₂ are the cable length of the hook and load, respectively, and F is the cart drive force.

BRIEFING ON Gantry Crane Sys:

System parameter values

Symbol	Parameter	Value	
m _c	Cart mass	5 kg	
m_h	Hook mass	2 kg	
m _p	Payload mass	1-10 kg	
l_1	Hook pendulum length	2 m	
l_2	Load pendulum length	1 m	
g	Gravity acceleration	9.8 m-s ⁻²	
F	Bang-bang input	10 N (amplitude)	
		/ 1 s (width)	

BRIEFING ON Gantry Crane Sys:

System's variable concerned

Symbol	Variable	The importance
<i>x (</i> m <i>)</i>	Cart position	To achieve steady state
		position with minimum error
θ_1 (rad)	Hook swing angle	To avoid excessive swing at
		hook
θ_2 (rad)	Load swing angle	To avoid excessive swing at
		load
PSD of θ_1	Power spectral density	To minimize the vibration at
(dB)	of the hook swing	hook due to rope movement
	angle	
PSD of θ_2	Power spectral density	To minimize the vibration at
$(dB)^2$	of the load swing angle	load due to rope movement

BRIEFING ON Gantry Crane Sys : Other parameters assumption

- 1) Cart friction force is ignored.
- 2) The tension force that may cause the hook and load cables elongate is also ignored.
- The cart (translational) and the payload (rotational) are assumed to move in two dimensional only (2D – movements)

BRIEFING ON Gantry Crane Sys : Mathematical model

 The dynamic model of the double-pendulum gantry crane system is expressed as :

 $M(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} + G(\mathbf{q}) = \mathbf{F}$

Where:
Inertia
$$\Rightarrow M(\mathbf{q}) = \begin{bmatrix} m_c + m_h + m_p & (m_h + m_p)l_1 \cos \theta_1 & m_p l_2 \cos \theta_2 \\ (m_h + m_p)l_1 \cos \theta_1 & (m_h + m_p)l_1^2 & m_p l_1 l_2 \cos(\theta_1 - \theta_2) \\ m_p l_2 \cos \theta_2 & m_p l_1 l_2 \cos(\theta_1 - \theta_2) & m_p l_2^2 \end{bmatrix}$$

Centrifugal
coriolis $\Rightarrow C(\mathbf{q}, \dot{\mathbf{q}}) = \begin{bmatrix} 0 & -(m_h + m_p)l_1 \sin \theta_1 \dot{\theta}_1 & -m_p l_2 \sin \theta_2 \dot{\theta}_2 \\ 0 & 0 & m_p l_1 l_2 \sin(\theta_1 - \theta_2) \dot{\theta}_1 \\ 0 & -m_p l_1 l_2 \sin(\theta_1 - \theta_2) \dot{\theta}_1 & 0 \end{bmatrix}$
Gravity $\Rightarrow G(\mathbf{q}) = \begin{bmatrix} 0 \\ (m_h + m_p)gl_1 \sin \theta_1 \\ m_p gl_2 \sin \theta_2 \end{bmatrix}$

SIMULATION RESULTS ...

 It is noted that the average final position of the cart decreases and the chattering of the final position increases with increasing payloads.

Fig 2(a): Response of the hook swing angle ($m_p = 1, 3, \& 5 \text{ kg}$) Fig 2(b): Response of the load swing angle ($m_p = 1, 3, \& 5 \text{ kg}$)

- It is shown that, the hook swing angle and load swing angle responses for various payloads requires more than 20 sec. to settle down.
- Besides that, it can be seen the oscillations of the hook swing angle and the load swing angle decrease with increasing payloads.

Fig 3(a): PSD of the hook swing angle ($m_p = 1, 3, \& 5 \text{ kg}$) Fig 3(b): PSD of the load swing angle ($m_p = 1, 3, \& 5 \text{ kg}$)

 Fig. 3 (a),(b) demonstrates that the resonance modes of vibration of the system shift to higher frequencies with increasing payloads.

