
                             VOL. 10, NO. 23, DECEMBER 2015                                                                                                            ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
17479 

ENHANCED FACE RECOGNITION METHOD PERFORMANCE ON 

ANDROID vs WINDOWS PLATFORM 

 
Mohammed Hayyan ALSIBA

1
, Hadi Bin Manap

1
 and Abdul Adam Bin Abdullah

2
 

1Faculty of Engineering Technology, University Malaysia Pahang, Gambang, Kuantan, Malaysia 
2Automotive Engineering Centre, University Malaysia Pahang, Pekan, Malaysia 

E-Mail: mhdhayyan@gmail.com 

 
ABSTRACT  

Android is becoming one of the most popular operating systems on smartphones, tablet computers and similar 

mobile devices. With the quick development in mobile device specifications, it is worthy to think about mobile devices as 

current or - at least - near future replacement of personal computers. This paper presents an enhanced face recognition 

method. The method is tested on two different platforms using Windows and Android operating systems. This is done to 

evaluate the method and to compare the platforms. The platforms are compared according to two factors: development 

simplicity and performance. The target is evaluating the possibility of replacing personal computers using Windows 

operating system by mobile devices using Android operating system. Face recognition has been chosen because of the 

relatively high computing cost of image processing and pattern recognition applications comparing with other applications. 

The experiment results show acceptable performance of the method on Android platform.  

 
Keywords: face recognition, OpenCV, android, image processing, pattern recognition.  

 

INTRODUCTION  

Face recognition studies are very popular among 

image processing and pattern recognition researchers. The 

wide range of applications include: biometrics, 

Information security, access control, law enforcement, 

smart cards and surveillance system [1]. One of the most 

important merits of using face is that it is as any 

individual’s biological traits cannot be misplaced, 
forgotten, stolen or forged. 

Face recognition is not easy if compared to other 

dissimilar object recognition. The difficulty occurs 

because faces appear to be roughly alike and the 

differences among them are quite difficult to be 

recognized using traditional pattern recognition techniques 

[2]. There are many factors that cause the appearance of 

the face to vary. Examples include: age, facial expression, 

facial paraphernalia, ethnicity and gender. Other factors 

are related to image environment, like night vision, 

uncontrolled illumination, pose, scale and imaging 

parameters (e.g., resolution, focus, imaging, noise, etc.) 

Studies showed that age variations, illumination variations 

and pose variations are three major problems plaguing 

current face recognition systems [2, 3, 4, and 5]. 

Applying face recognition algorithms in real-time 

is dependent on the algorithm itself and the device or 

platform to be applied on. Android is an operating system 

(OS) based on the Linux kernel and currently developed 

by Google for mobile devices. Android was unveiled in 

2007. It is designed primarily for touchscreen mobile 

devices such as smartphones and tablet computers. It is 

also used in game consoles, digital cameras, regular PCs, 

and other electronics. According to surveys of 2015, 

Android has the largest installed base of all operating 

systems [6]. Android apps are usually developed in Java 

programming language using the Android software 

development kit (SDK). Android SDK includes a set of 

development tools, like debugger, libraries, a handset 

emulator, documentation, sample code, and tutorials. Until 

around the end of 2014, the officially supported IDE was 

Eclipse using the Android Development Tools (ADT) 

Plugin. At the beginning of 2015, “Android Studio” 
became the official IDE [7]. Actually, developers are free 

to use any text editor to edit Java and XML files, then use 

command line tools to create, build and debug Android 

applications. The necessary requirements are only Java 

Development Kit and Apache Ant. In this paper we use 

Eclipse with ADT Plugin.  

OpenCV is an open source computer vision and 

machine learning software library. It provides C++, C, 

Python and Java interfaces and it is designed to be run in 

multiplatform: Linux, Mac, Android and Windows OS. 

OpenCV provides three methods of face recognition: 

Eigenfaces, Fisherfaces and Local Binary Patterns 

Histograms (LBPH). Eigenfaces and Fisherfaces find a 

mathematical description of the most dominant features of 

the training set as a whole.  

