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ABSTRACT 

 

This study deals with modelling and performance enhancements of a combined cycle 

power plant. Several configurations of CCGT power plants are proposed by thermal 

analysis. The integrated model and simulation code for exploiting the performance of 

the CCGT power plant is developed utilizing MATLAB code. A different strategy for 

the CCGT power plant's operational modelling is suggested for power plant operation, 

to improve overall performance. The effect of isentropic efficiencies on the performance 

of the CCGT power plant is based on real CCGT power plants. An extensive 

thermodynamic analysis of the modifications of the most common configuration 

enhancements has been carried out. The simulation results for the HRSG configurations 

show that the maximum power output (1000 MW) occurred in the supplementary triple-

pressure reheat CCGT at high isentropic compressor efficiency. Furthermore, with the 

triple-pressure reheat CCGT and higher isentropic turbine efficiency the maximum 

overall efficiency was about 58.3%. In addition, the proposed CCGT system improved 

the thermal efficiency by 1.6% and the power output by 11.2%. Thus, the isentropic 

efficiencies and CCGT configurations have a strong influence on the overall 

performance of the CCGT.  

 

Keywords: Combined cycle; gas-turbine; thermodynamic; isentropic efficiency.  

  

INTRODUCTION 

 

The GT Brayton cycle and ST Rankine cycle are compatible with each other and can be 

combined in such a way as to attain efficient CCGT power plants. The Brayton cycle 

has a high source of temperature and discards the heat at a temperature that can easily 

be used by the Rankine cycle plant as a source of energy. Air and steam are the most 

frequently used operating liquids for CCGT power plants [1]. Kaushika et al. [2] studied 

the best performance of a CCGT power plant, by both simulating and modelling the 

CCGT plant. The activities of the GT were studied and debated at part load [3]. CCGT 

plants represent the result of ambient temperature on sensitivity study and GT 

performance [4]. The optimum mixture of the parameter of procedure of steam exiting 

the steam generator gives the best performance of CCGT plants at part load process. 

The best values of the overall thermal efficiency and output of power with the values of 

the decision variable are demonstrated for CCGT plants [5] [6] [7]. The simulator of a 
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CCGT co-generation plant was created by Khaliq and Kaushik [8], based on a 

computational model working on the principle of power plant modelling. This simulator 

comprises two sections. One deals with the simulation of the flow of fluid within the 

power plant, while the second shows the simulation of the regulating system of the plant 

[9]. Presently, the electric form of power is the most widely used worldwide. Therefore, 

it is imperative that the focus of the research should be on the importance of the power 

plants producing electric energy. Amongst the various types of power plants, thermal 

power plants have the highest capacity to produce energy. Many advances have taken 

place in the past three decades in the combined cycle (CCGT) supported gas turbine and 

today these are regarded as the most effective and the strongest power plants in the 

world [10]. As a result of this, a series of solutions were developed to accomplish the 

optimum structure and to improve the working of CCGT power plants. According to 

Mohagheghi and Shayegan [11], due to the connection of the two distinct power 

production cycles with the HRSG, the structure of the CCGT has become very intricate 

and this directly affects the power generation and thermal productivity if there is no 

modification in the design. CCGT plants use equipment (like gas turbines, steam 

turbines, compressors) whose features are standardized by the manufacturers. The 

components of the HRSG include an economizer, superheated steam and evaporator. 

The HRSG structure and the choice of the best variables are strongly influenced by the 

blend of the HRSG and the GT and this, in turn, strongly influences the steam cycle. 

Additionally, it has been suggested that the optimum variables that are associated with 

the steam turbine cycle may be highly affected by the performance and operating 

conditions of the steam turbines [12]. 

According to Alobaid et al. [13], the first HRSG was used in CCGT plants 

implementing a single pressure level. The practice of this specific solution has 

continued in current years, but restricted to CCGT plants of medium power output in the 

range of 60–70 MW and occasionally in plants generating over 100 MW. During the 

1980s, the second pressure level termed as HRSG began. This introduced a new 

development in the industry that led at the end of the last century to the introduction of 

systems with three pressure levels with reheat [14]. In order to further improve the 

performance of the CCGT, researchers have given considerable attention to the working 

of the HRSG. Besides this, to enhance the overall thermal efficiency of the CCGT, the 

effects of a variety of factors in the design of the HRSG have been investigated. Ongiro 

et al. [15] studied the operation of the HRSG by developing an arithmetical technique. 