ANALYSIS AND DISCUSSION

Table 1: Payload vs. Cart position responses

Table 2: Payload vs	Hook & load	swing angles
---------------------	-------------	--------------

Payload (kg)	Average cart position (m)	Oscillation (m)
0	-	-
1	1.9920	±0.3630
2	1.9151	±0.3831
3	1.9145	±0.4228
4	1.8521	±0.4929
5	1.8419	±0.5049
6	1.7219	±0.5057
7	1.6940	±0.5075
8	1.6063	±0.5091
9	1.5472	±0.5100
10	1.5154	±0.5102

Payload (kg)	Hook swing angle (°)	Load swing angle (°)
0	-	-
1	±0.4132	±0.8826
2	±0.4063	±0.7418
3	±0.3770	±0.6140
4	±0.3493	±0.5319
5	±0.3080	±0.3982
6	±0.3049	±0.3791
7	±0.2919	±0.3431
8	±0.2813	±0.3244
9	±0.2333	±0.3007
10	±0.2305	±0.2902

- From table 1, the average cart position decreases but the oscillation itself increases for heavier loads.
- Meanwhile, both hook and load swing angle decrease with the load increments (Refer table 2)

ANALYSIS AND DISCUSSION

Payload (kg)	Resonance frequency (Hz)			
	Hook swing angle		Load swing angle	
	Mode 1	Mode 2	Mode 1	Mode 2
0	-	_	-	_
1	0.3662	1.343	0.3662	1.099
2	0.3662	1.587	0.3662	1.221
3	0.3662	1.709	0.3662	1.221
4	0.3662	1.709	0.3662	1.221
5	0.4883	1.099	0.4883	1.221
6	0.4883	1.221	0.4883	1.221
7	0.4883	1.343	0.4883	1.343
8	0.4883	1.343	0.4883	1.343
9	0.4883	1.465	0.4883	1.465
10	0.4883	1.465	0.4883	1.465

Table 3: Payload vs. Hook & load swing angles resonanse freq. (Hz)

- From table 3, it shows that both hook and load swing angles have the same resonance frequencies of mode 1.
- It is due to the sway of the payload is always follow the oscillation of the hook.

ANALYSIS AND DISCUSSION

- Besides, the system has the same resonance frequencies of mode 1 that is 0.3662 Hz, when the payload is varied from 1 kg to 4 kg and has the same frequency of 0.4883 Hz when the payload is varied from 5 kg to 10 kg.
- This shows that, in order to decrease the oscillation of the system, a same control design can be used for several systems although they have different payloads.
- Besides, the hook and the load swing angles have different resonance frequencies of mode 2. However, these resonance frequencies do not affect much on the system since the mode 1 frequency is the dominant mode to the system

FUTURE RECOMMENDATION

- Comparative studies on the cart position, hook & load swing angle as well as their respective PSD for various rope length (l₁ & l₂) and input forces (F).
- Implementation of experimental studies by using a different type of crane, (e.g. rotary crane).

CONCLUSION

- Investigation into the development of a dynamic model of a double-pendulum gantry crane system incorporating payload has been presented
- The dynamic model has been simulated with bang-bang force input.
- The cart position, hook swing angle and load swing angle responses of the gantry system have been obtained and analysed in time and frequency domains.
- Moreover, the effects of payload on the dynamic characteristic of the system have been studied and discussed.

REFERENCES

- [1] D. T. Liu, W. P. Guo and J. Q. Yi and D. B. Zhao, Double-pendulum-type Overhead Crane Dynamics and its Adaptive Sliding Mode Fuzzy Control, Proc. Of the Third International Conference on Machine Learning and Cybernetics, 2004, pp. 423-428.
- [2] D. T. Liu, W. P. Guo and J. Q. Yi, GA-based Composite Sliding Mode Fuzzy Control for Double-pendulum-type Overhead Crane, Lecture Notes in Computer Science, Springer Berlin, 2005, pp. 792-801.
- [3] D. T. Liu, W. P. Guo and J. Q. Yi, Dynamics and GA-based Stable Control for a Class of Underactuated Mechanical Systems, International Journal of Control, Automation, and System, Vol. 6, No. 1, 2008, pp. 35-43.
- [4] D. T. Liu, W. P. Guo and J. Q. Yi, Dynamics and Stable Control for a Class of Underactuated Mechanical Systems, Acta Automatica Sinica, Vol. 32, No. 3, 2006, pp. 422-427.
- [5] D. Kim and W. Singhose, Reduction of Double-Pendulum Bridge Crane Oscillations, The 8th International Conference on Motion and Vibration Control, 2006, pp. 300-305.

REFERENCES (cont...)

- [6] M. Kenison and W. Singhose, Input Shaper Design for Double-pendulum Planar Gantry Cranes, 1999 IEEE Conference on Control Applications, 1999.
- [7] M. A. Ahmad, Z. Mohamed and N. Hambali, Dynamic Modelling of a Twolink Flexible Manipulator System Incorporating Payload, 3rd IEEE Conference on Industrial Electronics and Applications, 2008, pp. 96-101.
- [8] M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modeling and Control. New Jersey: John Wiley, 2006.
- [9] M. W. Spong, Underactuated Mechanical Systems, Control Problems in Robotics and Automation. London: Springer

