STRENGTH OF SOFT CLAY REINFORCED WITH GROUP CRUSHED POLYPROPYLENE (PP) COLUMNS

NURAINI BINTI YUSUF

Thesis submitted in fulfilment of the requirements for the award of the degree of Bachelor of Civil Engineering

Faculty of Civil Engineering UNIVERSITY MALAYSIA PAHANG

JUNE 2015

ABSTRACT

The use of granular columns as soil reinforcement technique has proved useful in problems of foundation stability and settlement, as well as improving soft clay for foundation construction. The purpose of this study is to investigate the enhancement of shear strength of soft kaolin clay when it is reinforced with group crushed polypropylene (PP) columns. Since PP is a waste material, the cost of soil improvement can be reduced which currently was disposed totally in large quantity into landfill. In order to proceed the study, physical and mechanical properties of materials used that are kaolin (soil sample) and PP (reinforcing columns) must be identify first. Then, consolidated kaolin as soft clay was reinforced with group crushed PP columns, and subsequently tested under Unconfined Compression Test (UCT). A total of 7 batches of kaolin sample including control sample had been tested to identify the shear strength. Each batches involved of four samples to find the average value of maximum stress. The variables used for the columns installation were the column height that are 60 mm, 80 mm and 100 mm, where the column penetrating ratio are 0.6, 0.8 and 1.0 respectively. In addition, different values of columns diameter had been used that are 6 mm and 10 mm for every different height of columns. A total of 28 unconfined compression tests had been conducted on kaolin samples. The kaolin samples had the dimensions of 50 mm in diameter and 100 mm in height. For the group PP reinforcement, shear strength increased about 2.13%, 13.51% and 12.84% for 1.44% area replacement ratio and 6.85%, 14.26% and 13.79% for 4% area replacement ratio at sample penetration ratio 0.6, 0.8, 1.0 respectively. In the other hand, the relationship of the increment of shear strength with the various column penetration ratio show different pattern. The shear strength of both area replacement ratio increases constantly as the column penetrating ratio increased, but after it reach 80mm height of column, the shear strength decrease slightly and this support the 'critical column length' idea. It can be concluded that the shear strength parameters were affected by the diameter and the height of the columns and the presence of PP column greatly improve the shear strength.

ABSTRAK

Penggunaan tiang granular sebagai teknik pengukuhan tanah telah terbukti berguna dalam masalah kestabilan asas dan mendapan, serta memperbaiki tanah liat lembut untuk pembinaan asas. Tujuan kajian ini adalah untuk menyiasat peningkatan kekuatan ricih tanah liat kaolin lembut apabila ia diperkuatkan dengan tiang berkumpulan polipropilena (PP) hancur. Memandangkan PP adalah bahan buangan, kos pembaikan tanah boleh dikurangkan yang kini telah dilupuskan sama sekali dalam kuantiti yang besar ke tapak pelupusan. Untuk meneruskan kajian ini, sifat-sifat fizikal dan mekanikal bahanbahan yang digunakan iaitu kaolin (sampel tanah) dan PP (tiang pengukuhan) mesti dikenal pasti terlebih dahulu. Kemudian, kaolin yang disatukan sebagai tanah liat lembut diperkukuh dengan tiang berkumpulan PP hancur, dan kemudiannya diuji di bawah Ujian Mampatan Tak Terkurung (UCT). Sebanyak 7 kumpulan sampel kaolin termasuk sampel kawalan telah diuji untuk mengenal pasti kekuatan ricih. Setiap kumpulan mempunyai empat sampel untuk mencari nilai purata tekanan maksimum. Pemboleh ubah yang digunakan untuk pemasangan tiang tersebut ialah ketinggian tiang iaitu 60 mm, 80 mm dan 100 mm, di mana nisbah ruang menembusi adalah 0.6, 0.8 dan 1.0. Di samping itu, nilainilai garis pusat tiang yang berbeza telah digunakan iaitu 6 mm dan 10 mm untuk setiap ketinggian tiang yang berbeza. Sebanyak 28 ujian mampatan tak terkurung telah dijalankan ke atas sampel kaolin. Sampel kaolin mempunyai dimensi garis pusat 50 mm dan ketinggian 100 mm. Bagi kumpulan PP tetulang, kekuatan ricih meningkat kira-kira 2.13%, 13.51% dan 12.84% untuk nisbah penggantian kawasan 1.44% dan 6.85%, 14.26% dan 13.79% bagi nisbah penggantian kawasan 4% pada nisbah penembusan sampel 0.6, 0.8, 1.0. Di sisi lain, hubungan antara kenaikan kekuatan ricih dengan pelbagai nisbah penembusan ruangan mempunyai corak yang berbeza. Kekuatan ricih kedua-dua nisbah penggantian kawasan sentiasa meningkat apabila nisbah ruang menembusi meningkat, tetapi selepas ia mencapai ketinggian tiang 80mm, kekuatan ricih menurun sedikit dan ia disokong oleh idea 'panjang tiang kritikal'. Dapat disimpulkan bahawa parameter kekuatan ricih terjejas oleh garis pusat dan ketinggian tiang dan kehadiran tiang PP banyak meningkatkan kekuatan ricih.

