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Abstract. In line with the technological developments, the current data tends to 

be multidimensional and high dimensional, which is more complex than 

conventional data and need dimension reduction. Dimension reduction is 

important in cluster analysis and creates a new representation for the data that is 

smaller in volume and has the same analytical results as the original 

representation. To obtain an efficient processing time while clustering and 

mitigate curse of dimensionality, a clustering process needs data reduction. This 

paper proposes an alternative model for extracting multidimensional data 

clustering based on comparative dimension reduction. We implemented five 

dimension reduction techniques such as ISOMAP (Isometric Feature Mapping), 

KernelPCA, LLE (Local Linear Embedded), Maximum Variance Unfolded 

(MVU), and Principal Component Analysis (PCA).  The results show that 

dimension reductions significantly shorten processing time and increased 

performance of cluster. DBSCAN within Kernel PCA and Super Vector within 

Kernel PCA have highest cluster performance compared with cluster without 

dimension reduction. 

Keywords: curse of dimensionality, dimension reduction, ISOMAP, 

KernelPCA, LLE, MVU, PCA, DBSCAN. 

1   Introduction 

In line with the technological developments, the current data tends to be 

multidimensional and high dimension, which is complex than conventional data. 

Many clustering algorithms have been proposed, but for multidimensional data and 

high dimensional data, conventional algorithms often produce clusters that are less 

meaningful. Furthermore, the use of multidimensional data will result in more noise, 

complex data, and the possibility of unconnected data entities. This problem can be 

solved by using clustering algorithm. Several clustering algorithms grouped into cell-

based clustering, density based clustering, and clustering oriented. To obtain an 

efficient processing time to mitigate a curse of dimensionality while clustering, a 

clustering process needs data reduction.  



Data reduction techniques create a new representation for the data that is smaller 

in volume and has the same analytical results as the original representation. There are 

various strategies for data reduction: aggregation, dimension reduction, data 

compression, discretization, and concept hierarchy [1]. Dimension reduction is a 

technique that is widely used for various applications to solve curse dimensionality. 

Dimension reduction is important in cluster analysis, which not only makes the 

high dimensional data addressable and reduces the computational cost, but also can 

provide users with a clearer picture and visual examination of the data of interest [2]. 

Many emerging dimension reduction techniques proposed, such as Local 

Dimensionality Reduction (LDR). LDR tries to find local correlations in the data, and 

performs dimensionality reduction on the locally correlated clusters of data 

individually [3], where dimension reduction as a dynamic process adaptively adjusted 

and integrated with the clustering process [4].  

Sufficient Dimensionality Reduction (SDR) is an iterative algorithm [5], which 

converges to a local minimum of �∗ = arg  �	∈��
�� �������	�� and hence solves the Max-

Min problem as well. A number of optimizations can solve this minimization 

problem, and reduction algorithm based on Bayesian inductive cognitive model used 

to decide which dimensions are advantageous [6]. Developing an effective and 

efficient clustering method to process multidimensional and high dimensional dataset 

is a challenging problem. 

The main contribution of this paper is the development of an alternative model to 

extract data based on density connection and comparative dimension reduction 

technique. Results of extracting data implemented in DBSCAN cluster, and compare 

with other clustering method, such as Kernel K-Mean, Super Vector and Random 

Cluster. This paper is organized into a few sections. Section 2 will present the related 

work. Section 3 explains the materials and method. Section 4 elucidates the results 

followed by discussion in Section 5. Section 6 deals with the concluding remarks. 

2   Related Work 

Functions of data mining are association, correlation, prediction, clustering, 

classification, analysis, trends, outliers and deviation analysis, and similarity and 

dissimilarity analysis. Clustering technique is applied when there is no class to predict 

but rather when the instances divide into natural groups [7, 8]. Clustering for 

multidimensional data has many challenges. These are noise, complexity of data, data 

redundancy, and curse of dimensionality. To mitigate these problems dimension 

reduction needed. In statistics, dimension reduction is the process of reducing the 

number of random variables. The process classified into feature selection and feature 

extraction [9], and the taxonomy of dimension reduction problems [10] shown in 

Fig.1. Dimension reduction is the ability to identify a small number of important 

inputs (for predicting the target) from a much larger number of available inputs,  and 

is effective in cases when there are more inputs than cases or observations. 



