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ABSTRACT 

 

Sound friction stir welds could be attained by using an active design of backing/clamping 

system with a proper selection of the welding parameters. This work presented a 

simplified design of fixtures and backing plates to be used for friction stir welding of 

aluminum alloys. The test-rig was constructed to prevent dispersal or lifting of the 

specimens throughout the joining process and to ensure uniform distribution of 

temperature along the plates. The workpieces were subjected to uniform lateral and 

vertical pressures by means of bolts and nuts. Compound backing plates and pressure bars 

with additional side plates were included to increase the heat sink. Several coupons of 

dissimilar aluminum alloys AA7075 and AA6061 were joined to inspect the validity of 

this design. The tests showed promising results with defects-free welds, good strength 

and smooth surface finish without geometric imperfection and gap creation between the 

welded specimens. Efficiency of the joint reached its maximum value of about 82% with 

respect to the ultimate strength of the AA6061 alloy at 1100 rpm rotation speed and 300 

mm/min feed. These results encourage using and improving the present design for future 

studies of friction stir welding.    
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INTRODUCTION 

 

In fiction stir welding (FSW), backing plates and fixtures are quite significant factors [1-

3].  It is important that the workpieces should not spread or be lifted during the process; 

therefore, welding fixtures must be designed with features that are enable to achieve this 

objective. The quality of welding is dependent on the manufacturing precision of the 

clamping system and the welding table [4]. Moreover, the impact of clamping process on 

the joint performance should be recognized so that the required constant quality could be 

ensured. The method of clamping and its effects on machine processes are well 

understood. Besides that, clamping claws is an easy and less costly system, however, it 

leads to varying temperature distributions which could be improved through the use of 

pressure bars [5-7]. Advanced research have indicated that continuous clamping 

approaches could lead to a more consistent FSW quality along the joint’s length [8]. 

Essential forces are required in FSW that should be supported by the fixtures, leading to 

a significant rise in total process costs. Thus, appropriate knowledge regarding the 

required forces would result in the chances of optimization of clamping system with 

respect to cost and efficiency [9]. At the time of designing new optimized clamping 
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systems for particular applications, there is a need for essential information about the 

actual forces required so that the parts to be joined in place are held correctly. Little 

information is available in the literature regarding the impact of clamping systems on the 

mechanical behavior of the welded joints. Clamping force with simplified clamping 

conditions for the purpose of fusion and laser welding were studied by a number of 

researchers [10-16]. Through the investigations, it was observed that increasing the 

restraining force results in improvement of the welded joints. In FSW, Christner and 

Sylva [17] recorded that the formation of gap between specimens up to 36% of the plate 

thickness does not affect the joint strength. In a similar work, Leonard and Lockyer [18] 

noted that a gap presence up to 33% of the workpiece thickness could be tolerated without 

the existence of weld flaws. On the other hand, Richter and his group of researchers [19] 

observed that lesser distortion and a more consistent residual stresses distribution through 

the thickness can be achieved by applying higher clamping forces. It was demonstrated 

that the possibility of defects could also be minimized by preventing any creation of gaps 

between the two butt plates, as shown in Figure 1.  

 

 
 

Figure 1. Gap between specimens at the start of the FSW process based on the condition 

of clamping [19]. (a) without lateral pressure, (b) with lateral pressure. 

 

During the FSW process of higher-temperature alloys, such as steel and titanium, 

it was found that cooling of the welding tool and anvil is essential to avoid movement of 

the thermal energy into the machine’s spindle. A good design of fixture can lead to 

dissipating heat away from the workpiece, and hence improving the weld quality and 

performance [20]. On contrary, cooling is not required for the FSW of lower-temperature 

aluminum and magnesium alloys. Such alloys are commonly friction stir welded with 

ambient air-cooled anvil and welding tool [8]. However, material mixing and mechanical 

properties of the joint can be significantly improved by the use of compound backing 

plates with different thermal diffusivity [16, 21-25]. This paper aims to accomplish and 

equip a simplified design of clamping system and fixtures to be used as a FSW test-rig. 

