UNIVERSITI MALAYSIA PAHANG

DECLARATION OF T	HESIS	AND COPYRIGH	łT		
Author's full name					
Date of birth			2 1001		
	:				
The	•	OFESHORE ST			
Acadomic Sossian		2014/2015			
Academic Session	•	2014/2015			
I declare that this thes	is is cla	assified as :			
		Contains confider Act 1972)*	ntial inf	ormation under the Official Secret	
	(Contains restricte where rese	d infor earch v	mation as specified by the organization was done)*	
OPEN ACCESS I agree that my thesis to be published as online open access (Full text)					
I acknowledge that Universiti Malaysia Pahang reserve the right as follows:					
1. The Thesis is the Property of University Malaysia Pahang					
2. The Library of University Malaysia Pahang has the right to make copies for the purpose					
of research only.					
3. The Library has the right to make copies of the thesis for academic exchange.					
Cortified By:					
Certified by.					
(Studer	nt's Sigi	nature)	-	(Signature of Supervisor)	
<u>9111</u>	<u>03-14-</u>	<u>5534</u>		IR. SAFFUAN BIN WAN AHMAD	
New IC / F	Passpoi	rt Number		Name of Supervisor	
Date : 0)2 JUL`	Y 2015		Date : 02 JULY 2015	
NOTES : *	NOTES : *If the thesis is CONFIDENTIAL or RESTRICTED, please attach				

OTES : *If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

SEISMIC RESPONSE OF 4-LEGGED FIXED OFFSHORE STRUCTURE IN MALAYSIA DUE TO SURROUNDING EARTHQUAKE

HONG JIA HI

Thesis submitted in fulfilment of the requirements for the award of the degree of B.Eng (Hons.) Civil Engineering

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

JULY 2015

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering (Hons.).

Signature	:	
Name of Supervisor	:	IR. SAFFUAN BIN WAN AHMAD
Position	:	LECTURER
Date	:	02 JULY 2015

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged. The thesis has not been accepted for any degree and is not concurrently submitted for award of other degree.

Signature	:	
Name	:	HONG JIA HI
ID Number	:	AA11183
DATE	:	02 JULY 2015

Dedicated to my parents, for their love and devotion making me be who I am today

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my university, University Malaysia Pahang for providing me the good condition of facilities and equipment to complete this study.

I would also like to express my sincere appreciation to my supervisor, Ir Saffuan Bin Wan Ahmad, who has been very supportive in guiding and providing me informative discussion and recommendation throughout the programme. His consistent encouragement and motivation allowed me to perform and unleash my capabilities in this research field.

In addition, I would like to express my gratitude to my panel, Dr Norhaiza Binti Nordin and Pn Shariza Binti Mat Aris to their valuable suggestions and comments on my work to allow me to improve my research outcome and meet the objectives of this study.

Apart from that, I would like to thank all the lecturers whom have taught me in every semester. They have indeed helped me to reinforce my basic knowledge and theories in this field.

A special thanks to my friend, Low Yee Hwa, Lim Jia Jun, Solihah Binti A Aziz and Nurul Nabila Binti Fazilan for they are always willing to share their precious knowledge and resources with me in completing this research work.

Finally, I am also grateful to my family Mr. Hong Thai Chong, Ms. Yong Lai Sin, Mr Hong Jin Chuan, Mr Hong Jin Chuan and Ms Hong Jia Hi for their love and encouragement all the way to the completion of my task in this programme.

ABSTRACT

Fixed offshore structure in Malaysia region are placing more emphasis on wind and wave effects analysis rather than seismic effect. However, Malaysia actually experienced tremors due to the earthquakes occurred in the neighbouring countries. Thus, the main objective of this study is tantamount to investigate the seismic vulnerability of existing fixed offshore structures in Malaysia region and determine the necessity of seismic design consideration for offshore structure in Malaysia. With this, a finite element seismic response simulation of a typical 4-legged fixed offshore structure using SAP2000 has been presented. Moreover, free vibration, time history and response spectrum analysis have been carried out and compared throughout this study. However, there is an assumption have been made when doing the 3D model of the structure. The fixed offshore platform structure is fixed to the ground instead of pilled and the soil interaction was neglected. Generally, fixed offshore structures in Malaysia region are capable of resisting this low seismic activity based on the study. This happens because the design of fixed offshore structures for environmental loading, can provide sufficient resistance against potential low seismic effects.

ABSTRAK

Struktur luar pantai di sekitar Malaysia direkabentuk dengan menekankan pada analisis angin dan kesan gelombang berbanding dengan kesan gempa bumi. Namun demikian, Malaysia sebenarnya mengalami gegaran akibat daripada gempa bumi yang berlaku di negara-negara jiran. Oleh itu, objektif utama kajian ini adalah untuk menyiasat ketahanlasakan dan kelemahan struktur luar pantai di sekitar Malaysia dan seterusnya menentukan keperluan seismik rekabentuk balasan bagi struktur sekitar Malaysia. Dengan ini, simulasi respons seismik tetap struktur luar pantai telah dibentangkan dengan menggunakan SAP2000. Selain itu, percuma getaran, masa sejarah dan analisis spektrum respons telah dijalankan dan berbanding sepanjang kajian ini. Walau bagaimanapun, terdapat suatu andaian yang telah dibuat apabila melakukan model 3D struktur. Struktur luar pantai tetap ke tanah bukannya menggunakan pilled dan interaksi tanah diabaikan. Secara umum, struktur luar pantai di rantau Malaysia berupaya melawan aktiviti seismik rendah berdasarkan kajian yang dijalankan. Ini adalah kerana rekabentuk struktur luar pantai mengambilkira beban alm sekitar yang agak berbeza dan besar daripada struktur biasa dan ini memberikan keupayaan lebih kepada struktur luar pantai ini untuk menanggung beban gempa bumi yang rendah.

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvi

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Research Objective	3
1.4	Scope of Study	3
1.5	Significance of Study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Earthquake	5
2.2	Causes of Earthquakes	6
	2.2.1 Tectonic Earthquakes2.2.2 Fault	6 6
2.3	Seismic Wave	8
2.4	Earthquake Measurement Parameters	9
	2.4.1 Intensity	10
	2.4.2 Magnitude	11
2.5	Offshore Platform Structure	12

2.6	Fixed Offshore Structure	13
2.7	Current Malaysia Practice of Offshore Structure	15
2.8	Design Criteria of Offshore Structure	
	2.8.1 Earthquake Loads2.8.2 Wind Loads2.8.3 Wave Loads2.8.4 Current Loads	18 19 20 21

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Planning of the Study	23
3.2	Information and Data Collection	25
	3.2.1 Offshore Structure Description3.2.2 Material Properties	25 27
3.3	Load Description	29
	 3.3.1 Dead and Live Loads 3.3.2 Environmental Loads 3.3.3 Wind Load 3.3.3.1 Wind Profile and Gusts 3.3.2 Wind Speed and Force Relationship 3.3.4 Wave Load 3.3.5 Current Load 3.3.6 Earthquake Load 	29 29 29 29 30 30 31 31
3.4	Description of Earthquake Data	32
	3.4.1 Data Conversion	33
3.5	Analyses	35
3.6	SAP2000 Computational Program	36
	3.6.1 Checklist of SAP2000 Modeling and Analysis3.6.2 Steps in SAP2000 Modeling and Analysis	36 37

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Offshore Structure Analysis	60
4.2	Offshore Structure Modeling	61
4.3	Free Vibration Analysis	62
4.4	Time History Earthquake Analysis	63
4.5	Linear Analysis	64

4.6	Comparison of Result Manual Calculation and SAP2000	69
4.7	Summary of the Analysis	70
СНАР	TER 5 CONCLUSIONS AND RECOMMENDATION	S
5.1	Conclusions	75
5.2	Recommendations	76
REFEI APPEN	RENCES NDICES	78
А	Grid System Data	80
В	Table of Stiffness	81
С	Table of Mass	83
D	Structural Mode Shape	85
Е	Manual Calculation	88

LIST OF TABLES

Table No.	Title	Pages
3.1	Dead load and live load description	28
3.2	Environmental criteria for offshore structure at Terengganu	29
3.3	Drag coefficient and inertia coefficient	29
4.1	The result from the free vibration analysis	62
4.2	Shear force diagrams of several combination of load cases happen at frame element 27	66
4.3	Shear stress and allowable capacity check of several combination of load cases	67
4.4	Bending moment diagrams of several combination of load cases happen at frame element 27	68
4.5	Bending moment and allowable capacity check of several combination of load cases	69
4.6	P-M interaction ratios of manual calculation and SAP2000	69
4.7	Unity ratio of the Frame Member	70
4.8	Joint Displacements in Different Load Combination	74

LIST OF FIGURES

Figure No.	Title	Pages
2.1	Several terminologies associated with rupture plane of fault	7
2.2	Types of faults (a) Normal fault; (b) Reverse fault; (c) Strike-slip fault; (d) Oblique fault	7
2.3	Types of offshore drilling platform	13
2.4	Fixed offshore platform	15
2.5	Loads on offshore structure foundations	16
2.6	Environmental loads	18
2.7	Structure design concept for earthquake	19
3.1	Flow Chart of Methodology	24
3.2	The side views of offshore structure	26
3.3	The plan views of offshore structure	26
3.4	Material properties for structural steel	27
3.5	Earthquake data in Notepad Document form	32
3.6	Earthquake data in MS Excel File	33
3.7	Time (sec) vs Acceleration (g) in E-direction	34
3.8	Time (sec) vs Acceleration (g) in N-direction	34
3.9	Time (sec) vs Acceleration (g) in Z-direction	35
3.10	Select the structure model type	38
3.11	Define grid system data	39
3.12	Define material types	40
3.13	Material property data	40
3.14	Define frame properties	41
3.15	Define pipe section	41

3.16	Structure Layout in SAP2000 (3D)	42
3.17	Add restraints at the base condition	43
3.18	Define all load cases	43
3.19	Dead & live loads	44
3.20	Dead load case data	44
3.21	Live load case data	45
3.22	Define load patterns	45
3.23	Wind load properties	46
3.24	Frame open structural wind load	46
3.25	Wave load pattern	47
3.26	Wave characteristics	47
3.27	Current profile data	48
3.28	Wave Plot	48
3.29	Frame Span Wave & Current Loads	49
3.30	Define Time history function	50
3.31	Seismic data in notepad	50
3.32	Linear modal history	51
3.33	Time History load cases	51
3.34	Response spectrum function	52
3.35	Response spectrum EC8 2004 function definition	52
3.36	Response spectrum load case data	53
3.37	Response Spectrum load cases	53
3.38	Modal load cases	54
3.39	Modal load case	55

3.40	Dead load + Live load cases	55
3.41	Environmental load cases	56
3.42	Dead Load + Live Load + Environmental Load + Time History load cases	57
3.43	Response spectrum load cases	57
3.44	Result output table	58
3.45	Mode shape result	59
3.46	Summary of result	59
4.1	3D model of the fixed offshore structure	61
4.2	Two of the vibration modes (a) mode shape 1 (0.5407 sec) (b) mode shape 2 (0.4853 sec)	63
4.3	Time (sec) vs Acceleration (g) in E-direction	64
4.4	Time (sec) vs Acceleration (g) in N-direction	64
4.5	The final steel P-M interaction ratios are displayed.	70
4.6	Graph of Bending Stress versus Load Cases	73
4.7	Graph of Shear Stress versus Load Cases	73
4.8	Graph of Joint Displacement versus Load Cases in Three Different Directions	74

LIST OF SYMBOLS

mm	Millimeter
mm ²	Millimeter square
mm ³	Millimeter cube
mm ⁴	Bisquare Millimeter
S	second
kg	Kilogram
kg/m ³	Kilogram per meter cube
Ν	Newton
kN	Kilo newton
MN	Mega Newton
N/m	Newton per meter
N/mm ²	Newton per millimeter square
kN/m ²	Kilo newton per meter square
kN/m ³	Kilo newton per meter cube
kNm	Kilo newton meter
m/s	Meter per second
g	Gal
Hz	Hertz

LIST OF ABBREVIATIONS

EN	European Standards
ASTM	American Society for Testing and Materials
AISC	American Institute of Steel Construction Specification for design, fabrication and erection of structural steel building
M_L	Local Magnitude Scale
Ms	Surface Wave Magnitude Scale
$M_{\rm w}$	Moment Magnitude Scale
API	American Petroleum Institute
V	Self-weight of the topside and structure
M_V	Moment with eccentric loading
L _B	Lateral loads on structure due to wind
L _C	Lateral loads on structure due to currents
L_W	Lateral loads on structure due to waves
M _B	Moments that is related to wind lateral loadings
Mc	Moments that is related to current lateral loadings
L_{W}	Cyclic loading caused by waves
Mw	Cyclic moment caused by waves
F	Wind force
ρ	Mass density of air
U	Wind speed
А	Area
F_{w}	Hydrodynamic force vector per unit length
F _D	Drag force per unit length

FI	Inertial force per unit length
C_d	Drag coefficient
w	Density of water
C _m	Coefficient of inertia
k	Stiffness
Т	Natural Period
f	Natural Frequency
MMD	Meteorological Malaysia Department
Е	Young Modulus
G	Shear Modulus
FVA	Free Vibration Analysis
DL	Dead Load
LL	Live Load
EL	Environmental Load
TH	Time History
RS	Response Spectrum
Ι	Moment of Inertia
$\mathbf{f}_{\mathbf{y}}$	Yield Strength
\mathbf{f}_{u}	Ultimate Strength
V_{Ed}	Maximum design shear force
$V_{c,Rd}$	Shear resistance
$\mathbf{f}_{\mathbf{v}}$	Shear stress
F_v	Allowable shear stress
M _{ed}	Maximum external design moment
M _{rd}	Moment resistance

- f_b Bending stress
- F_b Allowable bending stress
- t Thickness
- d Diameter

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Earthquakes are one of the world's most devastating and frightening natural disasters. Undoubtedly, we are deeply clear of the hazards, effect and damage caused by this unpredicted earthquake. Basically, earthquake does not kill people, but collapsed buildings and their content do. The greatest hazard in the earthquake is the collapse or fall of man-made and natural structures that caused the extensive loss of life and property. As a result, the seismic effects may not only consider in the countries that have a high risk of a strong earthquake, but also for those countries that are subject to low-to-moderate earthquake for instance like Malaysia since the power of the earthquake has shown us it is unpredicted (Ramli & Adnan, 2004).

Most of the Malaysians may feel that the country is generally free from any major active seismic activities, as a consequence of its strategic location. In fact, positioned at the periphery of the ring of fire and beside the Philippines and Indonesia, two neighbouring countries which have seen violent occurrences of seismological activities, the possibility of being jolted by moderate earthquake cannot be excluded. Moreover, Malaysian Meteorological Department (MetMalaysia) had detected the occurrence of eight earthquakes in East Malaysia which in the magnitude range of 2 to 4.5 Richter scale in the year 2012 (The Malaysian Insider, 2013). Even the Malaysia Peninsula has experienced earthquakes of local origin which associated with active fault that happens in Bukit Tinggi area from year 2007 to 2009 (New Straits Times, 2012).

The exploration and production activities in oil and gas industry remain vital for economy in Malaysia, where the fixed offshore platforms involve the most in the operation (Aulov & Liew, 2013). But then, the current Malaysian offshore structural design practice focused more on wind and wave effects analysis rather than seismic effect, even the parts of Sabah and Sarawak coastal waters are very close to the seismically active zone.

1.2 PROBLEM STATEMENT

Malaysia is located beyond the seismically active zones, but it is still questionable whether the numerous fixed offshore structures in the Malaysia region shall be designed to withstand an earthquake ground motion. In fact, parts of Sabah and Sarawak coastal waters are very close to the seismically active area and we experienced and felt the tremors truly owing to the earthquakes occurred in the neighbouring countries.

The current Malaysian offshore structural design practices focus more on wind and wave effects analysis rather than seismic effect. But, we cannot ensure the fixed offshore structure is safe at a specific level of earthquake acceleration. Therefore, the necessity of seismic design consideration for fixed offshore structure in Malaysia due to surrounding earthquake should be determined.