Dumont and Heyen [16] proposed that the once-through HRSG design is preferably 

harmonized to extremely elevated pressure and temperature. The authors chose a 

thermodynamic model and implemented it to operate with extremely elevated pressure 

(up to 240 bars). For investigation of the performance, a thermodynamic methodology 

was used for the combustion reheat GT cogeneration system through which the 

energetic efficiency was defined [8]. In addition to this, the effects of pinch point, steam 

pressure and temperature were evaluated on the thermal efficiency of the CCGT that 

was used in the HRSG design and reheat section. Woudstra et al. [17] provide evidence 

from these results that the power to heat ratio increases and thermal efficiency decreases 

as the temperature of the pinch point increases. When the reheat section is included, the 

results demonstrate a significant improvement in the heat production, power output, 

thermal efficiency and fuel saving [18, 19]. The thermodynamic methodology for 

measuring the CCGT power plant’s performance is vital during the selection and 

comparison of combined cycle power plants [20]. A thermodynamic analysis was 

implemented by Atmaca [21] on the natural gas’s basic cycle in combination with a 
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cogeneration plant which showed that the energy usage factors and overall thermal 

efficiency decreased as the power to heat ratio increased. Consequently, a 

thermodynamic study on the effect of the isentropic compressor and turbine efficiency 

requires management of the effective parameters of the CCGT power plant. Thus, the 

aim of the present work is to develop a simulation model to enhance the performance of 

the CCGT power plant for several configurations, utilizing the effect of the isentropic 

compressor and turbine efficiency. 

 

MODELLING OF COMBINED CYCLE GAS TURBINE 

 

A triple-pressure reheat HRSG with a supplementary firing unit and a condensing steam 

turbine can be described as a complex triple-pressure CCGT plant. Three GT and three 

HRSG connected with one ST were associated with the unit in this model. The energy 

and mass balances are presented owing to the more significant and complex 

configuration identified with the supplementary triple-pressure reheat CCGT plant. A 

schematic diagram of the triple-pressure reheat combined cycle with a supplementary 

firing unit (TPRBCC) power plant in the midst of a simple GT cycle is depicted in 

Figure 1. This will produce a turbine inlet temperature of 1600 K. The majority of the 

air at 1 is compressed to a higher pressure at 2. At this point, the air enters the 

combustion chamber [1] and undergoes combustion by utilizing additional fuel. This 

results in combustion gas at 3. Expansion of the gas at 3 takes place subsequently to the 

chimney or HRSG at 4. Heat is transferred to steam once the gas at 4 enters the HRSG, 

before exiting the stack temperature at 5. In the HRSG, expansion of the steam at the 

outlet of the high pressure superheater at 6 occurs in the high-pressure steam turbine 

(HPST) to a lower pressure and temperature at 7. In the reheat section, steam at 7 is 

reheated to a higher temperature at 8. Here, further expansion of the steam in the 

intermediate-pressure steam turbine (IPST) to the low pressure at 10 takes place. This is 

followed by the expansion of the superheated steam at the outlet of the intermediate-

pressure section of the HRSG at 9 in the intermediate-pressure steam turbine (IPST) to a 

lower pressure and temperature at 10, where it enters the low-pressure steam turbine. At 

the outlet of the low-pressure section of the HRSG at 11, the superheated steam and 

steam at 10 undergo further expansion in the low-pressure steam turbine (LPST) to low 

pressure and temperature at 12. From the low-pressure steam turbine at 2 bar, steam is 

extracted before being fed to the open feed water heater (deaerator) at 13. At 12, the 

steams with low-pressure and low-temperature will undergo condensation in the 

condenser and be transformed into saturated water at 14. The resulting water at 15 is the 

outcome of the saturated water flowing out of the condenser at 14 and subsequently 

mixing with steam at 13 inside the deaerating condenser. At 15, the saturated water 

exiting the deaerating condenser is pumped to a higher pressure at (Tw1LP) 

. Saturated water at (Tw2LP) is the result of the heating to which water at (Tw1LP) is 

exposed in the low-pressure economizer section of the HRSG. The water then enters the 

low-pressure steam drum (D1). In the low-pressure superheater of the HRSG, the 

saturated steam at the outlet of drum D1 at (TsLP) is superheated. Steam at (TssLP) is 

produced as a result. The low pressure steam turbine (LPST) becomes the recipient of 

the steam at (TssLP), where it undergoes expansion till it enters the condenser pressure at 

14. At the outlet of drum D1, the saturated water is pumped to the pressure of drum D2 

at (Tw1IP). In the intermediate-pressure economizer section of the HRSG, water at (Tw1IP) 

undergoes heating till it assumes a saturated condition. Before being partly evaporated 
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in the HRSG’s intermediate pressure evaporation section, the saturated water at (Tw2IP) 

undergoes heating. 