 
Fig. 1. Taxonomy of dimension reduction problem 

 

Dimensionality reduction techniques have been a successful avenue for 

automatically extracting the latent concepts by removing the noise and reducing the 

complexity in processing the high dimensional data [11]. Maaten et.al proposed 

taxonomy dimension reduction technique as shown at Fig. 2, and found traditional 

dimensionality technique applied PCA and factor analysis, but this technique is 

unable to handle nonlinear data [12]. 
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Fig. 2. Taxonomy of dimension reduction technique 

The goals of dimension reduction methods are to reduce the number of predictor 

components and to help ensure that these components are independent. The method 

designed to provide a framework for interpretability of the results, and to find a 



mapping F that maps the input data from the space ℜ�  to lower dimension feature 

space ℜ� denotes as ����: ℜ� → ℜ� 
 [13, 14]. Dimension reduction techniques, such 

as principal component analysis (PCA) and partial least squares (PLS) can used to 

reduce the dimension of the microarray data before certain classifier is used [15]. 

We compared five dimension reduction techniques and embedded in 4 cluster 

techniques, these dimension reduction are: 

A. ISOMAP 

ISOMAP (Isometric Feature Mapping) is one of several widely used low-dimensional 

embedding methods, where geodesic distances on a weighted graph incorporated with 

the classical scaling. This approach combines the major algorithmic features of PCA 

and MDS [16, 17] computational efficiency, global optimality, and asymptotic 

convergence guarantees with the flexibility to learn a broad class of nonlinear 

manifolds. ISOMAP used for computing a quasi-isometric, low-dimensional 

embedding of a set of high-dimensional data points. ISOMAP is highly efficient and 

generally applicable to a broad range of data sources and dimensionalities [18]. 

ISOMAP Algorithm [16] provides a simple method for estimating the intrinsic 

geometry of a data manifold based on a rough estimate of each data point’s 

neighbours on the manifold, such as the following phase: 

a. Construct neighbourhood graph 

Define the graph G over all data points by connecting points j and I if as measured 

by dx (i, j), they are closer than e (e-Isomap), or if i is one of the K nearest 

neighbours of j (K-Isomap). Set edge lengths equal to dx(i, j). Determines which 

points are neighbours on the manifold M, based on the distances dX (i, j) between 

pairs of points i, j in the input space X. These neighbourhood relations are 

represented as a weighted graph G over the data points, with edges of weight dX(i, 

j) between neighbouring points. 

b. Compute shortest paths 

Initialize dG(i, j) = dx(i, j) if i, j are linked by an edge; dG(i, j) = ∞ otherwise. Then 

for each value of k = 1, 2, …, N in turn, replace all entries dG(i, j) by min{dG(i, j), 

dG(i,k) + dG(k, j)}. The matrix of final values DG = {dG(i, j)} will contain the 

shortest path distances between all pairs of points in G. ISOMAP estimates the 

geodesic distances dM(i, j) between all pairs of points on the manifold M by 

computing their shortest path distances dG(i, j) in the graph G. 

c. Construct d-dimensional embedding 

Let λp be the p-th eigenvalue (in decreasing order) of the matrix t(DG), and v′p be 

the i-th component of the p-th eigenvector. Then set the p-th component of the d-

dimensional coordinate vector yi equal to √"�#′�. Final step applies classical 

MDS to the matrix of graph distances DG 5 {dG(i, j)}, constructing an embedding 

of the data in a d-dimensional Euclidean space Y that best preserves the manifold’s 

estimated intrinsic geometry. The coordinate vectors yi for points in Y are chosen 

to minimize the cost function % = &'��(� � −   '��*�� +,-, where DY denotes the 

matrix of Euclidean distance ./*�0, 2� =  +3� � −  34 �� +  and +5� +�,- the matrix L
2
 

matrix norm 6∑�,45- �,4. The operator converts distances to inner products, which 

uniquely characterize the geometry of the data in a form that supports efficient 

optimization. 