TABLE OF CONTENTS

SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENTS	V
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF APPENDICES	xviii
LIST OF SYMBOLS	xix
LIST OF ABBREVIATIONS	xxi

CHAPTER 1 INTRODUCTION

1.1	Background of Research	1
1.2	Problem Statement	5
1.3	Objectives	6
1.4	Scope of Study	6
1.5	Research Significance	8

CHAPTER 2 LITERATURE REVIEW

2.1	Soft Cl	lay	10
	2.1.1	Compressibility and Consolidation	12
	2.1.2	Shear Strength	14
2.2	Polypr	opylene (PP)	16

Page

	2.2.1	Particle Size	17
	2.2.2	Specific Gravity	22
	2.2.2	Compaction	23
	2.2.4	Shear Strength and Tensile Strength	27
	2.2.5	Permeability	30
	2.2.6	Compressibility	31
2.3	Vertica	ıl Granular Column	33
	2.3.1	Shear Strength	34
	2.3.2	Consolidation Around Vertical Granular Column	37
	2.3.3	Stress Strain Behavior	39

CHAPTER 3 METHODOLOGY

3.1	Introdu	iction	43
3.2	Labora	tory Works	45
3.3	Labora	tory Tests For Determination of Physical Properties	46
	3.3.1	Atterberg Limit Test	46
	3.3.2	Specific Gravity Test	48
	3.3.3	Sieve Analysis Test	49
	3.3.4	Hydrometer Test	50
	3.3.5	Relative Density Test	51
3.4	Labora	tory Tests for Determination of mechanical Properties	52
	3.4.1	Standard Compaction Test	53
	3.4.2	Falling Head Permeability Test	54
3.5	Reinfo	rcing Soft Kaolin Clay with Group Crushed PP Columns	56
	3.5.1	Samples Preparation	56
	3.5.2	Installation of PP Columns	58
	3.5.3	Unconfined Compression Test (UCT)	62

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Backgr	round	64
4.2	Physic	al Properties	65
	4.2.1	Atterberg Limit Test	66
	4.2.2	Specific Gravity Test	68
	4.2.3	Particle Size Distribution	69
	4.2.4	Relative Density Test	71
4.3	Mecha	nical Properties	72
	4.3.1	Standard Compaction Test	72
	4.3.2	Falling Head Permeability Test	74
4.4	Reinfo	rcing Soft Kaolin Clay With Group Crushed PP Columns	75
	4.4.1	Effect of PP Columns on shear Strength	75
	4.4.2	The Effect of Area Replacement Ratio	85
	4.4.3	The Effect of Column Penetration Ratio	88

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusion	91
5.2	Recommendation	93
REFERENCES		94
APPENDICES		98
А	Properties of Polypropylene	98
В	Atterberg Limit Test	99
С	Specific Gravity Test	101
D	Sieve Analysis Test	102
E	Hydrometer Test	104
F	Relative Density Test	106
G	Standard Compaction Test	108