 

 
 

Figure 1. A schematic diagram of the supplementary firing triple-pressure steam-reheat 

combined cycle power plant. 

 

At the top of drum D2 at (TsIP), the saturated vapour is superheated to a higher 

temperature at (TssIP) in the intermediate-pressure superheater section of the HRSG. The 

intermediate-pressure steam turbine (IPST) becomes the recipient of the steam, where it 

experiences expansion until it reaches the condenser at 14. At (Tw1HP), the saturated 

water present at the outlet of drum D2 is pumped to the pressure of drum D3. In the 

high-pressure economizer section of the HRSG, water at (Tw1HP) undergoes heating to 

acquire the saturated water condition. In the high-pressure section of the HRSG, the 

saturated water is heated and partly evaporated. The high-pressure superheater section 

of the HRSG is where the saturated vapour at the top of drum D3 at (TsHP) is 

superheated to a higher temperature at (TssHP). The steam expands into the reheat section 

at 7 after the superheated steam at (TssHP) enters the high pressure steam turbine 

(HPST). In the reheat section of the HRSG, the steam at 7 is superheated to a higher 
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temperature at 8, with some impact on the duct burner. Before being pumped to 16, all 

the steam at 12 will go through the process of condensation in the condenser to water at 

14. The temperature transfer diagram for the CCGT power plant with a simple GT cycle 

is illustrated in Figure 2. The temperature–entropy diagram for the CCGT is shown in 

Figure 3. 

 

 
 

Figure 2. A typical temperature heat transfer diagram for supplementary firing of triple-

pressure reheat HRSG combined cycle. 

 

 
 

Figure 3.  Temperature–entropy diagram for supplementary firing of triple-pressure 

reheat HRSG combined cycle. 

 

During the analysis of the combined cycle, the following assumptions have been 

made [22] [23]: 

 

1. The ambient temperature has been assumed to lie between 273 and 328 K while 

atmospheric pressure is taken as 1.01325 bar. 
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2. The range of 1100 to 2000 K has been assumed for the turbine inlet temperature 

in the gas-turbine cycle. 

3. The range of 75 to 100% has been taken for the isentropic efficiencies of the 

compressor and turbine. 

4. From the combustion chamber, the heat loss is assumed to be 3% of the fuel’s 

lower heating value [24, 25]. Additionally, the property of being adiabatic is 

assumed for the rest of the components. 

5. The steam cycle’s maximum temperature is 873 K. 

6. The condenser pressure is assumed to be 0.07 bar 

7. For the steam and gas turbine cycle, the rotational speed is assumed to be 

constant. 

8. The pinch points in the HP, IP and LP evaporators (minimum temperature 

difference between the hot exhaust gases and the saturated steam) are taken as 

15°C. 

9. A temperature difference of 20°C is assumed as the difference between the flue 

gas and superheated steam, i.e., the terminal temperature difference (TTD) in 

the HP, IP and LP. 

10. A temperature difference of 60°C is assumed as the difference between the 

superheated and saturated steam, i.e., the degree of superheat (DSH) in the LP 

and IP. 

11. The temperature difference between the steam and outlet cooling water in the 

condenser is assumed to be 15°C. 

12. A value of 90% is assumed for the isentropic efficiency of the steam turbine. 

13. The pressure drops in the combustion chamber, HRSG and condenser are not  

considered. 

14. No consideration is given to heat losses in the HRSG, turbines or condenser. 

15. All procedures are steady state and steady flow. 

16. In the combustion chamber, fuel that undergoes burning is taken as natural 

gas. 

 

Equation (1) defines the compressor pressure ratio (
pr ) [26]: 

1

2

p

p
rp                                                                (1) 

where 1p  and 2p  denote the compressor inlet and outlet air pressure. 

   

Equation (2) shows the calculation for the net work of the gas turbine (WGnet): 
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where m  is the mechanical efficiency of the compressor and turbine, 

4.1a , 33.1g , while  
paC is the specific heat of the air and 

pgC  the specific heat of 

the flue gas. 