 



B. Kernel PCA 

Kernel PCA is an extension of PCA [19], where PCA as a basis transformation to 

diagonalize an estimate of the covariance matrix of the data xk, k = 1,…., ℓ �9:;<  , ∑ �9 = 0>9?@ , defined as A = @ℓ  ∑ �4�4BC4?@ . The Kernel PCA algorithm proceeds as 

follows: 

a. Set a kernel mapping D��
, ���.  

b. Count K based on E��, �F = 1, … , I� �� J��                                 .  
c. Find eigenvalue of K to get "� and K�  
d. For each given data point X, find principal components in the feature space: LML�� � . O� � � = ∑ K9���D��, ���<�?@ �� 

In this paper, Gaussian kernel applied D��, 3� = P�� Q RS+T �SC � + U V S______________2Y- Z 

  

C. LLE 

The LLE (Local Linear Embedded) algorithm based on simple geometric intuitions, 

where suppose the data consist of N real valued vectors �[ each of dimensionality, 

sampled from some smooth underlying manifold, the algorithm proposed [20]: 

a. Compute the neighbours of each data point, �\]]][ 

b. Compute the weight Wij that best reconstruct each data point \̂]]][ from its 

neighbours, minimizing the cost in _�`� = ∑ a�\]]][ − ∑ �̀4 [̂ 44 a�  - by constrained 

linear fits. 

c. Compute the vectors b][ �  best reconstructed by the weight Wij, minimizing the 

quadratic form in Φ�Y� =  ∑ aY e]]]][ − ∑ WghY]][ h � � -g �g   

 

D. MVU 

Maximum Variance Unfolded (MVU) is algorithms for nonlinear dimensionality 

reduction [21] map high dimensional inputs E� ]][� � � J@� = 1 to low dimensional outputs E3 ]][� � � J@� = 1, where �[ � :ℜi , 3[ � :ℜiKF/ j ≪ /. The reduced dimensionality r chosen 

to be as small as possible, yet sufficiently large to guarantee that the outputs 3[ � :ℜi 

provide a faithful representation of the input s�[ � :ℜi . 

 

E. PCA 

Principal Component Analysis (PCA) is a dimension reduction technique that uses 

variance as a measure of interestingness and finds orthogonal vectors (principal 

components) in the feature space that accounts for the most variance in the data [22]. 

Principal component analysis is probably the oldest and best known of the techniques 

of multivariate analysis, first introduced by Pearson, and developed independently by 

Hotelling [23]. 

The advantages of PCA are identifying patterns in data, and expressing the data in 

such a way as to highlight their similarities and differences. It is a powerful tool for 

analysing data by finding these patterns in the data. Then compress them by 

dimensions reduction without much loss of information [24]. Algorithm PCA [25] 

shown as follows: 

a. Recover basis:  



Calculate ^^l = ∑ ����m�?@  l and let U = eigenvectors of XX
T
 corresponding to 

the top d eigenvalues. 

b. Encode training data:  

Y = UT
X where Y is a d x t matrix of encodings of the original data. 

c. Reconstruct training data:  n̂ = ob = ool^ 

d. Encode test example:  3 =  ol > ^ where y is a d-dimensional encoding of x. 

e. Reconstruct test example:  �q = oC = ool� 

3   Material and Method 

This study is designed to find the most efficient dimension reduction technique. In 

order to achieve this objective, we propose a model for efficiency of the cluster 

performed by first reducing the dimensions of datasets. There are five dimension 

reduction techniques tested in the proposed model, namely ISOMAP, KernelPCA, 

LLE, MVU, and PCA. 

 
Fig.3. Proposed model compared based on dimension reduction and DBSCAN clustering. 

 

Dimensions reduction result is processed into DBSCAN cluster technique. 