The validity of this design is verified experimentally by welding some pairs of AA7075–

AA6061 aluminum alloys and investigating the mechanical properties and microstructure 

of joints. These two alloys are widely used in the automotive, aircraft, aerospace, marines, 

and transportation industries [26-29]. Aluminum 7075, along with the traditional welding 

techniques, is relatively a high strength material that can be used for highly stressed 

structural parts [30]. The widely available AA6061-T6 has a good workability, high 

resistance to corrosion, and excellent joining characteristics [31]. For instance, the FSW 

of these dissimilar alloys fully utilizes both materials [32, 33]. Although the FSW of 

similar and dissimilar materials has been used in many research studies [34-39], limited 

interest was found in literature regarding these two series of aluminum alloys [40-44]. In 

all of these articles, weld temperature, process parameters and the placement of materials 

on the advancing side (AS) and retreating side (RS) were examined without any referring 

to the clamping system and fixtures. High and low speeds, in several conditions were 

applied. Using Taguchi method, parametric optimization was achieved by Shah et al. [43] 
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to evaluate the tensile strength of joint under several welding speeds and tool tilt angle. 

Maximum tensile strength of 219.6 MPa was observed at 1000 rpm and 110 mm/min 

welding speeds and 3º of tilt angle. Furthermore, Guo et al. [40] reported that high traverse 

speed can be used to join these two alloys when the softer alloy was placed on the AS, in 

which joint efficiency reached 79% with respect to the tensile strength of the AA6061 

base material. In another study, Sathari et al. [44] noticed the same behavior when the 

AA6061 was placed on the AS. They found that the maximum joint strength of 207 MPa 

was resulted by this configuration. In the work of Cole et al. [42], the AA6061 alloy was 

also placed on the AS and the welding tool was shifted toward the AA7075 to improve 

the joint strength. Other than that, the same material position was made by İpekoğlu and 

Çam [41] to investigate the behavior of AA7075-AA6061 friction stir weldments under 

different temper conditions and post-weld heat treatment. Consequently, nine pairs of tool 

rotation and welding speeds were selected in the present work to examine the ability of 

the self-designed backing/clamping system of producing sound welds with high tensile 

strength.  

 

 
 

Figure 2. The assembly of the FSW test-rig on the machine’s table. 

 

EXPERIMENTAL SET UP 

 

Test-Rig Characterization 

Figure 2 shows a photo of the simplified FSW testing structure. Length of the backing 

plates and fixtures is selected to be suitable for the available milling machine table, while 

the width can be enlarged depending on the dimensions of the welded coupons. The 

vertical clamping forces are applied by means of pressure bars, bolts, and nuts to ensure 

uniform pressure and temperature distribution throughout the welded plates [5]. The 

lateral restraints consist of two L-shaped aluminum plates and two end-screwed bolts. 

This enables to increase the heat sink [21] and to apply uniform side pressure on the 

specimens [19]. This side pressure is applied by an easy and economical way, using nuts 

at the end of the two horizontal bolts. The horizontal plane containing the two specimens 

is free of bolts and their holes, which aims to avoid any change in the heat sink during the 
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process. The design facilitates to use multi-layers of backing plates and pressure bars. 

Aluminum and stainless steel (Al-SS) compound system is used to increase the cooling 

rate and hence improving the joint strength [21, 22]. Width of the backing plates is slightly 

less than the total width of the workpiece in order to apply the lateral pressure directly on 

the workpiece by means of the two L-shaped side plates. This low cost test-rig can be 

easily handled and it allows controlling the position of the welding tool on the specimens. 

It is specially designed for butt-joint FSW researches. 

 

Experimental Procedure 

To indicate the effectiveness of the simplified design, dissimilar aluminum AA6061-T6 

and AA7075-T6 rolled sheets with dimensions of 125×50×3 mm were joined in butt 

configuration by FSW technique. The chemical compositions and physical properties of 

these two alloys are listed in Tables 1 and 2 respectively. The edges of specimens were 

ground by an auto-grinding machine and cleaned with acetone and at the same time, a 

vertical milling machine was used for the FSW process. 

 

Table 1. Chemical composition (wt. %) of the base materials [45]. 

 

Material Cu Mg Zn Mn Si Fe Cr Ti Al 

7075-

T6 
1.2–2 

2.1–

2.9 

5.1–

6.1 

Max 

0.3 

Max 

0.4 

Max 

0.5 

0.18–

0.28 

Max 

0.2 

87.1–

91.4 

6061-

T6 

0.15–

0.4 

0.8–

1.2 

Max 

0.25 

Max 

0.15 

0.4–

0.8 

Max 

0.7 

0.04–

0.35 

Max 

0.15 

95.8–

98.6 

 

Table 2. Mechanical properties of the base materials. 