1.3 RESEARCH OBJECTIVE

There are many matters that require to be analysed in this research, but the main objectives of this research are:

- i. To apply surrounding earthquake ground motion for analysis of an offshore structure in Malaysia
- ii. To determine the seismic vulnerability of existing offshore structure in Malaysia
- iii. To identify the necessity of the implementation of seismic design consideration for offshore structure in Malaysia due to surrounding earthquake
- iv. To determine the seismic design criteria for fixed offshore structure located in Malaysia

1.4 SCOPE OF STUDY

The scopes of this study are:

- i. The type of offshore structure used will be 4-legged fixed offshore structure
- ii. The case study will be conducted in the surrounding earthquake region that affected the offshore platform in Malaysia
- iii. The following seismic analyses have been carried out to determine the seismic response of a fixed offshore structure:
 - Free vibration analysis has been carried out to obtain the natural period and the mode shape of the fixed offshore structure

- Time history seismic analysis has been carried out by referring to the time history seismic El Centro, 1940
- Response spectrum seismic analysis has been carried out by using response spectra curves of American Petroleum Institutes, API with earthquake ground motion intensity
- iv. The computational analysis and structural modelling software used is SAP 2000
- v. The considerations of design criteria are based on the approach of the American Petroleum Institutes, API 1993

1.5 SIGNIFICANCE OF STUDY

Throughout this research, we able to gain some general ideas about the earthquake ground motion and seismic effects of the offshore structure which located in Malaysia. Thus to achieve our main objective which to identify the necessity of the implementation of seismic design consideration for offshore structure in Malaysia due to surrounding earthquake through the determined seismic analyses and seismic vulnerability. The behaviours of fixed offshore structures determined from the study may be used to develop or determine some seismic design criteria for new fixed offshore structures positioned in Malaysia.

In addition, this study able to inform the public on earthquakes and their occurrences in Malaysia and the world so that they are aware of the hazards and risk poses by earthquakes. The importance of the seismic design will be noticeable, and thus the implementation of the seismic design can take note and carry out to reduce the seismic effect like loss of life, injuries and extensive property damage.

CHAPTER 2

LITERATURE REVIEW

2.1 EARTHQUAKE

Earthquakes are one of the world's most devastating and frightening natural hazards that result in great loss of life, injuries, extensive property damage and many of the terrible after effects. Basically, an earthquake is a sudden movement of the earth's crust part, followed and accompanied by a series of shakes or tremors which triggered by the sudden release of strain that has gathered over a lengthy period. For hundreds of millions of years, plate tectonics forces have shaped or formed the earth gradually as the huge plates under Earth's surface move under, over and past one another. The plates are locked or fastened together and unable to release the storing energy at other time. The plates will break free, once the accumulated energy raises strong enough. If an earthquake happens in a populated area, it may trigger numerous deaths and injuries and even extensive property damage.

In truth, earthquake does not kill people, but collapsed buildings and their content do. The greatest hazard in the earthquake is the collapse or fall of man-made and natural structures that caused the extensive loss of life and property. As a result, the seismic effects may not only consider in the countries that have a high risk of a strong earthquake, but also for those countries that are subject to low-to-moderate earthquake for instance like Malaysia since the power of the earthquake has shown us it is unpredicted (Ramli & Adnan, 2004).

2.2 CAUSES OF EARTHQUAKES

2.2.1 Tectonic earthquake

Earthquakes happen from the deformation of the brittle and outer portions of tectonic plates, which the earth's most outer layers of crust and the upper mantle. Heating and cooling of the rock below the tectonic plates, resulting in the convection and thus causing the adjacently overlying plates under the great stresses to move, and bring about the deformation. At the fault interface, the relative plate motion is limited by asperities and friction which are the interlocking areas caused by the protrusions in fault surfaces. Nevertheless, the strain energy builds up in the plates, eventually overcomes the resistance, and triggers slip between the both sides of the fault. This sudden slip, termed as elastic rebound which releases enormous amounts of energy, which comprises the earthquake.

2.2.2 Faults

The phrase fault is used to explain a discontinuity within rock mass, laterally which movement had occurred in the earlier. Plate boundary also represents a type of fault. Lineaments are capable linear surface features and may replicate subsurface phenomena. The lineament could be a joint, a fault or other linear geological phenomena. Generally, faults generate repeated displacements over the geologic time. The movement along the fault may be sometimes sudden or gradual, and thus causing an earthquake.

Figure 2.1: Several terminologies associated with rupture plane of fault.

Source: nptel.ac.in [Online image]. (2014). Retrieved September 16, 2014 from http://www.nptel.ac.in/courses/105101004/

Figure 2.2: Types of faults (a) Normal fault; (b) Reverse fault; (c) Strike-slip fault; (d) Oblique fault.

Source: nptel.ac.in [Online image]. (2014). Retrieved September 16, 2014 from http://www.nptel.ac.in/courses/105101004/ Dip and strike are two of the important parameters associated to describe faults. The strike on the surface of the fault is in a horizontal line direction. The dip, deliberates in a vertical plane at right angles to the strike fault. The hanging wall of the fault indicates to the happen of upper rock surface along which displacement, while the foot wall is the phrase given to that below. Along a fault plane, vertical shift is termed as throw, whereas the horizontal displacement is called the heave.

Faults are categorized in to strike-slip faults, oblique-slip faults and dip-slip faults based on the direction of slippage all along the fault plane. In a strike-slip fault, the movement has occurred along the strike. The movement takes place diagonally along the fault plane in an oblique slip fault. In a case of dip-slip fault, the slippage happened along the dip of the fault. Based on the relative movement of foot walls faults and hanging are categorized into normal, wrench and reverse faults. In a case of a normal fault, the hanging wall has been moved downward relative to footwall. In wrench fault case, the hanging wall or the foot do not shift up or down in the relation to one another. In the reverse faults, which are the subdivision of reverse faults, tend to bring about the earthquakes.

Faults are nucleating surfaces for seismic activity. The stresses accumulated due to plate movement produces strain mostly along the boundary of the plates. This accumulated strain causes rupture of rocks along the fault plane.

2.3 SEISMIC WAVE

Seismic waves that caused by the faults rupture will result in the acceleration of the ground surface. There are essentially two types of seismic waves which are surface waves and body waves. Both P and S waves are under the category of body waves because they can pass through the interior of Earth. The surface waves are the wave that only detected when close to the earth surface, and they are categorized as Rayleigh waves and Love waves. Surface waves are the result of the interaction between the earth surface materials and body waves. The types of seismic waves are as follows:

- i. P wave (Body wave): The P wave also termed as primary wave, longitudinal wave and a compression wave. P wave is a seismic wave that triggers a series of compressions and dilations of the materials. The P wave is the fastest wave and also the first to reach a site. P waves can pass through both liquids and solids as a compression-dilation type of wave. P wave usually holds the least impact on ground surface movements since soil and rock is essentially resistant to the effects of compression-dilation.
- ii. S wave (Body wave): The S wave also termed as the secondary wave, transverse wave and a shear wave. S wave triggers shearing deformations of materials. S waves only can travel and pass through solids because liquids have no shear resistance. The soil and rock shear resistance are normally less than the compression-dilation resistance, resulting S wave travels more slowly through the ground compare with the P wave. In terms of its shear resistance soil is weak and S waves have the greatest effect on the ground surface movements
- iii. Rayleigh wave (Surface wave): Rayleigh waves have been defined as being similar to the produce of surface ripples by a rock thrown into the pond. This seismic waves generate both horizontal and vertical displacement of the ground as the outward of surface waves propagate.
- iv. Love wave (Surface wave): Love waves are similar to S waves and they are transverse shear waves that travel adjacent to the ground surface.

2.4 EARTHQUAKE MEASUREMENT PARAMETERS

The size of an earthquake could be related to the damage triggered or measurement parameters like intensity and magnitude. These two useful earthquake measurement parameters or definitions of the earthquake's size are sometimes confused.

2.4.1 Intensity

The intensity of seismic indicates the degree of destruction triggered by the earthquake. In other expressions, intensity of an earthquake is a compute or measure of shaking of ground severity and its consequent damage. The intensity is the empirical to some degree or extent because of the extent of damage or destruction that occurs in a construction in a given area that counts on many factors. The factors consist of: (i) the distance from epicenter, (ii) magnitude of earthquake (iii) type of the construction (iv) the compactness of underlying ground, (v) duration of the seismic activity and (vi) the depth of the focus. Intensity of an earthquake is the oldest measure of earthquake activity.

The earthquake intensity scale comprises of a series of specific key responses for example like people awakening, damage to chimneys, movement of furniture and the total destruction. Several earthquake intensity scales have been formed and developed over the last hundred years to evaluate and estimate the earthquakes effect. The most common and popular used is the scale of Modified Mercalli Intensity (MMI). Modified Mercalli Intensity (MMI) scale, composed of 12 rising intensity levels that range from unnoticeable shaking to catastrophic destruction, which defined by Roman numerals. In fact, it is the arbitrary ranking which based on the observed effects, rather providing the mathematical basis. The lower intensity scale numbers are usually dealing with the mode in which the seismic is felt by people. The greater scale numbers are based on observed structural damage.

2.4.2 Magnitude

The magnitude of a seismic is a measure of the absolute size of the seismic which related to the amount of energy released by the geological split or rupture, and without reference to the distance from the epicenter. While intensity of an earthquake is described in Roman numerals and it always a whole number, unlike the magnitude is described in Arabic numerals and need not be a whole number.

i. Local Magnitude (M_L)

This magnitude scale is also known as Richter Magnitude. The local magnitude M_L is the measures of the maximum earthquake wave amplitude recorded at the standard. This magnitude scale was formed and developed for local and shallow earthquakes. This magnitude scale is the most commonly used and best known magnitude scale. This local magnitude, M_L is calculated as follows:

$$M_L = \log A - \log A_0 = \log A/A_0$$

Where,

 M_L = local magnitude A_0 = the calibration factor that depends on distance

ii. Surface Wave Magnitude (M_S)

The scale of surface wave magnitude M_s is based on the amplitudes of LRwaves having a period of about 20s. This magnitude is defined as follows:

$$Ms = \log A' + 1.66 \log \Delta + 2.0$$

Where,

Ms = scale of surface wave magnitude

A' = maximum ground displacement, μm

 Δ = the ground-motion amplitude and period which measured in degrees

iii. Seismic Moment Magnitude (M_W)

The seismic moment magnitude scale M_W is one of the commonly used approaches for determining the large magnitude earthquakes. This magnitude is accounts for the mechanism of shear occur at seismic sources and not related to any wavelength. Thus, it can be used to obtain or measure the entire ground motions spectrum.

$$M_0 = \mu A_f D$$

Where,

 M_0 = moment magnitude or the function of seismic moment A_f = area of fault plane undergoing slip, m^2 .

D = average displacement of ruptured segment of fault, m.

2.5 OFFSHORE PLATFORM STRUCTURE

There are more than 3500 offshore platform structures with numerous types now locating in the 35 countries offshore waters. (Moore, M. L., Ridge, M. W. Economy brings design challenges. Offshore, 42(13): 45 - 48 (1982)). Offshore platforms comprise broadly of two different components: (1) facilities for production and drilling operations, often named as topsides, and (2) the foundation and its supporting structure. The topsides to define the purpose of the offshore platform. Consist in the topside plant could be oil and gas processing equipment, drilling rigs and associated equipment, transportation

pumps and compressors, utilities and even the living quarters. Moreover, most of the offshore platforms also possess a helideck for helicopters.

Offshore platform structure has to be formed to extract the oil from the oils wells which sitting deep at the bottom of sea. This structure can ensure the persisting the production of oil, thus offshore structure plays an important and major part in ensuring the supply of oil. The figure 2.2 showed the different types of offshore drilling platform.

Figure 2.3: Types of offshore drilling platform

Source: Rozaina 2006

2.6 FIXED OFFSHORE STRCUTURE

The fixed offshore structure is described as a structure expanding above the water surface and sustained at the sea bed through spread footings, piling or others with the intention of persisting stationary over a prolonged time, which are extremely stable, but are limited to up to 500 meters water depths. The fixed jacket type platform comprises of the following (API RP 2A-WSD, 2007):

- i. Braced completely and redundant welded tubular space frame expanding from an elevation at or close to the sea bed to the water surface above, which is designed to assist the main element of the offshore structure, transferring vertical and lateral forces to the foundation.
- ii. The other foundation elements or piles that permanently anchor the offshore structure to the ocean floor and support both vertical and lateral loads
- iii. The superstructure is comprising of the necessary deck and trusses for supporting operational and the other loads.

The purposes of designing the offshore structure consist of materials handling, producing, drilling, storage, living quarters or some of these combination. Moreover, the consideration should be provided to equipment operational requirements, such as safety, clearances and access when sizing the offshore platform.

Figure 2.4: Fixed offshore platform

Source: Rozaina 2006

2.7 CURRENT MALAYSIA PRACTICE OF OFFSHORE STRCUTURE

Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms by American Petroleum Institute RP 2A – WSD (2000) provisions provide the design requirement and characterization of environmental load for fixed offshore structure for design used, define the analytical methods to establish the forces induced in the offshore structure system by ground motions, and also give guidance configuring steel elements and for sizing for the design forces. Moreover, the consideration of environmental loads is comprised earthquake ground motions, wave, current and wind loads.

2.8 DESIGN CRITERIA OF OFFSHORE STRCUTURE

The offshore structures are basically designed to subject various types of loading to ensure its structural safety and stability in the ocean. The offshore structures always has a larger magnitude and complexity of combinations of the various loads than onshore structures. Eventually, the main supporting structural element of the entire offshore structure are the foundations, and as such generally has to resist all the vertical loads from (Trevon Joseph, 2009):

- i. The self-weight of the topside and structure, V
- ii. Any associated moment with eccentric loading of the platform, Mv
- iii. Lateral loads on structure due to wind, LB, currents, LC, and waves, LW
- iv. The moments that is related with these lateral loadings, $M_B \& M_C$
- v. Cyclic loading caused by waves, L_W
- vi. Cyclic moment caused by waves, M_W
- vii. Earthquake loads, E

Figure 2.5: Loads on offshore structure foundations

Source: Dean, 2008

All of these loads are mostly withstood by this soil-pile-structure interface. Basically, the loads are transferred to offshore structure foundations through the load pathway for effective loading situations, even though it is known that in the design of limit state there will be the existence of redundant members to provide for emergencies, these loads in the end arise as compression, tension, bending moments, shear forces and torsion in the piles. The piles capacities are determined from equations that have been acquired by researchers and which are prescribed in the API RP 2A-WSD code.

The whole offshore structure is greatly impacted by the application of wave, wind and current loads. In accordance to previous practice, the complexity of these combinations of application is not directly applied to a single path of the structure. The metocean criteria would denote the angular range from True North. For the wind case, the wind speed at a given height is found and subjected at different angles. For the wave case, a specific height of weight is formulated and for the current loading case, the speeds along with the current profile are given. Some more, different operating cases have different loading cases, each wind speeds are vary. These, operating cases consist the normal operating case; the 100-year case of extreme storm; the 100-year case of design storm; and even the 10 year case of extreme storm (Trevon Joseph, 2009).

Figure 2.6: Environmental loads

Source: Rozaina 2006

2.8.1 Earthquake Loads

Earthquake Loads should be considered in offshore structure design for seismically active areas. Areas are seismically active on the basis of preceding earthquake activity record in magnitude and frequency of occurrence in terms of ground motion. The seismic activity of an area for intentions of offshore structures design is valued in terms of the probable severity of damage or collapse to these structures. Moreover, offshore structure in shallow water that may be exposed to tsunamis should be examined for the effects of the resulting forces.