 

Equation (3) expresses the net power output of the turbine (P): 

Gnetg WmP                                                       (3) 
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where the mass flow rate of the exhaust gases through the gas turbine is denoted by 
gm  

and Eq. (4) demonstrates this:  

fag mmm                                                      (4) 

Equation (5) below is used to determine the specific fuel consumption (SFC): 

netW

f
SFC

3600
                                                   (5) 

where (f) is the fuel–air ratio.  

 

Equation (6) is another way of expressing the heat supplied: 
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where LHV is the low heating value, 
pfC is the specific heat of the fuel, am  is the air 

mass flow rate (kg/s), 
fT  is the temperature of the fuel, 

fm  is the fuel mass flow rate 

(kg/s) and T3=TIT = turbine inlet temperature. 

 

Equation (7) can now be used to calculate the GT thermal efficiency ( th ) [27] [28]: 

add

Gnet

Q

W
th                                                        (7) 

 

 The following shows how the heat available with exhaust gases from the GT 

cycle can be presented: 

  fgpggpggav hTCTCmQ 1111111                               (8) 

The following relation has been obtained by performing the energy balance for a 

steam turbine:  

1279876 hmhmhmhmhmhmW .

w

.
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.

sIP
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sRH

.

sHPst       (9) 

The water mass flow rate is denoted .

wm  and calculated by using Eq. (10): 
....

sLPsIPsHPw mmmm                                             (10)  

The following equation represents the heat rejected from the condenser: 

 1412

. hhmQ wcond 
                                           

(11) 

 The feed pump extracts the condensate water from the condenser and raises it to 

the economizer pressure. Eq. (12) expresses the corresponding work of the feed water 

pumps for three levels: 

 

         shIPshHPfsLPsIPwshLPshIPfsLPwcshLPfwp ppvmmmppvmmppvmW  18

...

17

..

16

.

   
(12) 

  

Hence, the following formula represents the net work of the steam turbine power plant: 

 

pstsnet WWW 
                                               

(13) 

The equation given below shows how calculations can be performed for the 

performance of the CCGT power plant, including the thermal efficiencies for the gas-

turbine cycle and steam-turbine cycle, and the overall efficiency [23]. The efficiency of 

the steam turbine power plant is: 
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av

snet
stc

Q

W
                                                     (14) 

 

The following shows the overall thermal efficiency of the CCGT power plant: 

add

snetGnet
all

Q
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
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

3

3
                                            (15) 

 

RESULTS AND DISCUSSION 

 

The trends of the exhaust temperature and steam mass flow rate of the CCGT for 

different configurations of HRSG with the effect of the isentropic compressor efficiency 

are presented in Figure 4. The effect of the isentropic compressor efficiency on the 

exhaust temperature of the GT and HRSG configurations is shown in Figure 4(a). It is 

evident that with an increase in the isentropic compressor efficiency, there is an increase 

in the exhaust temperature. The variations are according to the different cycle 

configurations. This is due to the limited values provided in the HRSG to control the 

exhaust temperatures [29, 30]. The increase in the isentropic compressor efficiency was 

followed by a gradual decrease in the exhaust temperature of the HRSG. Lower 

temperatures of the exhaust gases from the HRSG are obtained in the TPRBCC 

configuration. As a consequence, there are higher exhaust temperatures of the HRSG in 

the SPCC.  

 

   
                 

                  (a) Exhaust temperature                                 (b) Steam mass flow rate 

 

Figure 4. Effect of the isentropic compressor efficiency on the exhaust temperature and 

steam mass flow rate of the CCGT for different HRSG configurations. 

 

Figure 4(b) shows the effect of the isentropic compressor efficiency on the steam 

mass flow rate for different configurations of the CCGT plants. It was observed that 

when the isentropic compressor efficiency was increased from 70 to 100%, the steam 

generated in the ST cycle increased by about 7.5 kg/s. As shown in Figure 4(a), this is 

due to the increase in the exhaust temperatures of the GT with the increase in the 
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isentropic compressor efficiency. As more fuel was burnt in the HRSG, the maximum 

steam was produced in the TPRBCC configuration [25].  

 

   
    

                 (a)  Power output                                    (b) Overall thermal efficiency 

 

    
  

           (c) Specific fuel consumption                          (d) Overall power output 

 

Figure 5. Effect of the isentropic compressor efficiency on performance of different 

CCGT power plant configurations. 