Н	Falling Head Permeability Test	110
Ι	Unconfined Compression Test	112

xii

LIST OF TABLES

Table No.	Title	Page
1.1	Consumption rate for different types of plastics resin per day of the respondent companies	4
1.2	Samples with Different Variables	8
2.1	General clay characteristics	12
2.2	Typical value of compression index of different type of soil offered by Prof. Juan M. Pestana-Nascimento	14
2.3	Mechanical properties of the compaction	26
2.4	Range of Saturated Hydraulic Conductivity of Various Soil Material	30
2.5	Permeability value of PP to various gaseous	31
2.6	Comparison of the pressure response of similar semi-crystalline polymers with different volume (room temperature)	32
2.7	Result of Unconfined Compression Test for group columns with different height of columns	42
3.1	Summary of Laboratory Testing Program	45
3.2	Sample with variables of crushed PP installation	59
3.3	Summarization of the area replacement ratio calculations for 100 mm height of column	62
4.1	Basic properties of kaolin clay and PP	65
4.2	Specific gravity value for several type of soils	69
4.3	Type of soil with its unit weight	73
4.4	Permeability coefficient for different soils	74
4.5	Average value of shear strength for controlled sample	76
4.6	Average value of shear strength for reinforced column of 6 mm diameter and 60 mm height	77

4.7	Average value of shear strength for reinforced column of 6 mm diameter and 80 mm height	78
4.8	Average value of shear strength for reinforced column of 6 mm diameter and 100 mm height	79
4.9	Average value of shear strength for reinforced column of 10 mm diameter and 60 mm height	81
4.10	Average value of shear strength for reinforced column of 10 mm diameter and 80 mm height	82
4.11	Average value of shear strength for reinforced column of 10 mm diameter and 100 mm height	83
4.12	Summary of Analysis on Unconfined Compression Test	84
4.13	Effect of area replacement ratio for fully penetrating columns of several studies	86

LIST OF FIGURES

Figure No.	Title	Page
1.1	Installation of granular column	2
1.2	Consumption rate of plastics according to resin types	4
1.3	Unconfined Compression Test (UCT)	7
2.1	Quaternary Sediments in Peninsular Malaysia	11
2.2	The Relationship between Void Ratio, <i>e</i> and Log P for Normally Consolidated and Overconsolidated Soil	13
2.3	Strength of Klang Clay	15
2.4	Crushed PP in pellet form	17
2.5	The Scanning Electron Microscopy photographs of PP powder	18
2.6	Particle size distribution of ELTEX P powders with different grade	19
2.7	Particle size distribution between ELTEX P powder, other commercial powders and group PP pellets	20
2.8	(a) SEM photomicrograph of morphology(b) Particle size distribution of HPP-plastomer blend	21
2.9	(a) SEM photomicrograph of morphology(b) Particle size distribution of HPP-EPR blend	22
2.10	(a) Comparison of specific gravities of fibres(b) 1 kg of PP of equivalent coverage yields 20-41% more yarn than other fibres, giving higher yield for the same weight	23
2.11	Effects on compaction on pore space	24
2.12	Moisture-density curve of soil for a given compactive effort	25
2.13	The effect of PP on shear strength of sand under normal load 28 kPa	29

2.14	The effect of PP on the shear strength of the sand under three different normal loads	29
2.15	Stone Column Installation	33
2.16	Effect of column height over column diameter ratio on undrained shear strength	35
2.17	Column arrangement	36
2.18	Mechanisms of load transfer for (a) rigid pile and (b) a stone column	37
2.19	Consolidation response for a group of columns	38
2.20	Excess pore pressure during consolidation	39
2.21	The variation of deviatoric stress and volumetric strain with axial strain (a) $A_c/A_s=7.9\%$ (b) $A_c/A_s=17.8\%$ (c) $A_c/A_s=31.2\%$	40
3.1	Flowchart of Project Methodology	44
3.2	Cone Penetration Method	47
3.3	Small pycnometers are leaved under vacuum	49
3.4	(a) Sieve shaker (b) Sieve analysis set	50
3.5	Equipment set up for the hydrometer test	51
3.6	Relative Density Test Equipment set up on vibrating table	52
3.7	The typical apparatus of the standard proctor test that are standard compaction mold (left) and standard compaction hammer (right)	54
3.8	The setup of apparatus for falling head test	55
3.9	Preparation of samples using customized mold	57
3.10	Drilling process of specimen	58
3.11	(a) Detailed arrangement of columns for diameter of 6 mm(b) Detailed arrangement of columns for diameter of 10 mm	60