To achieve the study of offshore structure under seismic load, the offshore structure was analyzed in a dynamic case and the methods being performed are as follows:

i. Free Vibration Analysis

ii. Time History Analysis

iii. Response Spectrum Analysis

Figure 2.7: Structure design concept for earthquake

Source: Syahrul Izwan, 2008

2.8.2 Wind Loads

Wind load is subjecting on several structural components of the offshore structure, such as the members, the equipment, the facilities and so forth. These winds take account of gust forces and steady forces that applied rationally to the structure for example being made to act at certain height and certain duration such as one hour. The wind forces normally contributed to the conventional steel structures less than 10% of the total global load. But, it is discovered that the waves will contribute a much greater percentage, when deeper waters where compliant the offshore structures. This is significant where the wind frequency is close to the frequency of natural of the structures that resulted the resonance. As determined by API-RP2A, the wind force is estimated by following relationship (Trevon Joseph, 2009):

 $\mathbf{F} = (\rho/2)\mathbf{u}^2\mathbf{C}_{\mathbf{s}}\mathbf{A}$

Where,

F = wind force [N],

 ρ = mass density of air [1.2 kg/m³],

U = wind speed [m/s],

 $C_s = Mass Coefficient,$

 $A = area [m^2]$

2.8.3 Wave Loads

Wave load plays a significant role in the design of offshore structure neither which is in non-seismic region or critical design load. It's actually quite difficult to examine the wave loading result exactly due to extreme randomness of the natural phenomenon. The waves can be incident on an offshore structure from any direction especially during the storms of design. Others than that, waves also influence the base soil of the offshore structure, this is significant if the soil is loose to medium dense material. The waves also created the cortices around the base of the structure leg where it cause to scouring that can deducted the pile capacity unless it was well designed against such (Trevon Joseph, 2009).

The strength of the wave also depends by its height, which is calculated from the crest to the trough. The waves imposed buoyant force and cyclic on the offshore structure and there were to be withstood by the foundation piles. The waves effect on the structures is examined by the application of Morrision's equation (Trevon Joseph, 2009):

$$F_{w} = F_{D} + F_{I} = C_{D} \frac{w}{2g} A U|U| + C_{m} \frac{w}{g} V \frac{\delta U}{\delta t}$$

Where,

 F_w = Hydrodynamic force vector per unit length acting normal to the axis of the member [N/m],

 F_D = drag force per unit length of the member [N/m],

 F_I = inertial force per unit length [N/m]

 $C_d = drag \ coefficient,$

w = density of water,

 U_w = component of velocity vector caused by wave [m/s],

|U| = absolute value of U [m/sec],

 $C_m = coefficient of inertia,$

 $\frac{\delta U}{\delta t}$ = component of local acceleration vector of water.

2.8.4 Current loads

The vector summation of circulatory currents, tidal currents and storm generated currents is the current loading. The location of the offshore structures influences the magnitude of currents, the most of the strengths of vectors risen with the proximity to the shoreline. The strength, profile and direction of the current need to be considered for deposits of inland and the oceanic material, as well as placement of berthing and boats docking equipment in the offshore structure design. In order to calculate the current force on the structural members, no wave conditions need to be applied, by substituting the $\frac{\delta U}{\delta t} = 0$ (Trevon Joseph, 2009).

$$F = F_D + F_I = C_D \frac{w}{2g} A U|U| + C_m \frac{w}{g} V \frac{\delta U}{\delta t}$$
$$F_c = F_D = C_D \frac{w}{2g} A U|U|$$

CHAPTER 3

RESEARCH METHODOLOGY

3.1 PLANNING OF THE STUDY

In this chapter, we will be discussed about the process to conduct the whole study. Scheduling and planning have been done in the early stage to make the project work effectively. The offshore structure used in this project is 4-legged fixed offshore structure. This offshore structure is the existing structure which located at Terengganu, Malaysia. Free vibration analysis, time history and response spectrum seismic analysis have been carried out. The computational analysis and structural modelling software used is SAP 2000.

Response spectrum analysis has been performed using response spectra curves of Eurocode 8, where the time history analysis has been performed by referring to the earthquake data obtained from the Malaysian Meteorological Department. The results of the response spectrum and time history analysis have been compared. Result of the mode shape and the natural period of the offshore structure were obtained and discussed in detail. Moreover, manual calculation has been performed for comparison purpose.

Figure 3.1: Flow Chart of Methodology

3.2 INFORMATION AND DATA COLLECTION

To obtain important information and data for the modelling and analysis work, further data collection works have been performed during this stage. The information and data needed including:

- i) Architecture and structural drawing of the typical four-legged fixed offshore structure
- ii) Location, background and the material used of the offshore structure.
- iii) Environmental data from the site location.
- iv) Earthquake data From Malaysian Meteorological Department (MMD)

3.2.1 Offshore Structure Description

The type of offshore structure used in this analysis is 4-legged fixed offshore structure. Figure 3.2 shows two of the side views of this fixed offshore structure. This offshore structure is the existing structure which located at Terengganu, Malaysia. The height of this offshore structure is 53.2 m and has the maximum area at bottom 24.6m x 24.6m. This structure is using rolled tubular member and primary plate and the material is ASTM A572 GR50 that has yield strength 345MPa. This structure is the design followed the design code American Institute of Steel Construction Specification for design, fabrication and erection of structural steel building (AISC) and American Petroleum Institute RP2A-WSD (API). Due to beyond to the bachelor degree standard, we have implement another design code in our manual calculation and computation analysis parts for example Eurocode 3: Design of steel structures, Eurocode 8: Design of structures for earthquake resistance and American Petroleum Institute RP2A-WSD (API).

Figure 3.2: The side views of offshore structure

Figure 3.3: The plan views of offshore structure

3.2.2 Material Properties

Moreover, we also have to implement another type of material use in this design. Figure 3.4 shows the material properties for the fixed offshore structure that we have implemented and used in SAP2000. The modulus of elasticity of this material used is 210 000 N/ mm^2 , where shear modulus is 81 000 N/ mm^2 , and the minimum yield stress is 355 N/ mm^2 .

Material Pro	perty Data
General Data	
Material Name and Display Color	S355
Material Type	Steel
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 7.697E-	08 KN, mm, C 💌
Mass per Unit Volume 7.849E-	12
Isotropic Property Data	
Modulus of Elasticity, E	210.
Poisson's Ratio, U	0.3
Coefficient of Thermal Expansion, A	1.170E-05
Shear Modulus, G	80.7692
Other Properties for Steel Materials	
Minimum Yield Stress, Fy	0.355
Minimum Tensile Stress, Fu	0.51
Effective Yield Stress, Fye	0.3905
Effective Tensile Stress, Fue	0.561
Switch To Advanced Property Display	
OK	Cancel

Figure 3.4: Material properties for structural steel

The stiffness and total mass of the fixed offshore structure will be presented in table form which is located in **APPENDICES B** and **C**. The total stiffness and mass of the offshore structure is 8.30×10^8 and 323161.35 kg respectively.

3.3 LOAD DESCRIPTION

The load combinations of dead load, deck loads, wind, wave, current and earthquake loads have been defined.

3.3.1 Dead and Live loads

The self-weight of the fixed offshore structure will be auto-generated by the SAP2000 computer software. The dead load and live load of this structure are listed in the table below:

No.	Load descriptions	Weight [MN]
1	Jacket appurtenances weight	0.339
2	Topside dead loads	0.393
3	Topside live loads	1.150
4	Piping & equipment weights	0.400
	TOTAL	2.282

Table 3.1: Dead load and live load description

3.3.2 Environmental Loads

The environmental loads are based on the metocean data. Table 3.2 shows the environmental criteria for the offshore structure which located in Terengganu. Therefore all the environmental loads which including wind, wave and current action were calculated by using the provided environmental criteria and formula from the American Petroleum Institute (API).

MSL		Design Condition
47.629 m	Wave height (m)	10.79
	Wave period (s)	10.9
	Current velocity (m/s)	0.750
	Wind speed (m/s)	21.8
	Max. tide (m)	2.0
	Storm surge (m)	0.4

 Table 3.2: Environmental criteria for offshore structure at Terengganu

3.3.3 Wind Load

The wind profile, gusts and wind drag force are calculated using following equation that is taken directly from the API RP 2A-WSD practice.

3.3.3.1 Wind profile and Gusts

For strong wind conditions the design wind speed u(z,t) (ft/s) at height z (ft/s) above sea level and corresponding to an average time period t (s) [where $t \le t_o$; $t_o = 3600 \ sec$] is given by:

$$u(z,t) = U(t)x [1 - 0.41]x I_u(z)x ln\left(\frac{t}{t_o}\right)$$

Where the 1 hour mean wind speed U(z)(ft/s) at level z (ft) is given by:

$$U(z) = U_o x \left[1 + C x \ln\left(\frac{z}{32.8}\right)\right]$$
$$C = 5.73 x \, 10^{-2} x \left(1 + 0.0457 x U_o\right)^{1/2}$$

And where the turbulence $I_u(z)$ at level z is given by:

$$I_u(z) = 0.06x \left[1 + 0.0131x \, U_0\right] x \left(\frac{z}{32.8}\right)^{-0.22}$$

Where $U_o(z)(ft/s)$ is the 1 hour mean wind speed at 32.8 ft.

3.3.3.2 Wind Speed and Force Relationship

The wind drag force on object should be calculated as:

$$F = (\rho/2)u^2C_sA$$

Where,

F = wind force [N],

 ρ = mass density of air [1.2 kg/m³],

U = wind speed [m/s],

 $C_s = Mass Coefficient,$

 $A = area [m^2]$

3.3.4 Wave Load

The wave force can then be computed as the sum of a drag force and an inertia force, as the Morison Equation below:

$$F_{w} = F_{D} + F_{I} = C_{D} \frac{w}{2g} A U|U| + C_{m} \frac{w}{g} V \frac{\delta U}{\delta t}$$

Where

 F_w = Hydrodynamic force vector per unit length acting normal to the axis of the member [N/m],

 F_D = drag force per unit length of the member [N/m],

 F_I = inertial force per unit length [N/m]

 $C_d = drag \ coefficient,$

w = density of water,

 U_w = component of velocity vector due to wave [m/s],

|U| = absolute value of U [m/sec],

 $C_m = inertia \ coefficient,$

 $\frac{\delta U}{\delta t}$ = component of local acceleration vector of the water.

3.3.5 Current Load

In order to calculate the current force on the structural members, no wave conditions need to be applied, by substituting the $\frac{\delta U}{\delta t} = 0$.

$$F = F_D + F_I = C_D \frac{w}{2g} A U|U| + C_m \frac{w}{g} V \frac{\delta U}{\delta t}$$
$$F_c = F_D = C_D \frac{w}{2g} A U|U|$$

3.3.6 Earthquake Load

For the earthquake load, it will be performed by carried out by the response spectrum analysis by using responses spectra curves of EuroCode8 2004 through SAP2000 computation software. Same goes to the time history analysis, it will be performed by using the collected earthquake data that obtained from MMD through SAP2000 computation software.

3.4 DESCRIPTION OF EARTHQUAKE DATA

After collected the required earthquake data from the Malaysian Meteorological Department, which in three different directions east (E), north (N) and Z direction. We need to convert all the earthquake data from Notepad Document into MS Excel File. Figure 3.5.1 shows the earthquake data which in Notepad Document form, where figure 3.5.2 shows the earthquake data in MS Excel File form. The main purpose of the data conversion is to obtain the most critical or maximum data through the MS Excel application. Moreover, the graph, bar chart, table or any comparison also can easily obtain by this MS Excel File.

IPM_HGE ac.txt - Notepad -	
File Edit Format View Help	
Station ID: IPM Channel 1: HGE 12/26/2004 0:51:35 (GMT)	^
Time (sec) vs. A (g), V (in/sec), D (in)	
0.010 -0.000000 -0.000012 0.000014	
0.020 0.000000 -0.000012 0.000014	
0.030 -0.000000 -0.000012 0.000014	
0.040 -0.000000 -0.000012 0.000014	
0.050 0.000001 -0.000011 0.000014	
0.060 0.000000 -0.000009 0.000014	
0.070 0.000000 -0.000009 0.000014	
0.080 -0.000001 -0.000010 0.000014	
0.090 0.000000 -0.000010 0.000014	
0.100 -0.000000 -0.000010 0.000014	
0.110 -0.000001 -0.000013 0.000013	
0.120 0.000001 -0.000014 0.000013	
0.130 -0.000001 -0.000014 0.000013	
0.140 -0.000000 -0.000016 0.000013	
0.150 -0.000000 -0.000017 0.000013	
0.160 -0.000000 -0.000017 0.000013	
0.1/0 0.000001 -0.000016 0.000013	
0.180 0.000000 -0.000015 0.000012	
0.190 0.000000 -0.000014 0.000012	
0.210 -0.000000 -0.000013 0.000012	
0.250 0.000001 -0.000015 0.000012	
0.240 -0.000001 -0.000015 0.000012	
0 260 -0 000000 -0 000015 0.000011	
0 270 _0 000001 _0 000018 0 000011	
0 280 0 000001 -0 000018 0 000011	
0.290 -0.000000 -0.000017 0.000011	
0 300 0 000000 -0 000017 0 000011	
0.310 -0.000001 -0.000018 0.000010	
	¥
< > >	

Figure 3.5: Earthquake data in Notepad Document form

File Paste Second Paste Second B214534 Image: Second Secon	5 • d	x	» I	Earthquak	e data.xlsx - Excel	6		? 📧		×
B214534	HOME 6 Cons	P	INSERT PAGE	Alignment Nun	MULAS DATA	REV onal For as Table es * Styles	/IEW VIE matting * * *	W I jiayan I Elis Editing	iong 👻	^
I Station 2 2 3 Time (4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1 *	E		Jx = MAX(-N)	AIN(B4:B214532)), MAX	(B4:B2145	32))		×
1 Station 2 3 3 Time (4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	Α	_	В	C	D	E	F	G	н	_ ≜
2 Time (3 Time (4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22	on ID:	1	IPM	Channel	1:00	HGE	12/26/20	04 0:51:35	(GMT)	_
3 Time (4 5 5 6 7		2			- (1.)					-
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22	(sec) vs.	3	A (g)	V (in/sec)	D (in)					-
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22	0.01	4	0	-0.000012	0.000014					-
6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22	0.02	5	0	-0.000012	0.000014					-
7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 22	0.03	6	0	-0.000012	0.000014					-
8 9 9 10 11 11 12 13 14 15 16 17 18 19 20 21 22 22	0.04	-	0	-0.000012	0.000014					-
9 10 11 12 13 14 15 16 17 18 19 20 21 22	0.05	8	0.00001	-0.000011	0.000014					-
10 11 12 13 14 15 16 17 18 19 20 21 22 22	0.00	10	0	-0.000009	0.000014					-
12 13 14 15 16 17 18 19 20 21 22 22	0.07	11	-0.00001	-0.00003	0.000014					-
13 14 15 16 17 18 19 20 21 22 22	0.00	12	-0.00001	-0.00001	0.000014					-
14 15 16 17 18 19 20 21 22	0.05	13	0	-0.00001	0.000014					-
15 16 17 18 19 20 21 22 22	0.11	14	-0.000001	-0.000013	0.000013					-
16 17 18 19 20 21 22	0.12	15	0.000001	-0.000014	0.000013					-
17 18 19 20 21 22	0.13	16	-0.000001	-0.000014	0.000013					-
18 19 20 21 22	0.14	17	0	-0.000016	0.000013					-
19 20 21 22	0.15	18	0	-0.000017	0.000013					-
20 21 22	0.16	19	0	-0.000017	0.000013					-
21 22	0.17	20	0.000001	-0.000016	0.000013					-
22	0.18	21	0	-0.000015	0.000012					
22	0.19	22	0	-0.000014	0.000012					1
23	0.2	23	0	-0.000013	0.000012					
	• IF		PM_HGE IPM_	HGN IPM_HO	GZ (+) :	4				
READY	AVERAG	RE	E: 0.113480333 C	OUNT: 3 SUM: 0.	340441		<u> </u>		+ 100	1%

Figure 3.6: Earthquake data in MS Excel File

3.4.1 Data Conversion

The following steps are shown the procedure for converting all the required earthquake data from Notepad Document into MS Excel File. First of all, start the MS Excel application by clicking the data command from the main menu, follow by selecting the from text command since the data obtained is in text file form. Import the text file required to MS Excel. There are three steps in the text import wizard. Firstly, we have to choose the file type that best describe the data, delimited are selected in the case. And pick the delimiters such as tab, semicolon, comma and space to delimit the data contains. Lastly, select the column data format and the location for inserting the data. Once the earthquake data had been converted, we can obtain the maximum or the most critical data through MS Excel application. Formula of =MAX(-MIN(Range), MAX(Range)) have

been used in determined the maximum data form both positive and negative values. The maximum data obtained for the three different E, N and Z direction are 0.001222g, 0.00108g and 0.00096g respectively. Time (sec) versus Acceleration graph in three different directions has been obtained and the result is shown as below.