DBSCAN needs ε (eps) and the minimum number of points required to form a cluster 

(minPts) including mixed euclidean distance as distance measure. For the result of 

DBSCAN clustering using functional data to similarity, it calculates a similarity 

measure from the given data (attribute based), and another output of DBSCAN that is 

measured is performance-1, this simply provides the number of clusters as a value.  

Result of data to similarity takes an exampleSet as input for filter examples and 

returns a new exampleSet including only the examples that fulfil a condition. By 

specifying an implementation of a condition, and a parameter string, arbitrary filters 

can be applied and directly derive a performance-2 as measure from a specific data or 

statistics value, then process expectation maximum cluster with parameter k=2, max 

runs=5, max optimization step=100, quality=1.0E-10 and install distribution=k-

means run. 



4   Result 

Testing of model performance was conducted on four datasets model; e-coli, iris, new 

machine cpu and thyroid. Dimension reduction used Isomap, Kernel PCA, LLE and 

MVU. Cluster technique used DBSCAN, Kernel K-Mean, Super Vector and Random 

Cluster. By using RapidMiner, we conducted the testing process without dimension 

reduction and clustering, and then compared with the results of clustering process 

using dimension reduction. Result of e-coli datasets process for processing time 

shown in Table 1a, and Table 1b for the performance of the cluster. 

 
Table 1a. Processing time for e-coli datasets 

 

 Cluster Method 

Dimension reduction DBSCAN Kernel 

K-Mean 

Super 

Vector 

Random 

Cluster 

with ISOMAP 13 17 18 18 

with Kernel PCA 14 24 15 14 

with LLE 13 23 19 17 

with MVU 13 18 15 15 

with PCA 12 17 15 14 

without dimension reduction 14 23 16 14 

 

Table 1b. Performance of cluster for e-coli datasets 

 

 Cluster Method 

Dimension reduction DBSCAN Kernel 

K-Mean 

Super 

Vector 

Random 

Cluster 

with ISOMAP 99,4% 98,7% 99,4% 97,0% 

with Kernel PCA 99,4% 98,7% 99,4% 97,1% 

with LLE 99,4% 98,8% 99,4% 97,0% 

with MVU 99,4% 98,7% 99,4% 97,0% 

with PCA 99,4% 98,7% 99,4% 97,1% 

without dimension reduction 99,4% 99,1% 99,4% 97,2% 

 

Clustering process to iris datasets shown in Table 2a, for processing time and in 

Table 2b for the performance of the cluster. 
 

 

 

 

 

 

 

 

 

 

 



Table 2a. Processing time for iris datasets 

 

 Cluster Method 

Dimension reduction DBSCAN Kernel 

K-Mean 

Super 

Vector 

Random 

Cluster 

with ISOMAP 11 6 6 6 

with Kernel PCA 12 4 3 3 

with LLE 11 10 7 7 

with MVU 11 8 6 6 

with PCA 10 5 4 4 

without dimension reduction 11 8 7 7 

 

 
Table 2b. Performance of cluster for iris datasets 

 

 Cluster Method 

Dimension reduction DBSCAN Kernel 

K-Mean 

Super 

Vector 

Random 

Cluster 

with ISOMAP 97,9% 93,5% 97,8% 91,2% 

with Kernel PCA 98,7% 98,0% 98,7% 91,2% 

with LLE 97,9% 95,6% 97,9% 91,2% 

with MVU 97,9% 95,5% 97,8% 91,2% 

with PCA 97,0% 98,0% 96,9% 93,9% 

without dimension reduction 97,0% 98,0% 96,7% 93,9% 

 

Machine cpu datasets consisting of 7 attributes and 209 samples clustered using 

the same method, and obtained the results shown in Table 3a, for processing time and 

Table 3b as a result of performance of the cluster. 