 

The variation of the CCGT power plant’s performance for different HRSG 

configurations with the effect of the isentropic compressor efficiency is shown in 

Figure 5. The variation of the power outputs of the GT and ST with the effect of the 

isentropic compressor efficiency for different CCGT plant configurations is shown in 

Figure 5(a). When the isentropic compressor efficiency was increased from 70 to 100%, 

the power output of the GT also increased. Normally, when the isentropic compressor 

efficiency increases, the losses of the air compressor are reduced, which leads to more 

power in the GT cycle [31, 32]. In addition, when the isentropic compressor efficiency 
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increases, the power output of the steam turbine increases very slowly. The effect of the 

isentropic compressor efficiency on the overall thermal efficiency of the various CCGT 

configurations is shown in Figure 5(b). The overall thermal efficiency for each of the 

configurations of the combined cycle plants increased as the isentropic compressor 

efficiency increased. 

As shown in Figure 5(a), this was because of the increase in the power output of 

the GT cycle with the increase in the isentropic compressor efficiency. When the 

isentropic compressor efficiency increased from 70 to 100%, the overall thermal 

efficiency increased by about 10%. Similarly, the SPCC has the lowest overall thermal 

efficiency, while the TPRCC configuration has the highest overall thermal efficiency 

(about 56.2%). The variation of the specific fuel consumption with the effect of the 

isentropic compressor efficiency for different CCGT plant configurations is shown in 

Figure 5(c). It was observed that when the isentropic compressor efficiency increased, 

there was a decrease in the specific fuel consumption. This is because the increase in the 

isentropic efficiency leads to a reduced loss in the GT [3]. When the isentropic 

compressor efficiency increased from 70 to 100%, the lowest specific fuel consumption 

(from 0.0529 to 0.0438 kg/kWh) occurred in the TPRCC configuration, and the highest 

specific fuel consumption (from 0.0553 to 0.0448 kg/kWh) occurred in the SPCC 

configuration. The effect of the isentropic compressor efficiency on the overall power 

output for different CCGT plant configurations is shown in Figure 5(d). A high power 

output is obtained as a result of high isentropic compressor efficiency [3, 33, 34]. 

Therefore, with the increase in the isentropic compressor efficiency, the overall power 

output was increased for all CCGT configurations. When the isentropic compressor 

efficiency increased from 70 to 100%, there was a 340 MW gain in the overall power 

output of the CCGT, but the highest power output (from 660 to 1000 MW) occurred in 

the TPRBCC configuration and the lowest power output (from 585 to 922 MW) 

occurred in the SPCC configuration. 

 

   
                      (a) Exhaust temperature                              (b) Steam mass flow rate 

 

Figure 6. Effect of the isentropic turbine efficiency on the exhaust temperature and 

steam mass flow rate of the CCGT for different HRSG configurations. 

 

Figure 6 shows the effect of the isentropic turbine efficiency on the exhaust 

temperature and steam mass flow rate of the CCGT for different HRSG configurations. 
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Figure 6(a) shows the effect of the isentropic turbine efficiency on the exhaust 

temperature of the GT and HRSG of the various configurations. The rise in the 

isentropic turbine efficiency led to a decrease in the exhaust temperature of the GT at a 

steeper slope. This is due to the ability of a power turbine with high isentropic 

efficiency to convert more energy from the hot exhaust gases [17]. The increase in the 

isentropic turbine efficiency leads to an increase in the exhaust temperature of the 

HRSG. When the isentropic turbine efficiency increased from 70 to 100%, the lowest 

exhaust temperature (from 345 to 368 K) was obtained in the TPRBCC configuration. 

When the isentropic turbine efficiency increased from 70 to 100%, the highest exhaust 

temperature (from 450 to 365 K) was obtained in the SPCC configuration. At lower 

isentropic turbine efficiency, the deviation in the exhaust temperature of the HRSG is 

less significant than at higher isentropic turbine efficiency. The effect of the isentropic 

turbine efficiency on the steam mass flow rate for different configurations of the CCGT 

plants is shown in Figure 6(b). Figure 6(a) shows the lower exhaust temperature 

obtained due to the higher isentropic turbine efficiency. Therefore, the increase in the 

isentropic turbine efficiency was matched with a reduced steam generation for all the 

configurations of the combined cycle. When the isentropic turbine efficiency was about 

100%, the maximum drop of the steam generated was about 218 kg/s in the ST cycle. 