Figure 3.7: Time (sec) vs Acceleration (g) in E-direction

Figure 3.8: Time (sec) vs Acceleration (g) in N-direction

Figure 3.9: Time (sec) vs Acceleration (g) in Z-direction

3.5 ANALYSES

The fixed offshore structures have been modelled and analysed using SAP2000, an integrated software for structural analysis and design. The free vibration analysis, time history earthquake analysis and response spectrum earthquake analysis have been performed in this study. The loads that considered in this analysis consist of dead load, live load, modal load, environmental load, time history load and also response spectrum load, while the environmental load comprises of wind, wave and current loads. There is several combination of load cases that were applied in this analysis, these consist of:

- i. Free vibration analysis (FVA)
- ii. Dead load (DL) + live load (LL)
- iii. Environmental load (EL)
- iv. Dead load (DL) + live load (LL) + environmental load (EL) + time history load (TH)
- v. Response spectrum load (RS)

Moreover, the results obtained from this study are as follows:

- i. Mode shape of the offshore structures
- ii. Natural period and natural frequency of the offshore structures
- iii. Maximum unity check of all the structures member
- iv. Maximum shear stress and bending stress in the member
- v. Shear force and bending moment under various load cases
- vi. Joint displacement, velocity and acceleration under different combination of load cases

3.6 SAP2000 COMPUTATIONAL PROGRAM

Analysis software used is SAP 2000 which an integrated software for structural analysis and design. Generally, SAP2000 is a stand-alone finite-element-based structural program for the analysis and design of civil structures. It offers an intuitive, yet powerful user interface with many tools to aid in the quick and accurate construction of models, along with the sophisticated analytical techniques needed to do the most complex projects.

SAP2000 is object based, meaning that the models are created using members that represent the physical reality. A beam with multiple members framing into it is created as a single object, just as it exists in the real world, and the meshing needed to ensure that connectivity exists with the other members is handled internally by the program. Results for analysis and design are reported for the overall object, and not for each sub-element that makes up the object, providing information that is both easier to interpret and more consistent with the physical structure.

3.6.1 Checklist of SAP2000 Modeling and Analysis

Modelling and analysis of the 4-legged jacket of fixed offshore platform are done by using SAP 2000 program. Checklist and step in modelling and analyses the offshore structure are as below:

- Define the type of the model
- Create, define and coordinate the grid systems for the model
- Define material and structural section properties
- Draw the frame geometry and assigning member section properties
- Determine area section of the model
- Determine the restrains at base condition
- Define all load cases
- Assign load cases at specific frame element/ joint
- Define functions of Time History and Response Spectrum
- Analyze the Model
- Display result and output table
- Check for the structure design

3.6.2 Steps in SAP2000 Modeling and Analysis

Step 1: Define the type of the model

First, the units of this project "KN, m, C" will be selected and follow by the template of "Grid Only" to set up the coordinates of the grid line for the fixed offshore structure.

Figure 3.10: Select the structure model type

Step 2: Setting up the coordinates of grid line

Insert all the grid data in X, Y and Z direction accordingly in order to assign the frame element and draw the model of the structure easily in the next stage.

Figure 3.11: Define grid system data

Step 3: Define material and structural section properties

Define all the material types and section properties which are presented in this offshore structure. Material type of structural steel S355 has defined and used all along the study and together with its standard and material property data. Select Pipe which also known as Circular Hollow Sections (CHS) from the list of steel frame section property type and define the pipe section accordingly by inserting its material type and dimension.

Region	Europe 💌
Material Type	Steel
Standard	EN 1993-1-1 per EN 10025-2
Grade	S355
	OK Cancel

Figure 3.12: Define material types

Material Name and Display Color Material Type Material Notes	Steel Modify/Show Notes
Weight and Mass Weight per Unit Volume 76.97 Mass per Unit Volume 7.849	29
Isotropic Property Data	
Modulus of Elasticity, E	2.100E+08
Poisson's Ratio, U	0.3
Coefficient of Thermal Expansion, A	1.170E-05
Shear Modulus, G	80769231
Other Properties for Steel Materials	
Minimum Yield Stress, Fy	355000.
Minimum Tensile Stress, Fu	510000.
Effective Yield Stress, Fye	390500.
Effective Tensile Stress, Fue	561000.
Switch To Advanced Property Display	

Figure 3.13: Material property data

Frame F	Properties
Properties Find this property: 1168@13 508@13 508@19 508@25 553@13 559@19 559@25 610@13	Click to: Import New Property Add New Property Add Copy of Property Modify/Show Property Delete Property
	Cancel

Figure 3.14: Define frame properties

Pipe Section			
Section Name	1168@	13	
Section Notes		Modify/Show Notes	
Properties Section Properties	Property Modifiers	Material + \$355	
-Dimensions Outside diameter (t3) Wall thickness (tw)	1.168	Display Color	
		ancel	

Figure 3.15: Define pipe section

Step 4: Draw the frame geometry and assigning member section properties

Modeled the fixed offshore structure by assigning the frame elements according to the sizing of the member based on the architectural drawing. After assigning all the frame geometry according, added the slab on the top of the structure and make the slab and the frame connected with each other by using "Auto-mesh" function. Lastly, assigning and add the restraints of the structure as fixed support at the base condition.

Figure 3.16: Structure Layout in SAP2000 (3D)

Joint Restraints
Restraints in Joint Local Directions
▼ Translation 1 ▼ Rotation about 1
▼ Translation 2 ▼ Rotation about 2
▼ Translation 3 ▼ Rotation about 3
- Fast Restraints
OK Cancel

Figure 3.17: Add restraints at the base condition

Step 5: Define load cases

Define all the load cases for the structure accordingly, the load cases consist of dead load, live load and environmental load. After defined the load cases, load assigning are carried out.

Define Load Cases				
Load Cases Load Case Name Load Case Type DEAD Linear Static LIVE Linear Static MODAL Modal TH_E_U1 Linear Modal History TH_E_U2 Linear Modal History TH_N_U1 Linear Modal History TH_N_U2 Linear Modal History RS_U1 Response Spectrum WAVE Linear Multi-step Static WIND_X Linear Static WIND_Y Linear Static	Click to: Add New Load Case Add Copy of Load Case Modify/Show Load Case Delete Load Case Display Load Cases Show Load Case Tree Cancel			

Figure 3.18: Define all load cases

After calculated the total dead load and live load per unit area, the load has been inserted as gravity area load which subjected on the slab area. Set the load cases as static and analysis type as linear for both dead load and live load.

Location Assignments	Loads	
Identification		
Load Pattern	DEAD	Assign Load
Gravity Load		
Coordinate System	GLOBAL	
UZ	-5.660E-06	KN mm C
Load Pattern	LIVE	
Gravity Load		
Coordinate System	GLOBAL	Reset All
UZ	-5.750E-06	
		Update Display Modify Display OK
Double click white background ce	II to edit item.	Cancel

Figure 3.19: Dead & live loads

Load Case Data - Linear Static		
Load Case Name Notes Modify/Show	Load Case Type Static Design	
Stiffness to Use	Analysis Type	
Zero Initial Conditions - Unstressed State	• Linear	
C Stiffness at End of Nonlinear Case	C Nonlinear	
Important Note: Loads from the Nonlinear Case are NOT included in the current case	C Nonlinear Staged Construction	
Loads Applied		
Load Type Load Name Scale Factor		
Load Patterr 💌 DEAD 💌 1.		
Load Pattern DEAD 1. Add		
Modify		
Delete	<u> </u>	
	Cancel	

Figure 3.20: Dead load case data

Figure 3.21: Live load case data

The environmental load in this study consists of wind load, wave load and current load. The load patterns of each of the environmental load have been defined. API 4F 2008 design codes have been implemented in the wind load case for both X and Y direction. While, wave and current load has been implemented API WSD 2000 as the design code. The collected details and data of the environmental load have been inserted in the SAP2000 program in the next stage.

Define Load Patterns			
Load Patterns Self Weight Auto Lateral Click To: WIND_X WIND 0 API 4F 2008 Modify Load Pattern UVE DEAD LIVE 1 Modify Load Pattern WIND_X WIND 0 API 4F 2008 Modify Load Pattern WIND_X WIND 0 API 4F 2008 Modify Lateral Load Pattern WIND_X WIND 0 API 4F 2008 Modify Lateral Load Pattern WIND_Y WIND 0 API 4F 2008 Modify Lateral Load Pattern Modify Lateral Load Pattern 0 API 4F 2008 Modify Lateral Load Pattern WIND_Y WIND 0 API 4F 2008 Modify Lateral Load Pattern Modify Lateral Load Pattern 0 API 4F 2008 Modify Lateral Load Pattern Modify Lateral Load Pattern 0 API 4F 2008 Modify Lateral Load Pattern Modify Lateral Load Pattern 0 API 4F 2008 Modify Lateral Load Pattern Modify Lateral Load Pattern 0 API 4F 2008 Modify Lateral Load Pattern Modify Lateral Load Pattern 0 API 4F 2008 Modify Lateral Load Pattern			

Figure 3.22: Define load patterns

For wind load case, the data on wind coefficients, exposure height and wind exposure parameters were inserted as showed at below. The wind load acted on the frame span is also showed as below.

Exposure and Pressure Coefficients C Exposure from Extents of Rigid Diaphragms Exposure from Frame and Area Objects Include Area Objects Include Frame Objects (Open Structure)	Wind Coefficients Ref. Wind Velocity (Knots) SSL Multiplier, Alpha 1. Shielding Factor
Wind Direction Angle	
Exposure Height C Program Calculated User Specified Maximum Global Z 52.201 Minimum Global Z 47.629	Cancel

Figure 3.23: Wind load properties

Figure 3.24: Frame open structural wind load

The wave and current load part, the wave and current data have been inserted accordingly based on the environment data after selected the design code.

Wave Load Pattern					
Wave Load Pattern Parameters					
Wave Characteristics	Default 💌	Add	Modify/Show	Delete	
Current Profile	WCUR1 -	Add	Modify/Show	Delete	
Marine Growth	None	Add	Modify/Show	Delete	
Drag and Inertia Coefficients	API Default 💌	Add	Modify/Show	Delete	
Wind Load	None	Add	Modify/Show	Delete	
✓ Include Buoyant Loads					
-Wave Load Pattern Discretizati	on	Vertical R	eference Elevation fo	r Wave	
Maximum Discretization Segme	nt Size 1524.	Global Z of Vertica	Coordinate 4762 al Datum	29.	
Wave Crest Position		Other Ver	tical Elevations Relati	ve To Datum	
Global X Coord of Pt on Initial Crest Position 0.		Mudline from Datum -47629.			
Global Y Coord of Pt on Initial Crest Position 0.		High Tide	e from Datum 0.		
Number of Wave Crest Position	Number of Wave Crest Positions Considered 1				
-Wave Direction-		Sea Wate	er Properties		
Wave Approach Angle in Deg	ees 0.	Water W	eight Density 1.00	5E-08	
Show Wave Table Show Wave Plot					

Figure 3.25: Wave load pattern

Wave Characteristics				
Edit				
Wave Cha	racteristic Name	Default		
Wave Factors Wave Kinematics Factor Storm Water Depth	1. 47629.	Wave Type From Selected Wave Theory User Defined		
Wave Data Wave Height Wave Period	10790. 10.9	Wave Theory Airy Wave Theory (Linear) Stokes Wave Theory C Cnoidal Wave Theory	Order	
	<u>OK</u>	Cancel		

Figure 3.26: Wave characteristics

Current Profile Data				
it				
	Current Profile Na	me j	WCUR1	
Curren	t Profile Factors			
Curr	ent Blockage Factor		0.9	
Curr	ent Profile Stretching	Option	Linear	•
Data I:	s Specified at This Nu	umber of Elevations		
Num	ber of Elevations		1	
1	Vert from Datum 47629.	Current Velocity 750.	Current Direction 90.	Order Row:
				Cancel

Figure 3.27: Current profile data

The wave plot display has been checked to ensure that the data is correctly inserted. The wave and current load acted on the frame span is also shown as below.

Figure 3.28: Wave Plot

Figure 3.29: Frame Span Wave & Current Loads

Step 6: Define functions of Time History and Response Spectrum

Define the functions of Time History by attached the seismic data which in the notepad file and adjusting time interval based on the seismic data. Both E and N direction of Time History functions are determined by applying seismic data in a different direction. Moreover, load applied at U1 and U2 in each direction are determined. Eventually, four different Time History load cases will be performed in the analysis.

Figure 3.30: Define Time history function

Figure 3.31: Seismic data in notepad

Load Case Data - Linear Modal History			
Load Case Name Notes TH_E_U1 Set Def Name Initial Conditions Modify/Show Zero Initial Conditions - Start from Unstressed State Continue from State at End of Modal History Important Note: Loads from this previous case are included in the current case	Load Case Type Time History Analysis Type C Linear C Nonlinear Time History Motio	Design Time History Type Modal Direct Integration n Type	
Modal Load Case Use Modes from Case MDDAL	 Transient Periodic 		
Load Type Load Name Function Scale Factor Accel U1 TH·E 9.81 Accel U1 TH·E 9.81 Show Advanced Load Parameters Time Step Data V Number of Output Time Steps 100 Output Time Step Size 0.1	Add Modify Delete		
Other Parameters Modal Damping Constant at 0.05 Modify	//Show	Cancel	

Figure 3.32: Linear modal history

Define Load Cases	5
Load Cases Load Case Name Load Case Type DEAD Linear Static LIVE Linear Static MODAL Modal TH_E_U1 Linear Modal History TH_N_U2 Linear Modal History TH_N_U2 Linear Modal History TH_N_U2 Linear Modal History RS_U1 Response Spectrum WAVE Linear Multi-step Static WIND_X Linear Static WIND_Y Linear Static	Click to: Add New Load Case Add Copy of Load Case Modify/Show Load Case Delete Load Case Display Load Cases Show Load Case Tree OK Cancel

Figure 3.33: Time History load cases

While for the function of Response Spectrum, Eurocode8 2004 has selected as the function type for response spectrum. The details and data in the Response spectrum Eurocode8 2004 function definition are remain the default.

Define Response Spectrum Functions		
Response Spectra RS UNIFRS	Choose Function Type to Add EuroCode8 2004 Click to: Add New Function Modify/Show Spectrum Delete Spectrum	

Figure 3.35: Response spectrum EC8 2004 function definition

Load applied for both U1 and U2 are considered in the analysis. Therefore, total of two response spectrum load cases is performed.

Load Case Data - Response Spectrum			
Load Case Name	Set Def Name Modify/Show	Load Case Type Response Spectrum	
Modal Combination CQC SRSS Absolute GMC NRC 10 Percent Double Sum	GMC f1 1. GMC f2 0. Periodic + Rigid Type SRSS 💌	Directional Combination © SRSS © CQC3 © Absolute Scale Factor	
Use Modes from this Mo Load SApplied Load Type Lo. Accel U1 Accel U1 Show Advanced Lo Other Parameters Modal Damping	ad Name Function Scale Factor ad Name Function Scale Factor Image: Scale Factor Image: Scale Factor Image: Scale Factor <td>Add Modify Delete</td>	Add Modify Delete	

Figure 3.36: Response spectrum load case data

Define Load Cases		
Load Cases Load Case Type DEAD Linear Static LIVE Linear Static MODAL Modal TH_E_U1 Linear Modal History TH_NU1 Linear Modal History TH_NU2 Linear Modal History RS_U1 Response Spectrum WAVE Linear Static WIND_X Linear Static WIND_Y Linear Static	Click to: Add New Load Case Add Copy of Load Case <u>Modify/Show Load Case</u> Delete Load Case Display Load Cases Show Load Case Tree OK Cancel	

Figure 3.37: Response Spectrum load cases
Moreover, the modal load case is set as the figure below, maximum 12 numbers of modes shape and minimum 1 number of mode shape are having this study.

Load Case Data - Moc	dal
Load Case Name Notes Notes MoDAL Set Def Name Modify/Show	Load Case Type Modal Design
Stiffness to Use	Type of Modes
Zero Initial Conditions - Unstressed State	 Eigen Vectors
C Stiffness at End of Nonlinear Case Important Note: Loads from the Nonlinear Case are NOT included in the current case	C Ritz Vectors
Number of Modes	
Maximum Number of Modes 12	
Minimum Number of Modes 1	
Loads Applied Show Advanced Load Parameters	
Other Parameters	
Frequency Shift (Center)	······
Cutoff Frequency (Radius)	<u>UK</u>
Convergence Tolerance 1.000E-09	Cancel
Allow Automatic Frequency Shifting	

Figure 3.38: Modal load cases

Step 6: Analysis the Model

There is several combination of load cases that was applied in this analysis, these consist of:

i. Free vibration analysis (FVA)

Select the modal load case and run the analysis.