 
Table 3a. Performance of cluster for machine cpu datasets 

 

 Cluster Method 

Dimension reduction DBSCAN Kernel 

K-Mean 

Super 

Vector 

Random 

Cluster 

with ISOMAP 11 3 4 5 

with Kernel PCA 10 6 4 5 

with LLE 8 4 5 5 

with MVU 12 4 3 2 

with PCA 11 7 9 7 

without dimension reduction 13 15 22 19 

 
 

 

 

 

 



Table 3b. Performance of cluster for machine cpu datasets 

 

 Cluster Method 

Dimension reduction DBSCAN Kernel 

K-Mean 

Super 

Vector 

Random 

Cluster 

with ISOMAP 98,6% 94,3% 33,3% 88,9% 

with Kernel PCA 99,1% 66,7% 99,0% 95,4% 

with LLE 97,2% 93,1% 97,2% 95,4% 

with MVU 98,7% 99,4% 98,6% 88,9% 

with PCA 40,0% 98,2% 0% 95,4% 

without dimension reduction 99,5% 98,2% 99,5% 95,4% 

 

Clustered result of new thyroid datasets shown in Table 4a for the processing time, 

and Table 4b for the performance of the cluster. 

  
Table 4a. Performance of cluster for new thyroid datasets 

 

 Cluster Method 

Dimension reduction DBSCAN Kernel 

K-Mean 

Super 

Vector 

Random 

Cluster 

with ISOMAP 13 11 8 7 

with Kernel PCA 17 7 9 9 

with LLE 20 13 11 11 

with MVU 17 13 12 9 

with PCA 14 8 11 7 

without dimension reduction 13 7 13 8 

 
Table 4b. Performance of cluster for new thyroid datasets 

 

 Cluster Method 

Dimension reduction DBSCAN Kernel 

K-Mean 

Super 

Vector 

Random 

Cluster 

with ISOMAP 99,5% 96,9% 0% 95,5% 

with Kernel PCA 99,1% 96,7% 99,1% 95,5% 

with LLE 99,1% 98,9% 99,1% 95,5% 

with MVU 98,7% 96,9% 0% 95,5% 

with PCA 98,7% 96,7% 0% 95,5% 

without dimension reduction 99,5% 98,3% 0% 95,6% 

 

By implementing four different reduction techniques ISOMAP, KernelPCA, LLE, 

MVU, and PCA, and continuously applying the cluster method based on cluster 

density, We obtained results for the datasets of E.coli datasets. Some of the result We 

present at Fig. 4a-c. Fig. 4a is the result of the cluster with DBSCAN method that 

does not use a dimension reduction. Fig. 4b is the result of DBSCAN cluster method 

as well but first using dimension reduction. While Fig. 4c is the result of the cluster 

by using Super Vector and also use the dimension reduction. 



 

   
Fig. 4a. E-coli datasets based 

on DBSCAN without 

dimension reduction 

Fig. 4b. E-coli datasets based 

on DBSCAN and ISOMAP 

Fig. 4c. E-coli datasets 

based on Supervector and 

ISOMAP 

 

For iris datasets consist of 4 attributes and 150 sample data, we implemented four 

different reduction techniques ISOMAP, KernelPCA, LLE, MVU, and PCA. We 

compared cluster result between process without dimension reduction and within 

dimension reduction. Some of the result present at Fig 5a-c. Fig. 5a is cluster result 

based on DBSCAN without dimension reduction. Fig. 5b is cluster result use 

DBSCAN within Kernel PCA as dimension reduction. This result similarly with Fig. 

5c, cluster based on Random Cluster and Kernel PCA. Clustering process with 

dimension reduction create clearly different cluster (Fig. 5b and Fig. 5c).  

 

   
Fig. 5a. Iris datasets based on 

DBSCAN without dimension 

reduction 

Fig. 5b. Iris datasets based 

on DBSCAN and Kernel 

PCA 

Fig. 5c. Iris datasets based 

on Random Cluster and  

Kernel PCA 

 

The third was dataset tested is machine cpu. Some of the result we present at Fig 

6a-c. In Fig. 6a shown cluster result based on DBSCAN without dimension reduction. 

Fig 6b. and Fig. 6c. was cluster result based on DBSCAN and Kernel K-Mean within 

using dimension reduction. 