 

Material 
Yield strength* 

(MPa) 

Tensile strength* 

(MPa) 

Vickers 

hardness* 

Elongation* 

(%) 

7075-T6 503 571 175 11 

6061-T6 276 307 107 12 

* Average values of three tests 

 

Welding line was parallel to the rolling direction of the two sheets. The AA6061 

was placed on the AS. A tool made of H13 steel was used to produce the welding joints 

[8, 46]. The shoulder diameter is 12 mm having an 8º concave. The pin was tapered with 

10º from 4.2 mm diameter on the base alongside a length of 2.7 mm. Left-hand threads 

and single flat were added to the core of the probe to improved the local deformation and 

material flow [8, 47, 48]. Three distinct tool rotational speed levels of 1000, 1100 and 

1200 rpm with three travel velocities of 250, 300 and 350 mm/min were utilized, as shown 

in Table 3. The tool tilt angle stayed constant at 3º from the normal of the workpiece 

further from the direction of travel. These welding parameters were selected according to 

a number of preliminary tests based on the literature findings.  

 The rotating tool pin was gradually inserted between the two sheets until the 

shoulder could penetrate to about 0.2 mm inside the workpiece. This generates a frictional 

heat that is needed to soften the materials around the tool probe. Subsequently, stirring 

started at a consistent speed along the centerline between the two alloys. After natural 

aging of about one month since welding, transverse tensile specimens for the welded and 

base materials are prepared as per the American Society for Testing of Materials (ASTM 

E8-11) standard. Figure 3 presents the geometry and dimensions of these specimens. 
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Tensile tests have been done at room temperature with a speed of 1 mm/min using a 50 

kN universal testing machine with bluehill 3 software. Finally, three tensile specimens 

for each joint were tested, and then the average values of the ultimate tensile strength 

were noted down. 

 

Table 3. Welding parameters. 

 

Specimen 
Rotation speed 

(rpm) 

Welding speed 

(mm/min) 

A1 1000 250 

A2 1000 300 

A3 1000 350 

B1 1100 250 

B2 1100 300 

B3 1100 350 

C1 1200 250 

C2 1200 300 

C3 1200 350 

The tool tilt angle stayed constant at 3º  for all cases 

 

 

 
 

Figure 3. Geometry and dimensions of the tensile specimen in millimeters according to 

the ASTM E8-11 standard. 

 

 
 

Figure 4. The key stages of the experiment: (a) preparation of the specimens, (b) 

welding tool, (c) clamping and FSW, (d) welded coupons, (e) grinding and polishing the 

metallographic specimens, and (f) tensile testing. 
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Standard metallographic technique was followed to prepare the metallographic 

specimens. After complete grinding and polishing using automatic and manual devices, 

the specimens were etched with a modified Keller’s reagent, so that the grain structure of 

the various weld zones could be observed. The key stages of the experiment are 

demonstrated in Figure 4. An optical microscope was used to perform the microstructural 

analysis. An auto Vickers micro-hardness tester was then used to measure the hardness 

across the mid-thickness of the joint’s cross-section in a direction normal to the weld line. 

The HV0.5 test method was applied with an indent time of 10 seconds. 

 

RESULTS AND DISCUSSION 

 

Three transverse tensile tests were achieved for each base material (BM) and welded joint 

and the average values of the ultimate tensile strength (UTS) had been then calculated. 

Figure 5 presents the average UTS value for each specimen in addition to that of the base 

alloy (AA6061). The maximum error recorded was less than 5% and the minimum values 

were observed near the starting point of welding. The UTS of the AA7075 base alloy was 

not drawn in this figure, because all specimens failed at the heat affected zone (HAZ) of 

the AA6061 alloy. Moreover, all of the welded plates exhibited good tensile strength 

ranging from 220.9 MPa for the (C3) specimen, where the rotation and welding speeds 

were 1200 rpm and 350 mm/min respectively, to the apex of 252.1 MPa when the rotation 

speed fixed at 1100 rpm and the welding speed at 300 mm/min for the (B2) specimen. 

The highest value of the UTS represents an efficiency of about 82% with respect to the 

UTS of the AA6061 alloy. This efficiency is higher than the acceptable limit due to the 

standards of the American Welding Society (AWS) for FSW [40]. The joint efficiency 

was calculated with respect to the weaker alloy. For instance, it has been reported in all 

previous work on dissimilar FSW of alloys and materials, that the maximum tensile 

strength of the weldment is always less than the weaker material [33]. Due to this, the 

challenge of joining dissimilar alloys and metals lies in the differences in their chemical 

and mechanical properties. The differences and gap are relatively high between the 

selected 7xxx and 2xxx series, as seen in previously in Tables 1 and 2. For that reason, it 

is hard to achieve very high strength of the welded joints for these two aluminum alloys 

[34]. However, the calculated efficiency is relatively high compared to the previous 

published data [40-44].    