Case Name	Туре	Status	Action	
DEAD LIVE	Linear Static Linear Static	Not Run Not Run	Do Not Run Do Not Run	Show Case
MUDAL TH_E_U1 TH_E_U2	Modal Linear Modal History Linear Modal History	Not Hun Not Run Not Bun	Do Not Run Do Not Bun	Delete Results for Case
TH_N_U1 TH_N_U2 RS_U1 RS_U2 WAVE	Linear Modal History Linear Modal History Response Spectrum Response Spectrum Linear Multister Static	Not Run Not Run Not Run Not Run Not Run	Do Not Run Do Not Run Do Not Run Do Not Run Do Not Run	Run/Do Not Run All Delete All Results
WIND_X WIND_Y	Linear Static Linear Static	Not Run Not Run	Do Not Run Do Not Run	Show Load Case Tree
nalysis Monitor ()ptions			Model-Alive
🗅 Always Show	ı			Bun Now

Figure 3.39: Modal load case

12 mode shapes, natural frequency and the natural period of the offshore structures were determined through this analysis.

ii. Dead load (DL) + live load (LL)

Select the dead load and live load cases and run the analysis.

Case Name	Туре	Status	Action	Pue /De Net Pue Case
DEAD	Linear Static	Not Run	Bun	hun/Du Nut hun case
LIVE	Linear Static	Not Run	Run	Show Case
MODAL	Modal	Not Run	Do Not Run	Dalata Davulta (as Casa
	Linear Modal History	Not Hun	Do Not Hun	Delete Results for Lase
TH N U1	Linear Modal History	Not Bun	Do Not Bun	
TH_N_U2	Linear Modal History	Not Run	Do Not Run	Run/Do Not Run All
RS_U1	Response Spectrum	Not Run	Do Not Run	Delete All Besults
RS_U2	Response Spectrum	Not Run	Do Not Hun	
	Linear Static	Not Bun	Do Not Bun	
WIND_Y	Linear Static	Not Run	Do Not Run	Show Load Case Tree
nalusis Monitor O	ntions			—
Charles Charles				Model-Alive
Always Show				Run Now
Never Show				
Show After	4 seconds			Cancel

Figure 3.40: Dead load + Live load cases

After running the load cases analysis, check the steel structure accordance to EuroCode3, the critical member and maximum unity check of all the structures member are determined.

iii. Environmental load (EL)

Select the wind load, wave load and current load cases and run the analysis.

Case Name Type Status Action DEAD Linear Static Not Run Do Not Run LIVE Linear Static Not Run Do Not Run MODAL Modal Not Run Do Not Run TH_E_U1 Linear Modal History Not Run Do Not Run TH_E_U2 Linear Modal History Not Run Do Not Run TH_N_U1 Linear Modal History Not Run Do Not Run TH_N_U2 Linear Modal History Not Run Do Not Run TH_N_U2 Linear Modal History Not Run Do Not Run RS_U1 Response Spectrum Not Run Do Not Run RS_U2 Response Spectrum Not Run Do Not Run WAVE Linear Multistep Static Not Run Run WIND_X Linear Static Not Run Run					Click to:
DEAD Linear Static Not Run Do Not Run LIVE Linear Static Not Run Do Not Run MODAL Modal TH_E_U1 Linear Modal History Not Run Do Not Run TH_E_U2 Linear Modal History Not Run Do Not Run TH_N_U1 Linear Modal History Not Run Do Not Run RS_U1 Response Spectrum Not Run Do Not Run RS_U2 Response Spectrum Not Run Do Not Run MVE Linear Multistep Static Not Run Do Not Run WIND_X Linear Static Not Run Run WIND_Y Linear Static Not Run Run	Case Name	Туре	Status	Action	Bun/Do Not Bun Case
LIVE Linear Static Not Run Do Not Run Do Not Run Modal Modal Not Run Do Not Run Do Not Run Do Not Run Linear Modal History Not Run Do Not Run RS_U1 Response Spectrum Not Run Do Not Run Do Not Run RS_U2 Response Spectrum Not Run Do Not Run MiND_X Linear Multistep Static Not Run Run WiND_Y Linear Static Not Run Run Run Not Run Run Not Run Run Not Run Not Run Not Run Do Not Run Do Not Run Not Run Do Not Run Do Not Run Not Run Do Not Run Run Multistep Static Not Run Run MiND_Y Linear Static Not Run Run Run Not Run Run Not Run Not Run Not Run Not Run Not Run Run Not Run Not Run Run Not Run Not Run Not Run Run Not Run Not Run Run Show Load Case Tree	DEAD	Linear Static	Not Run	Do Not Run	
MDDAL Modal Not Run Do Not Run Do Not Run TH E, U1 Linear Modal History Not Run Do Not Run Do Not Run TH E, U2 Linear Modal History Not Run Do Not Run Do Not Run TH_NU1 Linear Modal History Not Run Do Not Run RS_U1 Response Spectrum Not Run Do Not Run RS_U2 Response Spectrum Not Run Do Not Run WIND_X Linear Multistep Static Not Run Run WIND_Y Linear Static Not Run Run	LIVE	Linear Static	Not Run	Do Not Run	Show Case
IH_E_U1 Linear Modal History Not Run Do Not Run TH_E_U2 Linear Modal History Not Run Do Not Run TH_N_U1 Linear Modal History Not Run Do Not Run RS_U1 Response Spectrum Not Run Do Not Run RS_U2 Response Spectrum Not Run Do Not Run WAVE Linear Multi-step Static Not Run Do Not Run WIND_X Linear Static Not Run Run WIND_Y Linear Static Not Run Run ways Show * Always Show Model-Alive	MODAL	Modal	Not Run	Do Not Run	Delete Regults for Case
In E 202 Linear Modal History Not Run Do Not Run TH_N_U1 Linear Modal History Not Run Do Not Run RS_U1 Response Spectrum Not Run Do Not Run SS_U2 Response Spectrum Not Run Do Not Run WAVE Linear Multi-step Static Not Run Run WIND_X Linear Static Not Run Run WIND_Y Linear Static Not Run Run Ways Show Model-Alive Nature Show		Linear Modal History	Not Hun	Do Not Hun	Delete mesuits for case
International integration International integration International integration International integration International integration International integration International integration International integration RS_U1 Response Spectrum Not Run Do Not Run Do Not Run RS_U2 Response Spectrum Not Run Do Not Run WAVE Linear Multistep Static Not Run Run WIND_X Linear Static Not Run Run WIND_Y Linear Static Not Run Run	TH_E_02	Linear Modal History	Not Bun	Do Not Bun	
RS_U1 Response Spectrum Not Run Do Not Run RS_U2 Response Spectrum Not Run Do Not Run RS_U2 Linear Multistep Static Not Run Run WIND_X Linear Static Not Run Run wIND_Y Linear Static Not Run Run	TH N U2	Linear Modal History	Not Bun	Do Not Bun	Run/Do Not Run All
RS_U2 Response Spectrum Not Run Do Not Run WAVE Linear Multi-step Static Not Run Run WIND_X Linear Static Not Run Run WIND_Y Linear Static Not Run Run ways Show * Always Show Image Show Run Now	RS UT	Response Spectrum	Not Run	Do Not Run	
WAVE Linear Multi-step Static Not Run Run WIND_X Linear Static Not Run Run WIND_Y Linear Static Not Run Run valysis Monitor Options Image: Model-Alive Image: Show * Always Show Run Now	RS_U2	Response Spectrum	Not Run	Do Not Run	Delete All Results
WIND_X Linear Static Not Run Run WIND_Y Linear Static Not Run Run Halysis Monitor Options Model-Alive * Always Show Run Now	WAVE	Linear Multi-step Static	Not Run	Run	
WIND_Y Linear Static Not Hun Hun Alysis Monitor Options Model-Alive Run Now	WIND_X	Linear Static	Not Run	Run	Show Load Case Tree
Alvais Monitor Options Model-Alive Always Show News Run Now	WIND_Y	Linear Static	Not Run	Hun	
Model-Alive Model-Alive Run Now	nalusis Monitor (Intions			
Always Show Run Now					Model-Alive
Never Show	Always Show				Run Now
Nevel Show	Never Show				

Figure 3.41: Environmental load cases

After running the load cases analysis, check the steel structure accordance to EuroCode3, the critical member and maximum unity check of all the structures member are determined.

iv. Dead load (DL) + live load (LL) + environmental load (EL) + time history load (TH)

Select the dead load, live load, environmental load and time history load cases and run the analysis.

Figure 3.42: Dead Load + Live Load + Environmental Load + Time History load cases

After running the load cases analysis, check the steel structure accordance to EuroCode3, the critical member and maximum unity check of all the structures member are determined.

v. Response spectrum load (RS)

Select the both direction of response spectrum load cases and run the analysis.

Case Name	Туре	Status	Action	Click to:
DEAD LIVE MODAL TH_E_U1 TH_E_U2 TH_N_U1 TH_N_U1 TH_N_U2	Linear Static Linear Static Modal Linear Modal History Linear Modal History Linear Modal History Linear Modal History	Not Run Not Run Not Run Not Run Not Run Not Run Not Run	Do Not Run Do Not Run Do Not Run Do Not Run Do Not Run Do Not Run Do Not Run	Show Case Delete Results for Case
RS_U1 RS_U2 WAVE WIND_X WIND_Y	Response Spectrum Response Spectrum Linear Multi-step Static Linear Static Linear Static	Not Run Not Run Not Run Not Run Not Run	Run Run Do Not Run Do Not Run Do Not Run Do Not Run	Delete All Results Show Load Case Tree
alysis Monitor (Always Show Never Show Show After)ptions			Model-Alive Run Now OK Cancel

Figure 3.43: Response spectrum load cases

After running the load cases analysis, check the steel structure accordance to EuroCode3, the critical member and maximum unity check of all the structures member are determined.

Step 7: Display result and output table

After performed all the analysis, the results obtained from this study are as follows:

- (i) Mode shape of the offshore structures
- (ii) Natural period and natural frequency of the offshore structures
- (iii) Maximum unity check of all the structures member
- (iv) Maximum shear stress and bending stress in the member
- (v) Shear force and bending moment under various load cases
- (vi) Joint displacement, velocity and acceleration under different combination of load cases

s: A:	s Noted		- opiiois		Asser	mbled Joint Mass	es	
	Joint Text	U1 KN-s2/m	U2 KN-s2/m	U3 KN-s2/m	R1 KN-m-s2	R2 KN-m-s2	R3 KN-m-s2	
	3	22.7	22.7	22.7	0	0	0	
	4	22.7	22.7	22.7	0	0	0	
	5	22.7	22.7	22.7	0	0	0	
	6	22.7	22.7	22.7	0	0	0	
	7	19.07	19.07	19.07	0	0	0	
	8	19.07	19.07	19.07	0	0	0	
	9	19.07	19.07	19.07	0	0	0	
	10	19.07	19.07	19.07	0	0	0	
	11	5.77	5.77	5.77	0	0	0	
	12	5.77	5.77	5.77	0	0	0	
	13	5.77	5.77	5.77	0	0	0	
	14	5.77	5.77	5.77	0	0	0	
	15	15.04	15.04	15.04	0	0	0	
	16	15.04	15.04	15.04	0	0	0	
	17	15.04	15.04	15.04	0	0	0	
	18	15.04	15.04	15.04	0	0	0	
	19	4.69	4.69	4.69	0	0	0	
	20	4.69	4.69	4.69	0	0	0	
	21	3.32	3.32	3.32	0	0	0	
	22	3.32	3.32	3.32	0	0	0	
	23	20.36	20.36	20.36	0	0	0	

×				Analysis	Compl	ete - xe	enia			-		×
File Name:	C:\User	s\User\Des	ktop\Sem 8'	FYP\Sap 200	0 (New.V)		ler\xenia.	sdb			L	ess
Start Lime:	30-Jun-	5 5:08:41 A	AM	Ela	psed Lime	: 00:00:0	J6					
Finish Time:	30-Jun-1	5 5:08:47	AM	Ru	n Status:	Done -	Analysis	Complete	•			
CASE . T	UN US											
ANALVET	C TYDE				_	TTM	220					^
USING M	ODES E	DOM CASE	- MODAT.		-	DIN	SAR					
NUMBER	OF DYN	AMIC MOD	ES TO BE	USED	=		12					
NUMBER	OF STA	TIC-LOAD	MODES T	O BE USED	=		1					
MODES A	RE TRE	ATED AS	STATIC B	ELOW PERIC	D =	1.0E-	101					
TOTAL H	ISTORY	LENGTH	(TIME)		=	10.000	000					
LENGTH	OF TIM	E-STEPS	(TIME)		=	0.100	000					
NUMBER	OF TIM	E-STEPS	TO BE IN	TEGRATED	=		100					
EFFECTI	VE MOD	AL DAMPI	NG RATIO	S (CROSS-C	OUPLING	; TERMS	ARE N	EGLECT	ED)			
1	. 0.	540726	0.0500	00								
2	0.	485316	0.0500	00								
3	0.	485303	0.0500	00								
4	0.	485302	0.0500	00								
5	0.	484952	0.0500	00								
6	0.	418590	0.0500	00								
7	0.	417740	0.0500	00								
	0.	393790	0.0500	00								
9	0.	392784	0.0500	00								
10	0.	331143	0.0500	00								
Timor	. U.	Toodea	0.0500	Sub-stop	Ttor	tion	Subar	tone (Ttore	tions/		
11me	mber	LOad-S	ber (number	ILEIG	mber	load	-step	ILEIG	b-step		
10	100	1	000	1000		nuber 0	TOau	-scep	50	n -scep		
	100	-		1000				-				
TOTAL N	UMBER	OF TIME-	STEPS CO	MPLETED	=		100					
TOTAL N	UMBER	OF LOAD-	STEPS CO	MPLETED	=	1	000					
						_						
ANAL	YSI	S C O	MPLE	ΤE				2015/	06/30	05:08:45	5	
												Υ

Figure 3.46: Summary of result

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 OFFSHORE STRUCTURE ANALYSIS

The fixed offshore structures have been modelled and analyzed using SAP2000, an integrated software for structural analysis and design. The free vibration analysis, time history earthquake analysis and response spectrum earthquake analysis have been performed in this study. The loads that considered in this analysis consist of dead load, live load, modal load, environmental load, time history load and also response spectrum load, while the environmental load comprises of wind, wave and current loads. As mentioned in chapter 3, there are several combination of load cases that was applied in this analysis, these consist of:

- i. Free vibration analysis (FVA)
- ii. Dead load (DL) + live load (LL)
- iii. Environmental load (EL)
- iv. Dead load (DL) + live load (LL) + environmental load (EL) + time history load (TH)
- v. Response spectrum load (RS)

Moreover, the results obtained from this study are as follows:

- i. Mode shape of the offshore structures
- ii. Natural period and natural frequency of the offshore structures
- iii. Maximum unity check of all the structures member
- iv. Maximum shear stress and bending stress in the member
- v. Shear force and bending moment under various load cases
- vi. Joint displacement, velocity and acceleration under different combination of load cases

4.2 OFFSHORE STRUCTURE MODELLING

The fixed offshore structure modelling has been done using SAP2000, an integrated software for structural analysis and design. Figure 4.1 shows the 3d model of this fixed offshore structure. This offshore structure was modelled using the linear properties and several assumptions have been made throughout the modelling stage. There are:

- i. The geometry, section properties and material properties of the structure is represented almost the same from the actual structure.
- ii. The structure was assumed to fix on the ground instead of pilled.

Figure 4.1: 3D model of the fixed offshore structure

4.3 FREE VIBRATION ANALYSIS

Free vibration analysis has been carried out by using SAP2000 software. The natural frequency, natural period and twelve (12) mode shapes of offshore structure have been obtained based on this analysis. The summary of the results has been tabulated in Table 4.1. Generally, the mode shape represents the shape that the structure will vibrate in free motion and the same shape tends to dominate the motion of the structure during an earthquake. By understanding the modes of vibration, it will help to easier and better design structures to withstand earthquake. The first mode of vibration is the one of primary interest because the first mode usually has the largest contribution to the structure's motion. The natural period of the first mode is the longest and follows by the second mode. The mode shape 1 and 2 are shown in Figure 4.2 (a) and (b) respectively. The grey colour lines show the original undeflected shape of the offshore structure, while the blue colour lines show the deflected shape of the offshore structure.