In this paper we use an enhanced version of the 

LBPH algorithm which analyzes each face in the training 

set separately and independently. The LBPH algorithm, 

which is implemented by OpenCV, is combined with 

Histogram of Oriented Gradients (HOG) method to 

enhance the face recognition. The new method is tested on 

two different platforms for evaluation and comparison 

purposes. To compare the platforms we focus on two 

factors: development simplicity and performance. To 

evaluate development simplicity, the procedure needed by 

developers for applying the method on both platforms is 

compared. To evaluate performance, the recognition 

statistics and processing time for applying the method on 

both platforms is compared too. 

 

LITRATURE REVIEW 

Many researchers have worked on face 

recognition. Useful information can be found in review 

http://www.arpnjournals.com/
mailto:mhdhayyan@gmail.com


                             VOL. 10, NO. 23, DECEMBER 2015                                                                                                            ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
17480 

papers like [3]. Results of most of the papers show that 

robust face recognition in uncontrolled illumination 

environment is still one of the unsolved challenges. There 

are two main approaches for pattern recognition in 

general: geometric feature-based descriptors and 

appearance-based descriptors. Geometric descriptors can 

be hard to extract reliably under variations in facial 

appearance and difficult lighting conditions. On the other 

hand, appearance-based descriptors tend to blur out small 

details. Most of the researchers use methods derived from 

Local Binary Patterns (LBP) or Edge Orientation 

Histogram (EOH) for Feature extraction [4, 5]. 

Very few researchers applied their algorithms on 

Android platforms using Android apps. Recently, the use 

of process virtual machine (VM) Dalvik, which was 

replaced later by Android Runtime (ART) [7], allows the 

Android products especially the industrial products to 

increase quickly. The VM allows developers to ignore the 

difference of hardware. This means that applications can 

be run on all devices using Android OS without any 

modification. Because of his improvement in the 

developing environment, Android platform is started to be 

used by researchers to build scientific applications. 

Consequently, many computer vision algorithms might be 

implemented on the android based devices. Face detection 

is a fundamental human-computer interaction technique to 

be applied. But researchers in some publications like [8], 

stated that “Due to the performance limit on the mobile 
devices, complex face detection process must be avoided 

in order to generate a fast detection”. They proposed a 
method to enhance the detection rates and reduce the 

running time by applying ordered priority orientation 

algorithm.  

Another problem is the power limitations that 

mobile devices exhibit. Researchers suggested cloud 

computing as a solution by making computations offline 

on the “cloud”. Thus reducing the power consumption on 
the device and allowing more elaborate and accurate 

algorithms to be performed on the server [9].  

The Authors in [8, 9] did not mention any 

information about the specification of the devices and 

systems used. It is expected that the devices used are not 

of high performance specifications.  

In [10] the authors designed and implemented a 

real-time object recognition system based on Android 

mobile device to assist car drivers for safety driving. It 

depends on lane line detection and safety distances 

monitoring with the vehicles in front. The fps was 0.46 

when they used HTC hero mobile phone. They mentioned 

that if their system is running on HTC Incredible mobile 

phone, the fps could achieve 2.06. HTC hero was released 

in 2009 and it has a 528 MHz ARM 11 CPU and 288 MB 

RAM [11]. The HTC Incredible was released in 2011 with 

1 GHz Scorpion CPU and 768 MB RAM [11]. From the 

experimental results, they concluded that the application 

can be applied on the mobile phones easily and can work 

smoothly. Even though the application is not as complex 

and time costing as face recognition applications, but the 

mobile devices are improving very quickly and having 

increasing number of sensors and processing power.  

In [12], authors implemented an improved 

algorithm of visual background extractor (Vibe) based on 

Android platform with OpenCV. Experiment results on 

Nexus7 device, showed that their algorithm is applicable 

in real-time with acceptable performance. Nexus7 has 

Quad-core 1.2 GHz Cortex-A9 CPU and 1 GB RAM [11]. 