The greater amount of fuel burnt leads to the maximum production of steam in the 

TPRBCC configuration. On the other hand, in the SPCC configuration the minimum 

steam is produced.  

Figure 7 shows the variation of performance of different configurations of the 

CCGT power plants with the effect of the isentropic turbine efficiency. The variation of 

the simulated power outputs of the GT and ST configurations with the effect of the 

isentropic turbine efficiency is shown in Figure 7(a). There is an increase in the power 

output of the GT with the increase in the isentropic turbine efficiency at given values of 

temperature, pressure and pressure ratio. To increase the component efficiencies, the 

power output plays a very important role. When the isentropic turbine efficiency 

increased from 70 to 100%, the GT power output also increased, from 370 to 678 MW. 

In addition, the increase in the isentropic turbine efficiency leads to a decrease in the 

power output of the ST cycle. Figure 7(b) shows the reduced steam generated by the 

HRSG due to the reduced exhaust temperature of the GT under the effect of the 

increased isentropic turbine efficiency. However, the increase in the isentropic turbine 

efficiency from 70 to 100% led to a decrease in the power output by 142 MW for the ST 

cycle. When the isentropic turbine efficiency was increased from 70 to 100%, the peak 

power output was obtained and reduced from 417 to 296 MW. The behaviour of the 

overall thermal efficiency with isentropic turbine efficiency variations for the different 

configurations of the combined cycle is shown in Figure 7(b). The increase in the 

isentropic thermal efficiencies for the various configurations leads to a steep rise in the 

overall thermal efficiency. As shown in Figure 7(a), the increased power of the GT, 

more than the decreased power of ST, was the main reason for this. In addition, the 

increase of the overall thermal efficiency was due to the reduction in the exhaust 

temperature of the GT. When the isentropic turbine efficiency increased from 70 to 

100%, there was an increase in the overall peak thermal efficiency from 47.6 to 58.2% 

in the TPRCC configuration, and the lowest overall thermal efficiency from 46.2 to 

56.5% was obtained in the SPCC configuration.   
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                      (a)  Power output                                  (b) Overall thermal efficiency 

 

   
 

            (c) Specific fuel consumption                         (d) Overall power output 

 

Figure 7. Effect of the isentropic turbine efficiency on performance of different 

configurations of the CCGT power plants. 

 

Figure 7(c) shows the trends of the specific fuel consumption with the effect of 

variation of the isentropic turbine efficiency. The result was a steeper decline as the 

isentropic turbine efficiency increased. In addition, there was a decrease in the losses 

and the exhaust temperature with increase in the isentropic turbine efficiency. This led 

to decrease in the burnt fuel [19, 35]. For this reason, the specific fuel consumption 

decreased with increase of the isentropic turbine efficiency. When the isentropic turbine 

efficiency increased from 70 to 100%, the best specific fuel consumption (0.0513 to 

0.042 kg/kWh) occurred in the TPRCC configuration. When the isentropic turbine 

efficiency increased from 70 to 100% in the SPCC configuration, the highest specific 

fuel consumption (0.0528 to 0.0432 kg/kWh) occurred. The effect of the isentropic 

turbine efficiency on the overall power outputs for different configurations of CCGT 
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plants is shown in Figure 7(d). The network obtained is high due to the higher isentropic 

turbine efficiency from the GT, which leads to a reduction in the heat losses [8, 26]. For 

these reasons, there was a linear increase in the isentropic turbine efficiency with the 

increase in the overall power output for all the configurations. When the isentropic 

turbine efficiency increased from 70 to 100% in the CCGT, the overall power output 

increased by about 170 MW, the lowest power output (702 to 861 MW) occurred in the 

SPCC configuration and the highest power output (780 to 942 MW) occurred in the 

TPRBCC configuration. 

 

CONCLUSIONS 

 

In this paper, an attempt was made to develop a simulation model for several 

configurations of the CCGT cycle and these were assessed with the influence of the 

isentropic compressor and turbine efficiency. The performance codes were developed 

based on MATLAB code. To obtain the maximum thermal efficiency and power 

generation, multi-configured parameters were designed. Parametrical analysis was 

performed to investigate the performance of CCGT plants, using as parameters the 

isentropic compressor and turbine efficiency of the GT. Furthermore, the highest 

thermal efficiency occurred in the TPRCC configuration while the maximum power 

output was recorded for the TPRBCC configuration. 
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