Mode	Natural Period, T (sec)	Natural Frequency, f (Hz)
1	0.5407	1.8494
2	0.4853	2.0605
3	0.4853	2.0606
4	0.4853	2.0606
5	0.4850	2.0621
6	0.4186	2.3890
7	0.4177	2.3938
8	0.3938	3.5394
9	0.3928	2.5459
10	0.3311	3.0198
11	0.3308	3.0226
12	0.3172	3.1527

Table 4.1: The result from the free vibration analysis

(a)

(b)

Figure 4.2: Two of the vibration modes (a) mode shape 1 (0.5407 sec) (b) mode shape 2 (0.4853 sec)

4.4 TIME HISTORY EARTHQUAKE ANALYSIS

Time history earthquake analysis has been performed on the fixed offshore structure by referring to the earthquake data obtained from the Malaysian Meteorological Department. Figure 4.3 and 4.4 show the graph of time versus acceleration in both E and N direction. The result obtained from this analysis is time history responses at joints and stresses for frame elements of the fixed offshore structure.

Figure 4.3: Time (sec) vs Acceleration (g) in E-direction

Figure 4.4: Time (sec) vs Acceleration (g) in N-direction

4.5 LINEAR ANALYSIS

There are several combination of load cases that been applied in this linear analysis, these consist of combination of dead load (DL) + live load (LL), environmental

load (EL), dead load (DL) + live load (LL) + environmental load (EL) + time history load (TH) and response spectrum load (RS). The most critical frame element in this offshore structure has been determined which is frame element 27 with 0.518 ratio. Moreover, the results of the various combination of load cases of this frame element have been determined and presented in the table and diagram form. The result and output obtained consist of the shear force diagram and bending moment diagram

The table 4.2 showed the shear force diagrams of several combination of load cases that was applied in this linear analysis. The result of the shear force diagram for the combination of dead load (DL) + live load (LL) linear analysis is shown as below. From the shear force diagram, the maximum shear force is 165.431 KN which happen at the frame element 27. From the maximum shear stress result, shear stress and allowable capacity check have been calculated and tabulated in the table 4.3, which is 4,364.93 kN/m^2 and 102,750 kN/m^2 respectively.

Moreover, the result of the shear force diagram for the combination of environmental load (EL) also showed as below. Wind load, wave load and current load are the load that comprises in this environmental load analysis. From the shear force diagram, the maximum shear force for environmental load analysis is 11.195 KN which happen at the frame element 27. From the maximum shear stress result, shear stress and allowable capacity check has been calculated and tabulated in the table 4.3, which is 295.38 kN/m^2 and 102,750 kN/m^2 respectively.

The response spectrum (RS) analysis have been performed, the shear force diagram have been obtained as showed in the table 4.2, the maximum shear force of this analysis which happens at the frame element 27 is 14.702 KN. From the maximum shear stress result, shear stress and allowable capacity check have been calculated and tabulated in the table 4.3, which is $387.92 \ kN/m^2$ and $102,750 \ kN/m^2$ respectively.

For the result of combination load cases of dead load (DL) + live load (LL) + environmental load (EL) + time history load (TH) are determined, the shear force diagram have obtained as showed in the table 4.2. The maximum shear force of this analysis which happens at the frame element 27 is 14.702 KN. From the maximum shear stress result, shear stress and allowable capacity check has been calculated and tabulated in the table 4.3, which is $4,159.74 \text{ } kN/m^2$ and $102,750 \text{ } kN/m^2$ respectively.

Table 4.2: Shear force diagrams of several combination of load cases happen at frame element 27

Load combination	Design shear force, V _{Ed} (kN)	Shear stress, f_v (kN/ m^2)	Allowable shear stress, F _v (kN/m ²)
DL + LL	165.431	4,364.93	102,750
EL	-11.195	-295.38	102,750
RS	14.702	387.92	102,750
DL + LL + EL + TH	-157.654	-4,159.74	102,750

Table 4.3: Shear stress and allowable capacity check of several combination of load cases

The table 4.4 showed the bending moment diagrams of several combination of load cases that was applied in this linear analysis. The result of bending moment diagram for the combination of dead load (DL) + live load (LL) linear analysis are shown as below. From the bending moment diagram, the maximum bending moment is 1,071.21 KNm which happen at the frame element 27. From the maximum bending moment result, bending stress and allowable capacity check has been calculated and tabulated in the table 4.5, which are 245,297.57 kN/m^2 and 474,498.51 kN/m^2 respectively.

Moreover, the result of bending moment diagram for the combination of environmental load (EL) also showed as below. Wind load, wave load and current load are the load that comprises in this environmental load analysis. From the bending moment diagram, the maximum bending moment for environmental load analysis is 49.76 KNm which happen at the frame element 27. From the maximum bending moment result, bending stress and allowable capacity check has been calculated and tabulated in the table 4.5, which are 11,394.78 kN/m^2 and 474,498.51 kN/m^2 respectively.

The response spectrum (RS) analysis have been performed, the bending moment diagram have been obtained as showed in the table 4.4, the maximum bending moment of this analysis which happens at the frame element 27 is 103.96 KNm. From the maximum bending moment result, bending stress and allowable capacity check has been calculated and tabulated in the table 4.5, which are 23,804.88 kN/m^2 and 474,498.51 kN/m^2 respectively.

For the result of combination load cases of dead load (DL) + live load (LL) + environmental load (EL) + time history load (TH) are determined, the bending moment diagram has obtained as showed in the table 4.4. The maximum bending moment of this analysis which happens at the frame element 27 is 1,023.68 KNm. From the maximum bending moment result, bending stress and allowable capacity check has been calculated and tabulated in the table 4.5, which are 234,412.07 kN/m^2 and 474,498.51 kN/m^2 respectively.

Table 4.4: Bending moment diagrams of several combination of load cases

 happen at frame element 27

Load	Bending Moment Diagram	
combination		
DL + LL	Resultant Moment	
		Moment M3 1071.2145 KN-m at 7.07100 m
EL	Resultant Moment	
		Moment M3
		-49.7610 KN-m at 7.07100 m -49.7610 KN-m at 7.07100 m
RS	Resultant Moment	
		Moment M3 103.9559 KN-m at 7.07100 m -103.9559 KN-m at 7.07100 m
DL + LL + EL +	Resultant Moment	
TH		Moment M3 1023.6775 KN-m at 7.07100 m 1023.6765 KN-m at 7.07100 m

Load combination	Design moment, M _{ed} (kNm)	Bending stress, f_b (kN/m ²)	Allowable bending stress, <i>F</i> _b (kN/m ²)
DL + LL	1,071.21	245,297.57	474,498.51
EL	49.76	11,394.78	474,498.51
RS	103.96	23,804.88	474,498.51
DL + LL + EL + TH	1,023.68	234,412.07	474,498.51

Table 4.5: Bending moment and allowable capacity check of several combination of load cases

4.6 COMPARISON OF RESULTS MANUAL CALCULATION AND SAP2000

In order to obtain a safe design for our structure, we had tried a variety of design options including design manually or design using a computer. Then, we compared our manual design with our computer design. The results for both manual calculation and computer design indicate that our structural design is safe and sound.

Below shows in the comparison of our manual design and design using SAP2000. We checked and compared the final steel P-M interaction ratios obtained from both the manual calculation with the SAP2000 calculation. All steel frames passed the stress/ capacity check as the ratio is less than 1 as shown in the table below. For the SAP2000, the most critical frame member in this offshore model is a frame member 27 of 0.518 ratio. While, for manual calculation the most critical frame member 27 with 0.75 ratio. We are fortunate to obtain a safe design for our structure and the results are shown below.

Table 4.6: P-M interaction ratios of manual calculation and SAP2000

Element Design	Frame Number	P-M interaction	on ratios
		Manual Calculation	SAP2000
Beam Design	27	0.75	0.518
Column Design	66	0.09	0.199
Truss Design	81	0.01	0.417
(Tension)			
Truss Design	99	0.001	0.406
(Compression)			

4.7 SUMMARY OF THE ANALYSIS

In the end of the analysis, element unity check has been performed, the final steel P-M interaction ratios are determined and displayed. All steel frames passed the stress/ capacity check as the ratio is less than 1 as showed in the table below. The most critical frame member in this offshore model is a frame member 27 of 0.518 ratio.

Figure 4.5: The final steel P-M interaction ratios are displayed.

Frame	Design Section	Design Type	Maximum Unity
Member			Check
2	559@25	Beam	0.234
3	559@25	Beam	0.236
4	559@25	Beam	0.234
5	559@25	Beam	0.236
6	559@25	Beam	0.276
7	559@25	Beam	0.276
8	508@19	Beam	0.267
9	508@19	Beam	0.267

Table 4.7: Unity ratio of the Frame Member

10	508@19	Beam	0.267
11	508@19	Beam	0.267
12	508@19	Beam	0.051
13	508@19	Beam	0.051
14	508@19	Beam	0.051
15	508@19	Beam	0.051
16	508@13	Beam	0.299
17	508@13	Beam	0.222
18	508@13	Beam	0.299
19	508@13	Beam	0.222
20	508@13	Beam	0.070
21	508@13	Beam	0.035
22	508@13	Beam	0.035
23	508@13	Beam	0.035
24	508@13	Beam	0.035
25	508@25	Beam	0.518
26	508@25	Beam	0.473
27	508@25	Beam	0.518
28	508@25	Beam	0.473
29	508@25	Beam	0.288
30	508@25	Beam	0.026
31	508@25	Beam	0.026
32	508@25	Beam	0.026
33	508@25	Beam	0.026
59	1168@13	Column	0.493
60	1168@13	Column	0.307
61	1168@13	Column	0.199
62	1168@13	Column	0.136
64	1168@13	Column	0.493
65	1168@13	Column	0.307
66	1168@13	Column	0.199
67	1168@13	Column	0.132
69	1168@13	Column	0.493
70	1168@13	Column	0.307
71	1168@13	Column	0.199
72	1168@13	Column	0.136
74	1168@13	Column	0.493
75	1168@13	Column	0.307
76	1168@13	Column	0.199
77	1168@13	Column	0.132
79	610@13	Brace	0.423
80	610@13	Brace	0.415
81	610@13	Brace	0.417
82	610@13	Brace	0.425
83	610@13	Brace	0.415

84	610@13	Brace	0.423
85	610@13	Brace	0.417
86	610@13	Brace	0.425
87	559@13	Brace	0.458
88	559@13	Brace	0.378
89	559@13	Brace	0.460
90	559@13	Brace	0.380
91	559@13	Brace	0.458
92	559@13	Brace	0.378
93	559@13	Brace	0.460
94	559@13	Brace	0.380
96	559@19	Brace	0.406
98	559@19	Brace	0.406
99	559@19	Brace	0.406
100	559@19	Brace	0.406

Figures 4.6 and 4.7, show the bending stress and shear stress based on load cases. In figure 4.6, it shows that the highest bending stress occurs at the load cases of dead and live loads at $245,300kN/m^2$, while the allowable bending stress is $474,500kN/m^2$. It means that, although the value of bending stress is the high, but still the structure can resist. This is because the intensity of the earthquake is not strong enough to make the structure collapse. The reason for the result of load cases of dead load, live load, environmental load and time history load is much greater than the load cases of dead and live load may be due to the counteract of the stress. Counteract may occur and act against stress and bringing the result of reducing or neutralize by its force.

Figure 4.6: Graph of Bending Stress versus Load Cases

Figure 4.7 shows the graph for the shear stress in each case. From the graph, we can justify that the highest shear stress is $4,364.93kN/m^2$, while the allowable shear stress is $120,750kN/m^2$. Same with the bending stress, all values of shear stress do not exceed the allowable shear stress.

Figure 4.7: Graph of Shear Stress versus Load Cases

Usually the most critical part of the structure is the joint connection. Hence, the joint displacement under varies load cases has been determined in this study. The result of joint displacements for joint 25 with difference of load cases has been tabulated and illustrated in table 2 and figures 8 respectively. The highest value of displacement is 0.0289m in U1 direction which occurred in the response spectrum load case.

Load Cases U2 (m) U3 (m) U1 (m) DL + LL-0.0009 -0.0009 -0.0054EL 0.0077 0.0005 0.0019 RS 0.0289 0.0286 0.0060 DL + LL + EL + TH-0.0049 0.0068 0.0010

 Table 4.8: Joint Displacements in Different Load Combination

Figure 4.8: Graph of Joint Displacement versus Load Cases in Three Different Directions

CHAPTER 5

CONCLUSION & RECOMMENDATIONS

5.1 CONCLUSION

Based on the finding of the research, the conclusion that can be made consist of:

- i. The simulation of the fixed offshore structure model is not 100% represent the actual structure. This is due to the assumptions made on the restrains at the base condition and the joint connection of the offshore structure. The restraint at base condition of the fixed offshore structure is assumed fixed to the ground as a replacement for pilled and soil interaction is neglected. Moreover, the connection of the offshore structure was not designed according to the EuroCode3 design specification.
- ii. Fixed offshore structures in Malaysia region are capable of resisting this low seismic activity based on the study, since the maximum shear stress and bending stress is below the allowable capacity checks after several combination load cases have been applied.
- iii. Element unity check has been performed, the final steel P-M interaction ratios are determined and displayed. All steel frames passed the stress/ capacity

check as the ratio is less than 1 as showed in the table. The most critical frame member in this offshore model is a frame member 27 with 0.518 ratio.

- iv. From the free vibration analysis, the highest value of the natural period is 0.5407 sec of mode shape 1.
- v. The maximum shear force that happens at the most critical frame element 27 is 165.431 kN when load combination dead load + live load being applied.
- vi. The maximum bending moment that happens at the most critical frame element 27 is 1071.21 kNm when load combination dead load + live load being applied.
- vii. The highest value of displacement is 0.0289m in U1 direction which occurred in the response spectrum load case.

5.2 **RECOMMENDATIONS**

For the future study, the soil interaction and restraint of the offshore structure both should be considered in the analysis. This is because the earthquake load transfer from the ground surface to the upper surface. Thus, it might have slightly different results from what happen on site if neglecting the soil interaction in the analysis.

In fact, the failure of the steel structure usually happens at the joint connection. The main reason causing the failure is because of the stress at the connection is too high. Thus, the welded joint should be modelled in SAP 2000 computational software according to EuroCode3.