The paper concluded that although mobile platform 

performance of motion detection still has a large disparity 

with personal computer, but with this work, the computer 

vision algorithm will transplant into the Android system 

more easily, and with the developing of mobile platform 

and higher performance provided in the future, the 

performance of computer vision algorithm on Android 

device will become as on computers. Their application is 

built with Java code and it calls algorithm written in 

C/C++ code to be compiled with Android NDK by using 

Java Native Interface (JNI). 

 

FACE RECOGNITION METHODOLOGY 
In this research we propose a new face 

recognition method using enhanced LBPH algorithm. 

OpenCV 2.4 Provides a newer FaceRecognizer class for 

face recognition. The currently available algorithms are 

Eigenfaces, Fisherfaces, and Local Binary Patterns 

Histograms LBPH. We built our method by modifying the 

OpenCV version of LBPH.  

LBPH itself is a modified version of LBP which 

is one of the best performing texture descriptors and 

widely used in various applications. LBP was first 

described in 1994 [16, 17]. The algorithm considers the 

central pixel value of a 3 x 3 neighborhood as a threshold 

value. Then it labels the result of applying the threshold on 

the surrounding pixels as a binary number (0 or 1). Figure-

1 shows an example of applying the algorithm. The binary 

numbers are then converted to a local value by converting 

it to a decimal number according to the weights in Figure-

2. The histogram of the labels can then be used as a texture 

descriptor.  

Ahonen T. and Pietik̈inen M. [18] suggested to 
extend the basic histogram into a spatially enhanced 

histogram which encodes both the appearance and the 

spatial relations of (m) facial regions. The histogram is 

computed independently within each of the (m) regions 

generating (m) histograms. The spatially enhanced 

histogram gives a description of the face on three different 

levels of locality: The LBP labels for the histogram 

contain information about the patterns on a pixel-level, the 

labels are summed over a small region to produce 

information on a regional level, and the regional 

histograms are concatenated to build a global description 

of the face [18]. It is not necessary to have rectangular 

regions and not even necessary to have the same size or 

shape of each region. Human face can be considered as a 

composition of multi-patterns. LBP can be one of the best 

algorithms for face recognition if the facial image is 

divided into local regions and texture descriptors are 

extracted from each region independently.  

http://www.arpnjournals.com/


                             VOL. 10, NO. 23, DECEMBER 2015                                                                                                            ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
17481 

 
 

Figure-1. Example of applying LBP on a 3 x 3 

neighborhood pixels. 

 

 
Figure-2. Binary number multiplication weight. 

 

Following the procedure of Heisele et al. [19] we 

can automatically detect each region in the image instead 

of detecting the face and then using a fixed division into 

regions. Some facial features, such as eyes, play more 

important roles in recognition. Therefore, regions can be 

weighted based on the importance of the information they 

contain. For example, the weighted Chi square distance 

can be defined as in Equation (1) [18]: 
 

      (1) 
 

where x and  are the normalized enhanced 

histograms to be compared, indices i and j refer to i
th

 bin in 

the histogram corresponding to the j
th

 local region and j 

is the weight for region j.  

In this paper we suggest adding Histogram of 

Oriented Gradients (HOG) descriptors [20] to extend the 

histograms. HOG descriptors showed a significant 

enhancement for other applications like in [21]. HOG 

features are calculated by Equation (2): 
 

)1,()1,(),(:,

),1(),1(),(:,



yxIyxIyxgyx

yxIyxIyxgyx

y

x

     (2) 

where ),( yxg x and ),( yxg y denotes the x and y 

components of the image gradient, respectively.  