 

   
Fig. 6a. Machine cpu 

datasets based on DBSCAN 

without dimension reduction 

Fig. 6b. Machine cpu 

datasets based on DBSCAN 

and MVU 

Fig. 6c. Machine cpu 

datasets based on Kernel K-

Mean and MVU 

 

Using same dimension reduction techniques, we clustered new thyroid datasets. 

We obtained results of DBSCAN without dimension reduction in Fig. 7a. While 

DBSCAN with dimension reduction using LLE has result in Fig. 7b. Cluster based 

Super Vector using LLE shown in Fig. 7c, we can see clustering process with 

dimension reduction create clearly different cluster (Fig. 7b. and Fig 7c.). 



 

Fig 7a. Machine cpu datasets 

based on DBSCAN without 

dimension reduction 

 

Each cluster process, especially

MinPts=5, while the number of

determined before. 

5   Discussion 

Dimension reduction before cluster

and increase accuracy of cluster performance. Based on result

dimension reduction can shorten processing time

has lowest processing time.

Fig. 8a. Performance of processing time for 

reduction

 

For iris datasets, we also found dimension reduction 

Fig. 8b. Super Vector and Random Cluster within Kernel PCA has lowest processing time.

  
datasets 

based on DBSCAN without 

Fig 7b. Machine cpu datasets 

based on DBSCAN and 

LLE 

Fig 7c. Machine cpu 

datasets based on Super 

Vector and LLE 

especially ahead of determined value of ɛ=1, and the value

number of clusters (k=2) that will be produced was also

Dimension reduction before clustering process is to obtain efficient processing time 

d increase accuracy of cluster performance. Based on results in previous section, 

dimension reduction can shorten processing time. Fig. 8a shows DBSCAN with PCA 

has lowest processing time. 

 

. Performance of processing time for e-coli datasets using different dimension 

reduction technique and cluster technique 

For iris datasets, we also found dimension reduction could shorten processing time. In 

Fig. 8b. Super Vector and Random Cluster within Kernel PCA has lowest processing time.

 

datasets based on Super 

the value 

also 

process is to obtain efficient processing time 

in previous section, 

with PCA 

 

shorten processing time. In 

Fig. 8b. Super Vector and Random Cluster within Kernel PCA has lowest processing time. 



 
Fig. 8b. Performance of processing time for iris

reduction

 
For machine cpu datasets, we found dimension reduction 

Random Cluster within Kernel 

 
Fig. 8c. Performance of processing time for machine

reduction

 

. Performance of processing time for iris datasets using different dimension 

reduction technique and cluster technique 

datasets, we found dimension reduction for Super Vector and 

Random Cluster within Kernel ISOMAP has lowest processing time (Fig. 8c). 

 

. Performance of processing time for machine cpu dataset using different dimension 

reduction technique and cluster technique 

 

Super Vector and 

 

dimension 



For new thyroid datasets, we found dimension reduction for Kernel K

Kernel PCA and Random Cluster within Kernel ISOMAP has lowest processing time (Fig. 

8d). 

Fig. 8d. Performance of processing time for new

reduction

 

Another evaluation for model implementation is 

performance. In general dimension reduction increased cluster performance. For ecoli 

datasets we found Super Vector ISOMAP has highest cluster performance (Fig. 9a.). 

 

Fig. 9a. Performance of cluster for 

For new thyroid datasets, we found dimension reduction for Kernel K-Mean within 

Cluster within Kernel ISOMAP has lowest processing time (Fig. 

 
 

. Performance of processing time for new thyroid datasets using different dimension 

reduction technique and cluster technique 

Another evaluation for model implementation is comparison of cluster 

In general dimension reduction increased cluster performance. For ecoli 

Super Vector ISOMAP has highest cluster performance (Fig. 9a.). 

 
 

. Performance of cluster for e-coli datasets using different dimension reduction 

technique 

Mean within 

Cluster within Kernel ISOMAP has lowest processing time (Fig. 

dimension 

comparison of cluster 

In general dimension reduction increased cluster performance. For ecoli 

Super Vector ISOMAP has highest cluster performance (Fig. 9a.).  