  

 
 

Figure 5. Ultimate tensile strength of the welded joints. 
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On a centerline normal to the welding direction across the nugget, Figure 6 shows 

the Vickers micro-hardness profiles of specimens B2 and C3, which exhibited the highest 

and lowest tensile strength, respectively. Compared to the base materials, it is clear from 

the two line graphs that the Vickers hardness number (VHN) fluctuated with a slight 

gradient in the nugget region and a noticeable drop in the HAZ of both alloys. The biggest 

drop was at the HAZ of the AA6061 alloy in the AS, where the hardness fell to the lowest 

values of 71 for specimen B2 and 66 for specimen C3 at about 5 mm away from the weld 

centerline. This decline clarifies the reason behind the location of failure in the tensile-

tests, as seen in the sample specimen surrounded by the red ellipse. Other than that, it has 

been reported that the change in material properties at the HAZ resulted from the 

sufficient heating during the welding process [4]. On the other side, the maximum tensile 

residual stresses commonly concentrated in the thermo-mechanical, affecting zone 

(TMAZ) and/or HAZ [49]. However, the use of aluminum, which has a high thermal 

diffusivity, as a backing plate and cover bar over the steel anvil and below the steel 

pressure bar contributes an increase in the cooling rate and hence reduces the alteration 

in the mechanical properties [50]. Similarly, the side L-shaped plates also assisted, as an 

additional heat sink, to extract more amount of heat and control the temperature 

distribution. The average nugget hardness was lower compared to the base materials with 

a slight decrease in the AA6061-nugget related to the AA7075-nugget side. The best 

weldment with smooth surface finish, gap and defects free and good materials mixing 

were produced by the (B2) conditions, as shown in Figure 7. 

 

 
 

Figure 6. Vickers micro-hardness distributions of specimens B2 and C3. 

 

It is clear from the micrographs that the dynamic recrystallization caused in fine 

and equiaxed grains inside the nugget zone. The TMAZ and the HAZ are close to the 

nugget and quite similar in grain size to those of BM in both sides, because of the higher-

diffusivity backing and clamping materials and the subjected lateral pressure. 

Furthermore, the heat flux generated throughout the joining process is not enough to 

recrystallize the grains at the TMAZ, as has been reported by Cavaliere et al. [51, 52]. 

However, the direction of grains is slightly rotated duo to the vertical material flow [48]. 

This transportation of material from the shoulder down to the bottom of the pin is caused 

by the tool pin threads, which have been fabricated in a direction opposite to that of the 
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tool rotation [8]. Onion rings are also noticed at the nugget area, which has been improved 

by the additional flat on the probe’s cone [47]. Moreover, the etching response of the two 

alloys to the Keller’s reagent is not the same due to the differences in chemical 

composition between the base materials [53].  For this reason, the micrographs appear in 

dark and light colors. It is worth noting herein to mention that promising results are gained 

by the use of the present simplified system of clamping and fixtures in comparison with 

the few published data. Relatively high tensile strength of the welded joints and very good 

quality are clearly observed from the results of this work.  

 

 
 

Figure 7. Macro and microstructure with the weld seam of the (B2) specimen. 

 

CONCLUSIONS 

 

Results of the present work show that the present simplified design can effectively be 

used to achieve sound welds with smooth surface finish, gap and defects free and without 

geometric imperfections. All of the test coupons of AA7075 and AA6061 aluminum 

alloys used to examine the validity of the clamping system exhibited relatively high 

tensile strength. The UTS of joints ranged from 220.9 MPa when the rotation and welding 

speeds were 1200 rpm and 350 mm/min, respectively to the maximum value of 252.1 

MPa when the rotation speed fixed at 1100 rpm and the welding speed at 300 mm/min. 

With this reason, the maximum value of the UTS represents an efficiency of about 82% 

with respect to the UTS of the AA6061 alloy. This efficiency is higher than the acceptable 

limit due to the standards of the American Welding Society (AWS). Thus, the best test 

shows a minimum Vickers hardness number of about 71 at the HAZ of the AA6061 alloy, 

where the failure in the tensile test occurred. For future research directions, it is 

recommended to improve the present test-rig for further investigations. While it is 

specially designed for butt-joint FSW research, it can be used as a clamping/backing 

system for lap-joint configuration.     
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