The magnitude ),( yxm  and orientation 

),( yx  of the image gradient are calculated by Equation 

(3): 
 

)),(/),((tan),(

),(),(),(

1

22

yxgyxgyx

yxgyxgyxm

xy

yx






       (3) 

 

Unsigned orientation of the image gradient 

suggested by Dalal et al. [20] is used as in Equation (4): 
 



 


otherwise),(

0),(if),(
),(

yx

yxyx
yx





       (4) 

 

 

 

 

 

PLATFORM SPECIFICATIONS 

To compare the development simplicity and 

performance we tested our enhanced LPBH algorithm on 

two different platforms: 

  

 Windows7 OS and visual studio IDE platform: 

We applied the program on HP – probook with 

Intel core i5 CPU and 4GB RAM. Figure-3 (a), 

(b) and (c) show the GUI interface of the 

application. The application provides three 

interfacing forms. The first one is for building the 

database information of faces to be recognized. 

The second form is for assigning face images 

with the saved database records. The third form is 

the testing form where the application matches an 

input face image with the images in the database 

to recognize the person. The program allows two 

ways for inputting face images: a camera or a 

stored image on the hard disk. 
 

 
(a) 

 

 
(b) 

http://www.arpnjournals.com/


                             VOL. 10, NO. 23, DECEMBER 2015                                                                                                            ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
17482 

 
(c) 

 

Figure-3. The GUI interface of the application developed 

for Windows 7 OS using visual studio IDE platform. 

 

 Android 4.4.2 OS and Eclipse IDE with Android 

SDK platform: We applied the program on Asus 

fonepad 7 with Intel Atom Z2520 CPU and 2GB 

RAM. Figure-4 (a), (b) and (c) show the GUI 

interface of the Android app. The app provides 

three interfacing screens. The first one is for 

database building, where user can capture a face 

image and assign a name to it. The second is to 

show the database of faces and their assigned 

names. The third screen is for testing, where the 

application matches an input face image with the 

images in the database to recognize the person. 
 

 
(a) 

 

 
(b) 

 
(c) 

 

Figure-4. The GUI interface of the android app developed 

for Android 4.4.2 OS using eclipse IDE platform. 

 

DEVELOPMENT SIMPLICITY COMPARISON 

In this section we compare the procedure needed 

by developers to build a program for applying the method 

on both platforms. 

 

Using OpenCV library on Windows OS 

OpenCV has more than 2500 algorithms. The 

algorithms can be used for many applications like face 

detection, objects recognition, tracking, 3D models of 

objects extracting and eye movement following. The 

easiest way to use OpenCV under Windows OS is to 

install it from the official website [13]. The website 

provides a full documentation on how to install and use 

OpenCV in different platforms [14]. To use the OpenCV 

library there are two options [15]: Installation by Using the 

Pre-built Libraries and Installation by Making Own 

Libraries from the Source Files. We used the first option 

because it is easier to complete. After having the OpenCV 

directory that contains the OpenCV header files plus 

binaries, environment variables should be added to the 

systems path. The OpenCV libraries are distributed on the 

Microsoft Windows OS in a Dynamic Linked Libraries 

(DLL). Therefore, the content of the library are loaded at 

runtime. Another advantage is that many programs can use 

the same library file at the same time.  

In this paper Visual Studio Integrated 

Development Environment (IDE) is used. To build an 

application with OpenCV two things should be done: 

Show to the compiler the header files and tell the linker 

from where to get the functions or data structures of 

OpenCV, when they are needed. The linker in Windows 

OS needs to know where is the DLL to search for the data 

structure or function at the runtime. This information is 

stored inside “.lib” files which are import libraries. To 
pass on all this information to the Visual Studio IDE we 

can do it globally to allow all projects to get this 

information. This is done in global property sheet, which 

is automatically added to every created project, by adding 

the include directories using the environment variable 

OPENCV_DIR [14]. 

http://www.arpnjournals.com/


                             VOL. 10, NO. 23, DECEMBER 2015                                                                                                            ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
17483 

In case of using Eclipse, only the CDT plugin for 

C/C++ is needed. Then it is important to tell OpenCV 

where the OpenCV headers and libraries are. This is done 

in Project properties by adding the path to the folder where 

OpenCV was installed to “Include paths(-l)” in GCC “C++ 
Compiler” / “Includes”, and the path to where the openCV 
libraries reside to “Library search path (-L)” in “GCC C++ 

Linker”. Then in “Libraries(-l)” we add the needed 

OpenCV libraries [14]. 