In addition, in order to increase the accuracy on the seismic response study, the earthquake data should be always updated, so that the higher intensity of the earthquake should be considered for the analysis. For example, the earthquake with magnitude 5.9

occurred at the Ranau, Sabah lately. At least 18 people killed on Mount Kinabalu, some climbers injured, some building damaged seriously, water supply disrupted in the area around Kundasang and Ranau, water color turned black near Ranau, and rockfalls trigged in the mountain area. (Earthquake.usgs.gov, 2015)

REFERENCES

- American Petroleum Institute (2000). *Recommended Practice for Planning, Designing* and Constructing Fixed Offshore Platforms – Working Stress Design Washington: API RP 2A – WSD.
- Aulov, A., & Liew, M. S. (2013). Seismic Hazard Analysis (SHA) Considerations for South China Sea Territories of Malaysia, 173–178.
- Chakrabakti, S K., (2005). Handbook of Offshore Engineering, Elsevier, Oxford, UK.
- Chen, W., & Scawthorn, C. (2003). *Earthquake engineering handbook*. Boca Raton, FL: CRC Press.
- Chopra, A. K. (2001). *Dynamics of structures: Theory and Application to Earthquake Engineering*. New Jerse: Prentice-Hall
- Datta, T. (2010). Seismic analysis of structures. Singapore: John Wiley & Sons Asia.
- Dean, R. (2005/6) CVNG 3006 Environmental Geotechnics, Module 1: Offshore Foundation Engineering. Lecture Notes: University of the West Indies, Trinidad
- Day, R. W. (2002). *Geotechnical Earthquake Engineering Handbook*. New York: McGraw-Hill.
- Dowrick, D. (2003). Earthquake risk reduction. Hoboken, NJ: John Wiley.
- Earthquake.usgs.gov, (2015). *M6.0 15km W of Ranau, Malaysia* (online). http://earthquake.usgs.gov/earthquakes/eventpage/us20002m5s#general_summar y (8 June 2015)
- Ghobarah, A. (2001). Performance-Based Design in Earthquake Engineering: State of Development, Engineering Structures. 23, 878-884.
- J. H. Huang & H. J. Syu (2014). Free Vibration and Seismic Responses of Power Transmission Tower Using ANSYS and SAP2000. International Journal of Emerging Technology and Advanced Engineering. Volume 4, Issue 8.
- J. H. Huang & H. J. Syu (2014). Passive Vibration Control Synthesis of Power Transmission Tower Using ANSYS: Part II - Control of Seismic Response. International Journal of Emerging Technology and Advanced Engineering. Volume 4, Issue 9.
- J. H. Huang & H. J. Syu (2014). Seismic Response Analysis of Tower Crane Using SAP2000. Procedia Engineering 79 (2014) 513 522

- Khosro. B, S. R. Hosseini, Mohammad H. T & H. Sharifian (2011). Seismic Response of a Typical Fixed Jacket-Type OffshorePlatform (SPD1) under Sea Waves. Open Journal of Marine Science, 2011, 1, 36-42
- Kumawo K. (2010). Nonlinear Dynamic Response of a Large Structures. American Journal of Applied Sciences 5(11): 1448-1460
- Lai, Tze Khai. (2007). Determination of earthquake design criteria for fixed offshore structures located in Malaysia region. Master. Thesis. University Technology Malaysia, Malaysia
- Lee, W. H. K., Kanamori, H., Jennings, P. C. and Kisslinger, C. (Eds.) (2002). International Handbook of Earthquale & Engineering Seismology. London: Academic Press.
- N. Norhamizah. (2011). Analysis of Fixed Steel Jacket under Seismic Load. Degree. Final Year Project. University Technology Malaysia, Malaysia
- P. Selvarani. Sunday Interview: Malaysia relatively quake-free. New Straits Times. (15 April 2012)
- Ramli, M. Z., & Adnan, A. (2004). Earthquake Engineering Education Plan For Low Intensity Earthquake Region, 1–5.
- Rozaina. I. (2006). Earthquake Design for Fixed Offshore Platform by using Visual Basic 6.0. Degree. Final Year Project. University Technology Malaysia, Malaysia
- Syahrul. I. A. (2008). Seismic Structural Vulnerability of Offshore Structure in Malaysia. Degree. Final Year Project. University Technology Malaysia, Malaysia
- Swapna. C, H.R. Prabhakara. (2014). Seismic Response of Transmission Tower Using SAP2000. International Journal of Advanced Research (2014), Volume 2, Issue 6, 574-585
- Themalaysianinsider.com, (2013). *Moderate earthquake 'can happen anytime' in Malaysia*. (8 February 2013).
- Trevon. J (2009). Assessment of Kinematic Effects on Offshore Piled Foundations. Master. Dissertation. Universitario di Studi Superiori (IUSS) di Pavia, Italy.

APPENDICES A

Grid System Data

X Grid Data		Y Gri	d Data	Z Grid Data		
Grid ID	Ordinate	Grid ID	Ordinate	Grid ID	Ordinate	
А	0	1	0	Z1	0	
В	100	2	100	Z2	995	
С	1868	3	1868	Z3	18673	
D	3636	4	3636	Z4	36351	
E	5221	5	5221	Z5	52201	
F	12292	6	12292	Z6	53201	
G	19363	7	19363			
Н	20948	8	20948			
Ι	22716	9	22716			
J	24484	10	24484			
K	24584	11	24584			

APPENDICES B

Table of Stiffness

LEVEL	FRAME NUMBER	ELEMENT MEMBER	MEMBER LENGTH	MODULUS OF ELASTICITY,	MOMENT OF	STIFFNESS, k	MEMBER OF SAME	TOTAL STIFFNESS,
			(mm)	E (N/mm2)	INERTIA,		CONDITION	k
					I (mm4)			
1~2	59, 64, 69, 74	COLUMN	1005.00	210000	7.87E+09	1.64E+12	4	6.58E+12
2~3	60, 65, 70, 75	COLUMN	17853.94	210000	7.87E+09	9.25E+10	4	3.70E+11
3~4	61, 66, 71, 76	COLUMN	17853.94	210000	7.87E+09	9.25E+10	4	3.70E+11
4~5	62, 67, 72, 77	COLUMN	16007.72	210000	7.87E+09	1.03E+11	4	4.13E+11
2	2, 3, 4, 5	M.BEAM	24384.00	210000	1.50E+09	1.29E+10	4	5.16E+10
2	6, 7	S.BEAM	34484.18	210000	1.50E+09	9.12E+09	2	1.82E+10
3	8, 9, 10, 11	M.BEAM	20848.00	210000	8.74E+08	8.80E+09	4	3.52E+10
3	12, 13, 14, 15	S.BEAM	14741.76	210000	8.74E+08	1.24E+10	4	4.98E+10
4	16, 17, 18, 19	M.BEAM	17312.00	210000	6.20E+08	7.52E+09	4	3.01E+10
4	21, 22, 23, 24	S.BEAM	12241.43	210000	6.20E+08	1.06E+10	4	4.25E+10
4	20	S.BEAM	17312.00	210000	6.20E+08	7.52E+09	1	7.52E+09
5	25, 26, 27, 28	M.BEAM	14142.00	210000	1.11E+09	1.65E+10	4	6.59E+10
5	30, 31, 32, 33	S.BEAM	9999.90	210000	1.11E+09	2.33E+10	4	9.32E+10
5	29	S.BEAM	14142.00	210000	1.11E+09	1.65E+10	1	1.65E+10

LEVEL	FRAME NUMBER	ELEMENT MEMBER	MEMBER LENGTH (mm)	MODULUS OF ELASTICITY, E (N/mm2)	MOMENT OF INERTIA, I (mm4)	STIFFNESS, k	MEMBER OF SAME CONDITION	TOTAL STIFFNESS, k
2~3	79, 80, 81, 82, 83, 84, 85, 86	TRUSS	28759.71	210000	1.09E+09	7.94E+09	8	6.35E+10
3~4	87, 88, 89, 90, 91, 92, 93, 94	TRUSS	26070.75	210000	8.31E+08	6.70E+09	8	5.36E+10
4~5	96, 98, 99, 100	TRUSS	22384.67	210000	1.18E+09	1.10E+10	4	4.41E+10
						TOTAL	68	8.30E+12

APPENDICES C

Table of Mass

LEVEL	FRAME NUMBER	ELEMENT MEMBER	MEMBER LENGTH (mm)	OUTSIDE DIAMETER (mm)	WALL THICKNESS (mm)	VOLUME (mm3)	MASS (kg)	MEMBER OF SAME CONDITION	TOTAL MASS (kg)
1~2	59, 64, 69, 74	COLUMN	1005.00	1168.00	13	4.74E+07	372.10	4	1.49E+03
2~3	60, 65, 70, 75	COLUMN	17853.94	1168.00	13	8.42E+08	6610.35	4	2.64E+04
3~4	61, 66, 71, 76	COLUMN	17853.94	1168.00	13	8.42E+08	6610.35	4	2.64E+04
4~5	62, 67, 72, 77	COLUMN	16007.72	1168.00	13	7.55E+08	5926.79	4	2.37E+04
2	2, 3, 4, 5	M.BEAM	24384.00	559.00	25	1.02E+09	8026.97	4	3.21E+04
2	6, 7	S.BEAM	34484.18	559.00	25	1.45E+09	11351.8 4	2	2.27E+04
3	8, 9, 10, 11	M.BEAM	20848.00	508.00	19	6.09E+08	4776.31	4	1.91E+04
3	12, 13, 14, 15	S.BEAM	14741.76	508.00	19	4.30E+08	3377.36	4	1.35E+04
4	16, 17, 18, 19	M.BEAM	17312.00	508.00	13	3.50E+08	2747.01	4	1.10E+04

LEVEL	FRAME NUMBER	ELEMENT MEMBER	MEMBER LENGTH	OUTSIDE DIAMETER	WALL THICKNESS	VOLUME	MASS (kg)	MEMBER OF SAME	TOTAL MASS
	NOMBER		(mm)	(mm)	(mm)	(IIIII3)	(Kg)	CONDITION	(kg)
4	21, 22, 23,	S.BEAM	12241.43	508.00	13	2.47E+08	1942.43	4	7.77E+03
	24								
4	20	S.BEAM	17312.00	508.00	13	3.50E+08	2747.01	1	2.75E+03
5	25, 26, 27, 28	M.BEAM	14142.00	508.00	25	5.36E+08	4210.79	4	1.68E+04
5	30, 31, 32, 33	S.BEAM	9999.90	508.00	25	3.79E+08	2977.48	4	1.19E+04
5	29	S.BEAM	14142.00	508.00	25	5.36E+08	4210.79	1	4.21E+03
2~3	79, 80, 81, 82, 83, 84, 85, 86	TRUSS	28759.71	610.00	13	7.01E+08	5503.86	8	4.40E+04
3~4	87, 88, 89, 90, 91, 92, 93, 94	TRUSS	26070.75	559.00	13	5.81E+08	4563.04	8	3.65E+04
4~5	96, 98, 99, 100	TRUSS	22384.67	559.00	19	7.22E+08	5663.22	4	2.27E+04
							TOTAL	68	3.23E+05

APPENDICES D

Offshore Structural Mode Shape

APPENDICES D: Continued

APPENDICES D: Continued

APPENDICES E

Manual Calculation

Load Description

The load combinations of dead load, deck loads, wind, wave, current and earthquake loads have been defined.

Self-weight and functional loads

The self-weight and functional loads of this offshore structure is listed in Table 3.1.

No.	Load descriptions	Weight [MN]
1	Jacket appurtenances weight	0.339
2	Topside dead loads	0.393
3	Topside live loads	1.150
4	Piping & equipment weights	0.400
	TOTAL	2.282

 Table 3.1: Dead load and live load description

Dead and Live Loads

Dead load = 0.339 + 0.393 + 0.400 = 1.132 MN

Uniform dead load = (1.132×1000) kN ÷ (14.143×14.143) m²

$$= 5.659 \text{kN} / \text{m}^2$$

Live load = 1.150 MN

APPENDICES E: Continued

Uniform live load = (1.150×1000) kN ÷ (14.143×14.143) m²

$$= 5.749 \text{ kN} / \text{m}^2$$

Environmental loads

The environmental loads are based on the metocean data. Table 3.6.2 shows the environmental criteria for the offshore structure which located in Terengganu.

MSL		Design Condition
47.629 m	Wave height (m)	10.79
	Wave period (s)	10.9
	Current velocity (m/s)	0.750
	Wind speed (m/s)	21.8
	Max. tide (m)	2.0
	Storm surge (m)	0.4

Table 3.2: Environmental criteria for offshore structure at Terengganu

Therefore all the environmental loads which including wind, wave and current action were calculated by using the provided environmental criteria and formula from American Petroleum Institute (API).

Wind Load

The wind profile, gusts and wind drag force are calculated using following equation that are taken directly from the API RP 2A-WSD practice.
Wind profile and Gusts

$$U(z) = U_{o} x \left[1 + C x \ln\left(\frac{z}{32.8}\right)\right]$$

$$z = 4572 mm + 1000mm$$

$$= 5572 mm$$

$$= 18.281 \text{ ft}$$

$$U_{o} = 21.8 m/s$$

$$= 71.522 ft/s$$

$$C = 5.73 x 10^{-2} x (1 + 0.0457 x U_{o})^{1/2}$$

$$= 5.73 x 10^{-2} x (1 + 0.0457 x 71.522 ft/s)^{1/2}$$

$$= 0.118$$

$$U(z) = 71.522 m/s x [1 + 0.118 x \ln\left(\frac{18.281 ft}{32.8}\right)]$$

$$= 66.588 ft/s$$

$$I_u(z) = 0.06x \left[1 + 0.0131x U_0\right] x \left(\frac{z}{32.8}\right)^{-0.22}$$

= 0.06x [1 + 0.0131x 71.522 ft/s] x $\left(\frac{18.281 ft}{32.8}\right)^{-0.22}$
= 0.132 ft/s

$$u(z,t) = 66.588 ft/s x [1 - 0.41] x 0.132 ft/s x ln \left(\frac{60 s}{3600 s}\right)$$
$$= 81.343 ft/s$$
$$= 24.79 m/s$$

Wind Speed and Force Relationship

The wind drag force on object should be calculated as:

F =
$$\left(\frac{\rho}{2}\right) u^2 C_S A$$

= $\left(\frac{1.22 \text{ kg/m3}}{2}\right) (24.79 \text{ m/s})^2 (1.0) (24.10)$
= **7.7 kN**

 $C_S = Overall \ project \ area \ platform = 1$

A = 2
$$\pi$$
 rh
= 2 π x 0.584 m x 5.595 m
= 20.53 m²

Wave Load

Based on American Petroleum Institute (API), the drag coefficient, C_D and inertia coefficient, C_m are according to the following:

Table 3.3: Drag coefficient and inertia coefficient

	Drag Coefficient, C _D	Inertia Coefficient, C _m
Smooth	0.65	1.6
Rough	1.05	1.2

The wave load **above** sea water level was considered as rough:

$$F_{w} = C_{d} \frac{W}{2g} AU|U| + C_{m} \frac{W}{g} V \frac{dU}{dt}$$

$$= 1.05 \left(\frac{10100}{2 \times 9.81}\right) (1.168) (0.75) |0.75| + 1.2 \left(\frac{10100}{9.81}\right) \left[\frac{\pi (1.168)^2}{4}\right] \left[\frac{0.75}{100 \times 365 \times 24 \times 60 \times 60}\right]$$
$$= 355.12 \text{ N/m}$$

While the wave load **below** sea water level was considered as smooth:

$$F_{w} = C_{d} \frac{W}{2g} AU|U| + C_{m} \frac{W}{g} V \frac{dU}{dt}$$

= 0.65 $\left(\frac{10100}{2 \times 9.81}\right) (1.168) (0.75) |0.75| +$
1.6 $\left(\frac{10100}{9.81}\right) \left[\frac{\pi (1.168)^{2}}{4}\right] \left[\frac{0.75}{100 \times 365 \times 24 \times 60 \times 60}\right]$
= **219.84 N/m**

Current Load

In order to calculate the current force on the structural members, no wave conditions need to be applied, by substitute the $\frac{\delta U}{\delta t} = 0$.

$$F_{c} = C_{d} \frac{w}{2g} AU|U|$$

= 0.65 $\left(\frac{10100}{2 \times 9.81}\right)$ (1.168)(0.75)|0.75|
= **219.84 N/m**

Design for Restrained Beam

Beam Load:

Level 5

Self-weight =
$$(7.697 \times 10^{-8} \frac{\text{kN}}{mm^3}) \times$$

(5.36 x 10⁸mm³)
= 41.29 kN
Load, q = 1.35 (41.29 kN)
= 55.74 kN

Self-weight = $\left(7.697 \times 10^{-8} \frac{\text{kN}}{mm^3}\right) \times$

= 26.94 kN

= 36.37 kN

Load, q = 1.35 (26.94 kN)

 $(3.50 \times 10^8 mm^3)$

17.312 m

I

Level 4

20.848 m

Level 2

Self-weight =
$$\left(7.697 \times 10^{-8} \frac{\text{kN}}{mm^3}\right) \times$$

(1.02 x 10⁹mm³)
= 78.72 kN

Load, q =
$$1.35 (78.72 \text{ kN})$$

= 106.27 kN

Given: Dead loads = $1.132 \text{ MN} \div 4$ (because of four sides) = 283 kNLive loads = $1.150 \text{ MN} \div 4$ = 287.5 kNThus, try, Steel size with **d** = **508 mm**

Self-weight =
$$(7.697 \times 10^{-8} \frac{\text{kN}}{mm^3}) \times (5.36 \times 10^8 mm^3)$$

= 41.29 kN

1) Design

Design load, q = 1.35 Gk + 1.5 Qk + 1.2 EL = 1.35 (283 + 41.29) + 1.5 (287.5) + 1.2 (9.8) = 880.80 kN

Shear force,
$$V_{Ed} = \frac{q}{2}$$

= $\frac{880.80}{2}$
= 440.40 kN

Bending Moment,
$$M_{Ed} = \frac{qL}{8}$$

= $\frac{880.80 (14.142)}{8}$
= 1557.03 kNm

2) Try Section

d = 508 mm	$I = 1.11 \text{ x } 10^9 \text{ mm}^4$	
t = 25 mm	$W_{el} = 4366863 \text{ mm}^3$	
M = 297.75 kg/m	$W_{pl} = 5837433 \text{ mm}^3$	
$A = 37934.73 \text{ mm}^2$	$G = 81000 \text{ N/mm}^2$	
i = 171 mm	$E = 210000 \text{ N/mm}^2$	

3) Design Strength

Referring to Table 3.1, Eurocode 3 (Part 1-1) For steel grade S355, t = 25 mm < 40 mm $f_y = 355 \text{ N/mm}^2$ $f_u = 510 \text{ N/mm}^2$

4) Section Classification

Referring to Table 5.2, Eurocode 3 (Part 1-1)

$$\varepsilon = \sqrt{\frac{235}{f_y}} = 0.81$$

$$\varepsilon^2 = (0.92)^2 = 0.66$$

$$\frac{d}{t} = \frac{508}{25} = 20.32 \quad < \quad 50\varepsilon^2 = 50(0.66) = 33 \quad \frac{d}{t} < 50\varepsilon^2 \text{ Class 1}$$

The section is classified as Class 1 since d/t meets Class 1 standard.