 



 

For iris dataset we found 

Kernel PCA have highest cluster performance compared with cluster without 

dimension reduction (Fig. 9

Fig. 9b. Performance 

For machine cpu dataset 

have highest cluster performance. Datasets, only Kernel K

cluster performance equal to cluster without dimension reduction (Fig. 9c.).

 

 
Fig. 9c. Performance of cluster for machine

dataset we found DBSCAN within Kernel PCA and Super Vector within 

Kernel PCA have highest cluster performance compared with cluster without 

(Fig. 9b.). 

 
 

. Performance of cluster for iris datasets using different dimension reduction 

technique 
dataset in general cluster process without dimension reduction 

have highest cluster performance. Datasets, only Kernel K-Mean within PCA has 

equal to cluster without dimension reduction (Fig. 9c.). 

 

. Performance of cluster for machine cpu datasets using different dimension reduction

technique 

Kernel PCA and Super Vector within 

Kernel PCA have highest cluster performance compared with cluster without 

in general cluster process without dimension reduction 

Mean within PCA has 

 

dimension reduction 



 

For new thyroid dataset,

within LLE has highest cluster performance 
 

Fig. 9d. Performance of processing time for new

reduction

6   Conclusion 

The discussion above has shown that

shorten the processing time. 

 

Dimension reduction before cluster

and increase accuracy of cluster performance. DBSCAN with PCA has lowest 

processing time for e-coli datasets

PCA has lowest processing time for iris datasets. For machine cpu datasets, we found 

dimension reduction for Super Vector and Random Cluster within Kernel ISOMAP 

has lowest processing time. For new thyroid datasets,

for Kernel K-Mean within Kernel PCA and Random Cluster within Kernel ISOMAP 

has lowest processing time
 

In general, dimension reduction

datasets, we found Super Vector ISOMAP has highest cluster performance. For iris 

datasets, we found DBSCAN within Kernel PCA and Super Vector within Kernel 

PCA have highest cluster performance compared with cluster without dimension 

reduction. For machine cpu

For new thyroid dataset, we found Kernel K-Mean within LLE and Super Vector 

highest cluster performance (Fig. 9d.). 

 
 

. Performance of processing time for new thyroid datasets using different dimension 

reduction technique and cluster technique 

The discussion above has shown that applying a dimension reduction technique will

time.  

Dimension reduction before clustering process is to obtain efficient processing time 

and increase accuracy of cluster performance. DBSCAN with PCA has lowest 

coli datasets. Super Vector and Random Cluster within Kernel 

PCA has lowest processing time for iris datasets. For machine cpu datasets, we found 

dimension reduction for Super Vector and Random Cluster within Kernel ISOMAP 

has lowest processing time. For new thyroid datasets, we found dimension reduction 

Mean within Kernel PCA and Random Cluster within Kernel ISOMAP 

has lowest processing time. 

dimension reduction shows an increased cluster performance. For e-coli 

we found Super Vector ISOMAP has highest cluster performance. For iris 

we found DBSCAN within Kernel PCA and Super Vector within Kernel 

PCA have highest cluster performance compared with cluster without dimension 

reduction. For machine cpu dataset, in general cluster process without dimension 

Mean within LLE and Super Vector 

 

dimension 

will 

process is to obtain efficient processing time 

and increase accuracy of cluster performance. DBSCAN with PCA has lowest 

Vector and Random Cluster within Kernel 

PCA has lowest processing time for iris datasets. For machine cpu datasets, we found 

dimension reduction for Super Vector and Random Cluster within Kernel ISOMAP 

we found dimension reduction 

Mean within Kernel PCA and Random Cluster within Kernel ISOMAP 

coli 

we found Super Vector ISOMAP has highest cluster performance. For iris 

we found DBSCAN within Kernel PCA and Super Vector within Kernel 

PCA have highest cluster performance compared with cluster without dimension 

in general cluster process without dimension 



reduction have highest cluster performance. For new thyroid datasets, we found 

Kernel K-Mean within LLE and Super Vector within LLE show the highest cluster 

performance. 
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