In general, configuring OpenCV on Windows, 

Mac or Linux OS using any C++ IDE is not a complicated 

task. This is because OpenCV is written in C++ and its 

primary interface is in C++. 

 

Using OpenCV library as a native android module 
As mentioned previously, OpenCV is written 

natively in C++. But since version 2.4.4 it started to 

supports Java. Furthermore, it has a template interface 

which works smoothly with Standard Template Library 

(STL) containers. The Android way is writing all code in 

Java [7]. Even though OpenCV started to supports Java, it 

is not enough and it is needed to go to a native level and 

write part of the application in C/C++. Furthermore, 

sometimes it is useful to reuse a functionality which is 

written in C++ and uses OpenCV without having to 

rewrite the C++ code in Java.  

To develop an application with OpenCV on 

Android OS using JNI, the following software should be 

installed: 

1. JDK (Java Development Kit) and JRE (Java SE 

Runtime Environment). 

2. Android SDK (Software Development Kit) and the 

following components: Android SDK Tools, revision 

20 or newer and SDK Platform Android 3.0 (API 11). 

These components are downloaded using Android 

SDK Manager. 

3. Eclipse IDE. 

4. Native Development Kit (NDK). 

5. Android Development Tools (ADT) and C/C++ 

Development Tooling (CDT) plugins for Eclipse. 

6. OpenCV4Android Software Development Kit (SDK) 

which enables development of Android applications 

with use of OpenCV library. 

7. It is good to have Android Virtual Device (AVD) 

which is an emulator configuration for modelling 

actual devices. It allows developers to define 

hardware and software options to be emulated by the 

Android Emulator. AVD can be created using AVD 

Manager. 

8. OpenCV Manager to be installed on the device that 

will use the OpenCV application. OpenCV Manager 

is an Android service for managing OpenCV library 

binaries on end users devices. 

 

CONCLUSIONS 
As we can see the application in Android OS 

using OpenCv is a mixed-programming which involves 

C/C++ and Java. The native code is written with JNI and 

Android NDK is used to compile it. This makes the 

configuration of OpenCV on Android OS more 

complicated comparing with other OSs. The detailed 

configuration steps can be found on: 

http://docs.opencv.org/doc/tutorials/introduction/android_

binary_package/android_dev_intro.html (Last visited on 

August, 2015). 

 

PERFORMANCE COMPARISON 

 

Experiment details 
Same recognition algorithm is applied on both 

platforms. The captured images are processed as 

following: Firstly the image is tested to detect a face. Face 

detection is done automatically using Paul Viola and 

Michael Jones Haar feature-based cascade classifiers [22]. 

It is a machine learning based approach where a cascade 

function is trained from a lot of positive and negative 

images. It is then used to detect objects in other images. 

The algorithm needs a lot of positive images (images of 

faces) and negative images (images without faces) to train 

the classifier. OpenCV comes with a trainer as well as 

detector [14]. Moreover, OpenCV already contains many 

pre-trained classifiers for face, eyes and smile. The pre-

training data is provided as XML files which are stored in 

opencv/data/haarcascades/ folder. We only need to load 

the required XML classifiers. Then we load our input 

image (or video) in grayscale mode. The function 

“detectMultiScale()” is then used to find a face. If faces 
are found, the function returns the positions of detected 

faces as “Rect(x,y,w,h)”. Once these locations are 
obtained, a Region Of Interest (ROI) for the face is 

created. Eye detection can be applied on this ROI if 

needed. 

After detecting a face in the captured image, the 

face is extracted to a new cropped image. The extracted 

face image is then normalized to 120 x 120 pixels. The 

enhanced LBPH algorithm described in section 3 is then 

applied to classify the input face to the closest face in the 

database which was built by the user. In both platforms, 

we tested the algorithm on different 4 people with various 

gender and age as shown in Figure-4 (b). Testing 

experiment was done in real-time by capturing 50 different 

inputs for the faces randomly and in random illumination 

situations.  