3.12	(a) 2D arrangement of columns with 6 mm diameter of PP column(b) 2D arrangement of columns with 15 mm diameter of PP column	61
3.13	(a) Before installation of PP columns into the kaolin clay(b) After installation of PP columns into the kaolin clay	62
3.14	Equipment set up for unconfined	63
4.1	Graph of penetration versus moisture content for liquid limit test	67
4.2	Plasticity Chart	68
4.3	Particle Size Distribution of Kaolin	70
4.4	Particle Size Distribution of PP	71
4.5	Dry unit weight versus average moisture content of kaolin	73
4.6	Relationship of strain and stress for controlled sample	76
4.7	Relationship of strain and stress for reinforced column of 6 mm diameter and 60 mm height	78
4.8	Relationship of strain and stress for reinforced column of 6 mm diameter and 80 mm height	79
4.9	Relationship of strain and stress for reinforced column of 6 mm diameter and 100 mm height	80
4.10	Relationship of strain and stress for reinforced column of 10 mm diameter and 60 mm height	81
4.11	Relationship of strain and stress for reinforced column of 10 mm diameter and 80 mm height	82
4.12	Relationship of strain and stress for reinforced column of 10 mm diameter and 100 mm height	83
4.13	Improvement of shear strength versus area replacement ratio, A_c/A_s	85
4.14	Relationship of strain and stress for reinforced column of 6 mm diameter with 60 mm, 80 mm and 100 mm height	87

4.15	Relationship of strain and stress for reinforced column of 10 mm diameter with 60 mm, 80 mm and 100 mm height	87
4.16	Improvement of shear strength versus column penetration ratio, H_c/H_s	88
4.17	Relationship of strain and stress for reinforced column of 6 mm and 10 mm diameter with 60 mm height	89
4.18	Relationship of strain and stress for reinforced column of 6 mm and 10 mm diameter with 80 mm height	90
4.19	Relationship of strain and stress for reinforced column of 6 mm and 10 mm diameter with 100 mm height	90

LIST OF APPENDICES

Appendix	Title	Page
А	Properties of Polypropylene	98
В	Atterberg Limit Test	99
C	Specific Gravity Test	101
D	Sieve Analysis Test	102
E	Hydrometer Test	104
F	Relative Density Test	106
G	Standard Compaction Test	108
Н	Falling Head Permeability Test	110
Ι	Unconfined Compression Test	112

LIST OF SYMBOLS

Ac	Area of column
As	Area of sample
С	Cohesion
C_c	Compression index
C_c	Coefficient of gradation
C_u	Uniformity coefficient
е	Void ratio
3	Strain
G_s	Specific gravity
H_c	Height of column
H_s	Height of sample
i	Hydraulic gradient
k	Permeability coefficient
m	Moisture content
S_e	Elastic settlement
S_c	Primary consolidation settlement
S_s	Secondary consolidation settlement
S_T	Total settlement
P_c	Maximum pressure the soil has been subjected to in past
$ ho_d$	Dry density
$ ho_{d-max}$	Maximum dry density
$ ho_{d-min}$	Minimum dry density

q	Deviator stress
<i>q_{max}</i>	Maximum deviator stress
R_d	Relative density
S_o	Sorting coefficient
$S_{\mathcal{U}}$	Undrained shear strength
v	Velocity
γd	Dry unit weight
γ_t	Wet unit weight
γsat	Saturated unit weight
φ	Angle of internal friction
σ	Normal stress