5) Shear Resistance of Section

i. Maximum external design shear force, $V_{Ed} = 440.40$ kN

ii. Shear resistance of the section, $V_{C,Rd}$

$$V_{C,Rd} = V_{Pl,Rd}$$

$$V_{Pl,Rd} = \frac{A_v \binom{f_y}{\sqrt{3}}}{\gamma M_0} = \frac{24150 \binom{355}{\sqrt{3}}}{1.00}$$

$$= 4949768.20 \text{ N}$$

$$= 4949.77 \text{ kN}$$

-
$$\gamma M_0 = 1.00$$
 (Based on EC3: Part 1)
- $f_y = 355 \text{ N/mm}^2$
- $A_v = \frac{2A}{\pi} = \frac{2(37934.73)}{\pi} = 24150 \text{ mm}^2$
~ $A = \pi r_{outer}^2 - \pi r_{inner}^2$
 $= \pi \left(\frac{508}{2}\right)^2 - \pi \left(\frac{508}{2} - 25\right)^2$

iii. Design Check

$$\frac{v_{Ed}}{v_{C,Rd}} = \frac{440.40}{4949.77}$$
$$= 0.09 \le 1.0$$

The section is satisfactory.

1)

6) Bending Moment Resistance of Section

- i. Maximum external design moment, $M_{Ed} = 3114.07$ kNm
- ii. Moment resistance for Class 1 cross section, M_{C,Rd}

$$M_{C,Rd} = M_{Pl,Rd}$$

$$M_{Pl,Rd} = \frac{W_{Pl}(f_y)}{\gamma M_0} = \frac{5837433 (355)}{1.00}$$

$$M_{Pl,Rd} = 2072288715 \text{ Nmm}$$

$$= 2072.29 \text{ kNm}$$

$$- W_{Pl} = 5837433 \text{ mm}^3$$

$$- f_y = 355 \text{ N/mm}^2$$

$$- \gamma M_0 = 1.00 \text{ (Based on EC3: Part)}$$

iii. Design Check

$$\frac{M_{Ed}}{M_{C,Rd}} = \frac{1557.03}{2072.29} \\ = 0.75 \le 1.0$$

The section is satisfactory.

7) Combined Bending and Shear Resistance

Consider a section where moment is maximum, referring to Shear Force and Moment diagrams, the mid-span section where $M_{Ed} = 3114.07$ kNm and $V_{Ed} = 440.40$ kN is considered.

- a) Shear force at maximum moment, $V_{Ed} = 440.40$ kN
- b) $0.5 V_{C,Rd} = 0.5 (4949.77)$

$$= 2474.89 \text{ kN}$$

c) Since $V_{Ed} < 0.5 V_{C,Rd}$

The shear, V_{Ed} is small and it does not affect the moment resistance, $M_{C,Rd}$. The beam section is able to carry the most critical combination of bending and shear. No reduction

in the design strength of the steel, f_y and the design moment resistance remains, $M_{C,Rd} = 3114.07$ kNm.

Design for Column

Design Bending Moments due to eccentricities

Nominal Moment at Level 4

$$M_{2,Ed} = F_{1,d}(\frac{h}{2} + 100) = 109.75 \text{ kN x} \left(\frac{1168}{2} + 100\right) \text{mm} = 75.07 \text{ kNm}$$

Distributed Moment at Level 4

Column bending stiffness k = EI/L

Based on table 5, Hence $k_1 = 9.25 \times 10^{10}$, and $k_2 = 1.03 \times 10^{11}$

 $M_{Ed} = 75.07 \text{ x } \frac{9.25 \text{ x } 10^{10}}{(9.25 \text{ x } 10^{10}) + (1.03 \text{ x } 10^{11})} = 35.52 \text{ kNm}$

Section Properties

Try section d = 1168 mm, t =13 mm CHS in grade S355

d = 1168 mm	$I = 7.867 \text{ x } 10^9 \text{ mm}^4$		
t = 13 mm	$W_{el} = 13470737 \ mm^3$		
M = 370.25 kg/m	$W_{pl} = 17343057 \ mm^3$		
$A = 47171.01 \text{ mm}^2$	$I_t = 1.573 \ x \ 10^{10} \ mm^4$		
i = 408.38 mm	$E = 210000 \text{ N/mm}^2$		
$G = 81000 \text{ N/mm}^2$			

By referring to Table 3.1, Eurocode 3 (Part 1-1)

For steel grade S355, t = 13 mm < 40 mm $f_y = 355 \text{ N/mm}^2$ $f_u = 510 \text{ N/mm}^2$

Partial factors for resistance

$$\gamma M_0 = 1.0, \qquad \gamma M_1 = 1.0$$

Classification of Cross Section

By referring to Table 5.2 (Sheet 3 of 3), Eurocode 3 (Part 1-1)

$$\varepsilon = \sqrt{\frac{235}{f_y}} = 0.81$$

Class I:	$d/t \leq 50\epsilon^2$,	$89.85 > 50(0.81)^2 = 32.81$
Class II:	$d/t \leq 70\epsilon^2$,	$89.85 > 70(0.81)^2 = 45.93$
Class III:	$d/t \leq 90\epsilon^2$,	$89.85 > 90(0.81)^2 = 59.05$

Therefore, this section is classified as **Class IV** as d/t doesn't meets the Class III standard.

Minimum Buckling Resistance, N_{min,b,Rd}

 $N_{\min,b,Rd} = \frac{\chi A f_y}{\gamma M_1}$

Column Slenderness

 $\lambda_1 = 93.9\epsilon = 93.9 \ x \ 0.81 = 76.06$

Buckling Length, $L_{cr} = 0.7L = 0.7(17853.94)mm = 12497.76 mm$

$$\bar{\lambda} = \left(\frac{L_{cr}}{i_y}\right) \left(\frac{1}{\lambda_1}\right) = \left(\frac{12497.76}{408.38}\right) \left(\frac{1}{76.06}\right) = 0.40$$

Column Imperfection

By referring to Table 6.2 & 6.1, Eurocode 3 (Part 1-1): Table 6.2: Curve 'a' Table 6.1: Buckling curve 'a'} $\alpha_y = 0.21$

Reduction Factor

$$\Phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2\right) + \overline{\lambda}^2\right]$$

= 0.5 [1 + 0.21 (0.40 - 0.2) + 0.40²] = 0.60

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 + \bar{\lambda}^2}} \le 1.0$$
$$= \frac{1}{0.60 + \sqrt{0.60^2 - 0.40^2}}$$
$$= 0.76$$

Minimum Buckling Resistance

N_{min,,b,Rd} $= \frac{\chi A f_y}{\gamma M_1}$ $= \frac{0.76 \times 47171.01 \times 355}{1.00} = 12726.74 \text{ kN}$

Section Resistance, M_{z,b,Rd}

 $M_{z,b,Rd} = \frac{W_{pl,z}f_y}{\gamma M_0} = \frac{17343057 \text{ x} 355}{1.0} = 6156.79 \text{ kNm}$

Interaction Equation

$$\frac{N_{Ed}}{N_{\min,b,Rd}} + \frac{M_{Ed}}{M_{y,b,Rd}} + \frac{1.5M_{Ed}}{M_{z,b,Rd}} < 1.0$$

:. For the Lateral Torsional Buckling Resistance, $M_{y,b,Rd}$ of the circular hollow section, it doesn't required to determine in accordance to EC3-Part 1, Clause 6.3.2.1.

$$\frac{1003.84}{12726.74} + \frac{1.5(35.52)}{6156.79} = 0.09 < 1.0$$

∴ This section size with diameter of 1168 mm and thickness of 13 mm CHS is satisfactory for the design, while select a smaller section will result in more economical and compact design.

Design for Truss Member

- Green colour arrow indicated the environmental load (wind loads, wave load and current load)
- Blue colour arrow indicated the reaction forces

Truss Member	Internal Force (kN)	Type of Force
Α	26.88	Compression
В	11.33	Tension
С	960.61	Compression
D	872.81	Compression
Ε	883.51	Compression
F	1003.84	Compression
G	8.72	Tension
Н	23.92	Compression
Ι	131.58	Compression
J	15.05	Compression
К	109.75	Compression
L	3.37	Tension
Μ	33.96	Tension
Ν	96.11	Compression
0	92.70	Tension
Р	83.71	Tension
Q	122.67	Compression

Table: Internal Forces

*Yellow rows indicated the critical truss members in tension and compression

Design of tension member with single angle section

The maximum design tension force among the truss members is truss member O, $N_{ed(o)} = 92.70$ kN. Thus, Tension force, $N_{ed} = 92.70$ kN

Tension resistance, N_{t,Rd}

Try CHS d=610 mm, t= 13 mm of steel grade S355,

A= 24381.90 mm², i= 211.12 mm

Design strength, fy (Table 3.1):

t= 13 mm < 40 mm, steel grade S355, f_y = 355 N/mm², f_u = 510 N/mm²

In this case, there is no hole for the bolts, hence no reduction in the cross sectional of the angle section.

The design tension resistance $N_{t,Rd}$ should be taken as smaller of:

i. The design plastic resistance of the gross cross-section

$$N_{pl,Rd} = \frac{Af_y}{\gamma_{M0}} = \frac{(24381.90 \text{ mm}^2) (355 \frac{\text{N}}{\text{mm}^2}) \times 10^{-3}}{1.0} = 8655.57 \text{ kN}$$

ii. The design ultimate resistance of the net cross-section

Since there was reduction in the cross section of angle, then

$$A_{\text{net}} = A = 24381.90 \text{ mm}^2$$
$$N_{u,\text{Rd}} = \frac{0.9A_{\text{net}}f_u}{\gamma_{M2}} = \frac{0.9(24381.90 \text{ mm}^2) \left(510 \frac{\text{N}}{\text{mm}^2}\right) \times 10^{-3}}{1.25} = 8953.03 \text{ kN}$$

Therefore, $N_{t,Rd} = 8655.57 \text{ kN}$

Check for equilibrium:

$$\frac{\mathbf{N_{ed}}}{\mathbf{N_{t,Rd}}} = \frac{92.70 \text{ kN}}{8655.57 \text{ kN}} = \mathbf{0.01} < 1.0$$

The section is **suitable** to carry the force.

Design of the critical compression member with single angle section

The maximum design compression force in among the members is $N_{ed(F)} = 1003.84$ kN. But we assumed member F as column member, thus we used member P to carry out truss design. The maximum design compression force in truss member J, $N_{ed(J)} = 15.05$ kN. Thus, axial compression force, $N_{ed} = 15.05$ kN

Try CHS d=559 mm, t= 19 mm of steel grade S355, length of member P= 22384.67 mm

A= 32232.74mm², i= 191.04 mm

Material properties, Clause 3.2.1

Table 3.1: Steel grade S355, t= 19 mm < 40 mm, f_y = 355 N/mm², f_u = 510 N/mm², $\epsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$

Classification of Cross section

$$\frac{d}{t} = \frac{559 \text{ mm}}{19 \text{ mm}} = 29.42$$

50 \varepsilon^2 = 50 (0.81)^2 = 32.81 > d/t = 29.42, class 1

Thus, section is **class 1**.

Partial factors of resistance, Clause 6.1

 $\gamma_{M0} = 1.0 \qquad \gamma_{M1} = 1.0$

Buckling resistance about the axis, $N_{b,Rd}(\mbox{Clause 6.3.1 EC3})$

$$N_{b,Rd} = \frac{XAf_y}{\gamma_{M1}}$$

Where

$$L_{cr} = 0.7L = 0.7 (22384.67 \text{ mm}) = 15669.27 \text{ mm}$$

$$\overline{\lambda} = \frac{L_{cr}}{93.9 \,\epsilon \, x \, i} = \frac{15669.27}{93.9 \, (0.81) x \, 191.04} = 1.08$$

From Table 6.2, for hollow sections, hot finished, Steel grade S355, buckling curve = a From Table 6.1, for buckling curve 'a', imperfection factor, $\alpha = 0.21$

$$\begin{split} \phi &= 0.5[1 + \alpha \left(\bar{\lambda} - 0.2\right) + \bar{\lambda}^2] \\ &= 0.5[1 + 0.21(1.08 - 0.2) + 1.08^2] \\ &= 1.18 \\ X &= \frac{1}{\phi + \sqrt{\phi^2 - \lambda^2}} = \frac{1}{1.18 + \sqrt{1.18^2 - 1.08^2}} = 0.60 < 1.0 \\ N_{b,Rd} &= \frac{XAf_y}{\gamma_{M1}} = \frac{(0.60)(32232.74)(355) \times 10^{-3}}{1.0} = 6865.57 \text{ kN} \end{split}$$

Check for equilibrium

 $\frac{N_{ed}}{N_{b,Rd}} = \frac{15.05 \text{ kN}}{6865.57 \text{ kN}} = 0.002 < 1.0$

The section is **suitable** to carry the force.

Full section resistance of Compression Member, N_{cRd} (Clause 6.2.4 EC3)

$$N_{c,Rd} = \frac{Af_y}{\gamma M_0} = \frac{(32232.74)(355)x \, 10^{-3}}{1.0} = 11442.62 \text{ kN}$$

Check for equilibrium

 $\frac{\mathbf{N_{ed}}}{\mathbf{N_{c,Rd}}} = \frac{15.05 \text{ kN}}{11442.62 \text{ kN}} = \mathbf{0.001} < 1.0$

The section was **suitable** to carry the force.

Design for Joint

Try column section (Member C): CHS $d_0=1168$ mm, $t_0=13$ mm of steel grade S355; Truss section (Member M): CHS $d_1=559$ mm, $t_1=13$ mm of steel grade S355,

Design strength, f_y (Table 3.1):

 $t < 40 \mbox{ mm},$ steel grade S355, $f_y = 355 \mbox{ N/mm}^2, \ f_u = 510 \mbox{ N/mm}^2$

Design force of welded joints between CHS braces members and CHS chords

 $N_{Ed} = 33.96 \text{ kN}$

Design axial resistances of welded joints between CHS brace members and CHS chords

$$N_{i,Rd} = \frac{f_{y0}}{\sqrt{3}} t_0 \pi d_1 \frac{1 + \sin\theta_1}{2\sin^2\theta_1} / \gamma_{M5}$$
$$= \frac{355}{\sqrt{3}} (13) (\pi) (559) (\frac{1 + \sin 41^\circ}{2\sin^2 41^\circ}) / 1.0$$
$$= 9001.87 \text{ kN}$$

 $N_{Ed} < N_{i,Rd}$, Ok.

Design resistances moments of welded joints between CHS brace members and CHS chords

$$M_{1p,1,Rd} = \frac{f_{y0}t_0d_1^2}{\sqrt{3}} \frac{1+3\sin\theta_1}{4\sin^2\theta_1} / \gamma_{M5}$$
$$= \frac{(355)(13)(559)^2}{\sqrt{3}} \frac{1+3\sin41^\circ}{4\sin^241^\circ} / 1.0$$
$$= 1435.42 \text{ kN}$$