 

Results 

Table-1 shows the result of applying the original 

LBPH method implemented by OpenCV. Table-2 shows 

the result of applying the proposed enhanced LBPH 

method.  

 

 

 

 

 

 

 

 

http://www.arpnjournals.com/
http://docs.opencv.org/doc/tutorials/introduction/android_binary_package/android_dev_intro.html
http://docs.opencv.org/doc/tutorials/introduction/android_binary_package/android_dev_intro.html


                             VOL. 10, NO. 23, DECEMBER 2015                                                                                                            ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
17484 

Table-1. Recognition results on both platforms using 

normal LBPH. 
 

 
 

Table-2. Recognition results on both platforms using 

enhanced LBPH. 
 

 
 

By comparing the results in Table-1 and Table-2, 

we can see that the enhanced algorithm has improved the 

number of the correctly recognized faces from 39 to 42 on 

Windows platform and from 37 to 40 on Android 

platform. Precision, Recall and F-measure values are 

improved for both platforms. The number of the detected 

faces is not changing because there is no modification in 

detecting algorithm. 

In both tables a comparison between results for 

both platforms is presented. As we can see, the experiment 

results show that the performance of the method on 

Android system is reaching acceptable levels. Precision, 

Recall and F-measure values are very close on both 

platforms. Moreover, there is no big difference in 

processing time although the specification of the windows 

device is better than the specification of the android 

device.  

 

CONCLUSION AND FUTURE WORK 

An enhanced LPBH algorithm was proposed in 

this paper. The algorithm was tested on two different 

platforms using Windows and Android OS. This was done 

to evaluate the method and to compare the platforms. The 

platforms were compared according to development 

simplicity and performance. 

The application in android using OpenCv is a 

mixed-programming which involves C/C++ and Java. The 

native code is written with JNI and Android NDK is used 

to compile it. This makes the configuration of OpenCV on 

Android OS more complicated comparing with other OSs. 

As for performance, according to the experiment 

results, the effectiveness of the method based on Android 

system was verified. Actually, image processing and 

pattern recognition applications performance on 

smartphone platforms are still slower than the performance 

on personal computers. But with the quick development of 

mobile platform, it is expected that higher performance 

devices will be designed in the near future. It is expected 

that the performance of computer vision algorithms on 

Android OS devices will become as efficient as on 

personal computers. Therefore, it is worthy to think about 

smartphones devices as current or - at least - near future 

replacement of personal computers. 

Future work includes improvement of 

classification methods to improve the recognition rate and 

reduce the processing time. Actually, with the current 

recognition rate on both platforms, the algorithm is still 

cannot be considered as robust algorithm for critical 

applications like security applications for example.  

 

REFERENCES 

 

[1] Divyarajsinh N. P. and Brijesh B. M. 2013. Face 

Recognition Methods & Applications. International 

Journal of Computer Technology & Applications. Vol. 

4, No. 1, pp. 84-86. 

 

[2] Jafri R. and Arabnia H. R. 2009. A Survey of Face 

Recognition Techniques. Journal of Information 

Processing Systems. Vol. 5, No. 2, pp. 41-68. 

 

[3] Zhao W., Chellappa R., Phillips P.J. and Rosenfeld A. 

2003. Face recognition: A literature survey. ACM 

computing surveys Vol. 34, No. 4, pp. 399–485. 

 

[4] Valstar M. F., Jiang B., Méhu M., Pantic M. and 

Scherer K. 2011. The first facial expression 

recognition and analysis challenge. In: IEEE 

International Conference of Automatic Face & 

Gesture Recognition (FG 2011). Canada. pp.921 - 

926. 

 

[5] Cheng J., Deng Y., Meng H. and Wang Z. 2013. A 

facial expression based continuous emotional state 

monitoring system with GPU acceleration. In: IEEE 

International Conference of Automatic Face and 

Gesture Recognition (FG 2013). China. p-6. 