LIST OF ABBREVIATIONS

ABS	Acrylonitryl Butadien Styrene
AASHTO	American Association of State Highway and Transportation Officials
ASTM	American Society for Testing and Materials
BS	British Standard
BSCS	British Soil Classification System
CL	Clay low plasticity
СН	Clay high plasticity
EPR	Ethylene-propylene rubber
FYP	Final Year Project
HDPE	High-density polyethylene
HPP	Homo-polymer Polypropylene
LL	Liquid limit
LDPE	Low-density polyethylene
MDPE	Medium-density polyethylene
MH	Silt high plasticity
ML	Silt low plasticity
MPMA	Malaysian Plastics Manufacturer Association
NP	Non-plastic
PC	Polycarbonate
PE	Polyethylene
PI	Plasticity index

PL	Plastic limit
PP	Polypropylene
PS	Polystyrene
РТ	Peat
SL	Shrinkage limit
UCT	Unconfined Compression Test
USCS	Unified Soil Classification System

CHAPTER 1

INTRODUCTION

1.1. BACKGROUND OF RESEARCH

Recently, due to urbanization and industrialization that increase the development, the building construction such as housing and commercial are being built massively. Soft clays exist in most coastal plains of Peninsular Malaysia and all land including soft soil has to utilize to overcome the massive construction. Clay is widely distributed, abundant mineral resources of major industrial importance for an enormous variety of uses (Ampian, 1985). Development of activities on those sites such as road embankment, earth dams and others involve problems of stability and excessive settlement. There are many available methods to improve the properties of soft clay soil since this type of soil usually causes problems to the civil engineer as it has high compressibility and low shear strength.

The settlement behavior of soil must be understand to find the solution for it because it may impose stability problem to the superstructure where the rate of settlement is different all over the area of the developed ground if the uneven settlement occurred. Uneven settlement might cause toppling of the said superstructure, meanwhile for uniform settlement, foundation settlement problem can occur in excessive settlement (Halim, 2012). Thus, settlement of soil must be solved before the superstructure being constructed.

Therefore, ground improvement techniques may be necessitated to modify the soil properties. There are many available methods to improve the properties of soft clay such as sand drain, piling, stone (granular) column, using admixtures and many more. Recently,

stone column are gaining acceptances in geotechnical field and have been widely used all around the world including Malaysia. This method is applied commonly for road embankments and railway area, lightly loaded foundation, and storage tanks (Murugesan and Rajagopal, 2010). Besides it promotes the compaction of the soil and allows water to rise up by acting as a channel, additional bearing capacity is also provided to the soil.

This Final Year Project (FYP) concentrates on the strength of soft clay reinforced with group crushed Polypropylene (PP) columns. Basically, concept of crushed PP columns with stone column is the same, but the result from this process is slightly different depends on the properties of the PP itself. However, this ground improvement technique has been successfully applied to reduce the settlement as well as increasing the bearing capacity of the soils and accelerating the settlement process (Ambily and Gandhi, 2007).

Previous studies have been proven that when the granular column is inserted into soft soil as shown in Figure 1.1, a composite soil mass that has a greater strength and improved stiffness will be produced compared to the unreinforced soil. The columns act as piles that transfer the structure load to greater depth. Thus, this is one of the most practical techniques to improve the mechanical properties of soft soil (Black *et al.*, 2007).

Figure 1.1: Installation of granular column

Source: Juan Manuel et al. (2010)

PP is a thermoplastic which means those materials can be melted again and again and also can be heated to a certain temperature and will harden again as they cool. It has an intermediate level of crystallinity which located between low-density polyethylene (LDPE) and high-density polyethylene (HDPE). It is known for its low strength to density ratio compared to HDPE and LDPE which the density can range from 0.90 to 0.92 g/cm³. PP yields the greatest volume of fibre for a given weight because of its low specific gravity which means that PP provides good bulk and cover while being lighter in weight. The porous PP molecule has a series of CH3 groups that oriented on one side of the carbon backbone which is making PP stiffer, creates higher degree of crystallinity and more resistance to the tendency to flow under stress as compared to polyethylene (PE). It is also harder and more opaque to withstand somewhat higher temperature up to 160 °C, or 320 °F without melting.