 

[6] Manjoo F. 2015. A Murky Road Ahead for Android, 

Despite Market Dominance. The New York Times. 

Available online on: (last visited August, 2015) 

http://www.nytimes.com/2015/05/28/technology/perso

naltech/a-murky-road-ahead-for-android-despite-

market-dominance.html 

http://www.arpnjournals.com/


                             VOL. 10, NO. 23, DECEMBER 2015                                                                                                            ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
17485 

[7] Android M Developer Preview: Online: 

http://developer.android.com/ Last visited on August, 

2015. 

 

[8] Guanghui M., Weiliang M., Shibiao X., and Xiaopeng 

Z. 2013. Rotational Invariant Face Detection On a 

Mobile Device. In International Conference on Virtual 

Reality and Visualization. China. pp. 229 - 232. 

 

[9] Ferzli R. and Khalife I. 2011. Mobile cloud computing 

educational tool for image/video processing 

algorithms. In: Digital Signal Processing Workshop 

and IEEE Signal Processing Education Workshop 

(DSP/SPE). USA. pp. 529 – 533. 

 

[10] Chang K. and Wang K. 2012. Design and 

Implementation of Traffic Safety Guardian System for 

Android Based on OpenCV. In: IEEE International 

Conference on Connected Vehicles and Expo. China. 

pp. 288 - 289. 

 

[11] GSMArena: online: http://www.gsmarena.com/ Last 

visited on August, 2015. 

 

[12] Wenkai W. et al. 2013, An Improved Method of Vibe 

for Motion Detection Based on Android System. In: 

IEEE International Conference on Robotics and 

Biomimetics (ROBIO). China. pp. 2436 – 2440. 

 

[13] OpenCV: online: http://opencv.org/ Last visited on 

August, 2015. 

 

[14] OpenCV 2.4.11.0 documentation: online: 

http://docs.opencv.org/ Last visited on August, 2015. 

 

[15] Bradski G. and Kaehler A. 2008. Learning OpenCV: 

Computer Vision with the OpenCV Library. O’Reilly. 
USA. 

 

[16] Ojala T., Pietikäinen M. and Harwood D. 1994. 

Performance evaluation of texture measures with 

classification based on Kullback discrimination of 

distributions. In the 12
th

 IAPR International 

Conference on Pattern Recognition (ICPR 1994). pp. 

582 - 585. 

 

[17] Ojala T., Pietikäinen M. and Harwood D. 1996. A 

Comparative Study of Texture Measures with 

Classification Based on Feature Distributions. Pattern 

Recognition. Vol. 29, pp. 51-59. 

 

[18] Ahonen T. and Pietik̈inen M. 2006. Face Description 
with Local Binary Patterns: Application to Face 

Recognition. IEEE Transactions on Pattern Analysis 

and Machine Intelligence. Vol. 28, No. 12, pp. 2037 - 

2041. 

 

 

[19] Heisele B., Ho P., Wu J., and Poggio T. 2003. Face 

Recognition: Component-Based versus Global 

Approaches. Compter Vision and Image 

Understanding. Vol. 91, No. 1-2, pp. 6-21. 

 

[20] Dalal N. and Triggs B. 2005. Histograms of oriented 

gradients for human detection. In International 

Conference on Computer Vision & Pattern 

Recognition CVPR2005. San Diego, USA. pp. 886–
893. 

 

[21] Alsibai M. H. and Hirai Y. 2012. Recognition of Blue 

Traffic Signs Enhanced By Aggregating 

Fragmentarily Segmented Sign Images. In 13
th

 

IASTED Int. Conf. on Signal and Image Processing. 

USA pp. 27- 34. 

 

[22] Viola P. and Jones M. 2001. Rapid object detection 

using a boosted cascade of simple features. In the 

2001 IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition, CVPR 

2001. Vol. 1. pp. I-511 - I-518. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

http://www.arpnjournals.com/