The rapid economic growth in Malaysia has generated 0.5-08 kg waste material/person/day and in rural areas the figure increased to 1.7 kg/person/day (Kathirvale *et al.*, 2003). The authors noted that plastics materials constitute the largest component of waste material by weight at 18.9 %, apart from food and paper. Findings from study indicated that plastics materials are disposed at rate of 2.943 kg/day, an approximation of 5 % from the daily consumption of plastics material. This finding is in agreement with the results obtained by Rossbach (1979) at 5.3 %. The results from Malaysian Plastics Manufacturer Association (MPMA) (2004) clearly indicated that polyolefin such as polypropylene (27 %) and polyethylene (10 %) monopolized the plastics industry in Malaysia and it reported that the consumption of poly olefins as the highest, at 67.7 %. Figure 1.2 and Table 1.1 show the consumption rate for different types of plastics resin (MPMA, 2004). Currently, the recycling and fully utilization of waste materials have attracted great attention in construction field to fulfill the current interest in long term and sustainable development, as well as to reduce the cost of managing the landfill.

Plastic resin	kg day-1	
Polypropylene (PP)	12827	
Polyethylene (PE)	4588	
Polystyrene (PS)	9413	
Polycarbonate	1825	
Acrylonitrile butadiene styrene (ABS)	13218	
Others	4966	
Total consumption per day	46837	

Table 1.1: Consumption rate for different types of plastics resin per day of the respondent companies

Source: Malaysian Plastics Manufacturers Association, MPMA (2004)

Figure 1.2: Consumption rate of plastics according to resin types

Source: Malaysian Plastics Manufacturers Association, MPMA (2004)

1.2. PROBLEM STATEMENT

Chen and Morriss (2000) stated that the design of foundation on soft clay has been the concern of engineers since the beginning of soil engineering. Therefore, structures constructed on soft soils may experience excessive settlements, large lateral flow and slope stability (Abdullah and Edil, 2007). This has leads to the findings and applications of various type of ground improvement, for example granular columns. This technique is preferable because it gives the advantage of reduced settlements and accelerated consolidation settlements due to reduction in flow path lengths. One of the major factors that could lead to high settlement is the high compressibility properties of soft clay. This condition due to finer particles of soft clay and the presence of water make it being too cohesive. High settlement is so dangerous because it affects the movement of whole structure and end up with structure failures.

Due to the rapid development of building construction and highway infrastructure, the settlement of soft soil become one of the main problems for foundation design. For example, there is an increase of stress in the soft ground as well as the strain or settlement when a road embankment is constructed over soft ground. Excessive yielding in vertical and lateral direction of the soft ground will occur if the surcharge load due to filling and constructions traffic load is high near the ultimate bearing capacity of the supported soft ground. Moreover, this situation will followed by tension crack, deep seated rotational or translational slip when the deformation is large and extensive.

Therefore, in this study, the strength of soft soils reinforced with group crushed PP as replacement material in granular column had been investigated. Expecting the analysis result may give the positive progress to the soil improvement such as the undrained shear strength of sample reinforced was greatly improved compared with that of the unreinforced samples. Indirectly, it will solve the PP disposal problem by reusing the material to reinforce the soft soils, besides, the landfill in Malaysia also have been limited due to the increasing of daily waste. Furthermore, since the PP is a waste material, the cost of soil

improvement can be reduce and hopefully the analysis result will help to make further progress to the soil improvement of the soft clay.

1.3. OBJECTIVES

The aim of this study is to investigate the strength of soft clay reinforced with group crushed PP columns. The soft clay has been represented by compacting kaolin paste. This study is carried out to achieve the objectives as follow:

- i. To determine the physical characteristics of kaolin clay and PP and morphological characteristics of PP;
- ii. To determine the undrained shear strength of soft clay reinforced with various dimensions of group PP columns.

1.4. SCOPE OF STUDY

The materials used in this study were kaolin as soil sample and crushed PP as reinforcing columns. To determine the physical properties of kaolin and PP and the morphological characteristics of PP, the following laboratory tests were carried out:

- i. Atterberg Limit Test
- ii. Specific Gravity Test
- iii. Sieve Analysis Test
- iv. Hydrometer Test
- v. Relative Density Test
- vi. Standard Compaction Test
- vii. Falling Head Permeability Test