

Carbon Forn

1 Solid Oxide

Fuel Cells (SOFCs) Using H₂S

by

Asmida Ideris

A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemical Engineering

Waterloo, Ontario, Canada, 2014

©Asmida Ideris 2014

Abstract

Solid oxide fuel cells (SOFCs) are promising devices for power generation due to their high efficiency and clean operation. Another prominent feature of SOFCs is their ability to operate with not only H_2 fuel but also hydrocarbons and syngas. Unlike many other fuel cells, SOFCs also are capable of utilizing CO as fuel. This flexibility with respect to fuel lessens the dependency on pure H_2 and complex fuel processing and has increased the interest in SOFCs as an alternative power source. However, their widespread commercialization is still hindered by high cost and poor long term stability associated with high temperature operation and carbon deposition at the anode when fuelled with hydrocarbons.

The main objective of the research described in this thesis was to introduce and investigate a method to mitigate the effects of carbon formation in Ni-based anodes operating at intermediate temperatures with hydrocarbon fuels (e.g., CH₄). Ni-samaria-doped-ceria (Ni-SDC) anode-supported cells were fabricated and their performance and susceptibility toward carbon deposition were studied when operating galvanostatically with various fuels including CH₄ and CO-CO₂ mixture at intermediate temperatures (550-700°C). Ni-SDC anode-supported cells operating with CH₄ and CO-CO₂ were strongly affected by the temperature when the cell performance with CH₄ was found to be more stable during operation at 700°C than at 600°C. The maximum power density of the cell with CH₄ as fuel was found to be higher than that achieved with H₂ as fuel at 700°C. Meanwhile, the cell voltage during operation with CO-CO₂ fuel was more stable at 600°C than at 700°C. Degradation of the performance of the Ni-SDC cells with CH₄ and CO-CO₂ fuels under conditions where carbon formation is thermodynamically favored was found to be relatively small despite the fact that significant amounts of carbon accumulated in the anode. This may due to the fact that carbon deposited predominantly at the surface of the anode closest to the fuel entry point.

Sulphur in the form of H_2S was introduced into the SOFC at ppm level concentrations to evaluate its effect as a potential carbon inhibitor in a cell operating under dry CH₄ at 700°C. Two methods for exposing the anode to H_2S were investigated: i) continuous introduction throughout

cell operation as part of the gas feed stream and ii) introduction as part of a mixture with H₂ only for a short period of time as a pre-treatment before regular operation with dry CH₄ alone. These studies showed that continuous feeding of H₂S within the dry CH₄ fuel at the level of only a few ppm (10 and 2 ppm) was enough to cause catastrophic failure of the cell within ~20 hrs due to the poisoning effect of H₂S. On the other hand, the introduction of H₂S at a level of 2 ppm in dry H₂ into the cell for 30 minutes as an anode pre-treatment before switching to dry CH₄ was very successful and enabled the SOFC to maintain stable performance for over 100 hours of operation under dry CH₄, with a lower degradation rate than that observed when a cell was not pre-treated with H₂S. This pre-treatment did not affect the methane conversion significantly during the subsequent galvanostatic operation with dry CH₄. The presence of H₂S influenced the type of carbon formed depending on the manner in which the H_2S was introduced into the SOFC. Carbon deposits that formed during operation with dry CH₄ alone after the 30-minute pretreatment with H₂S were more easily removed than those produced when the fuel contained dry CH₄ alone or H₂S-containing fuel was introduced continuously over the entire run. The introduction of H₂S for a short duration prior to shifting to dry CH₄ suppressed the formation of graphitic carbon at the anode.

The amount of carbon formed on the cells during CH_4 operation was estimated by shifting the gas stream to humidified H_2 while maintaining the applied current unchanged and measuring the quantity of carbon-containing gases evolved. These measurements revealed that less carbon was deposited in a cell that had been pre-treated with H_2S prior to 100 hrs of operation with dry CH_4 compared to a cell that had not been exposed to H_2S . This analysis also showed that the procedure of flowing humidified H_2 into the cell after operation with dry CH_4 while maintaining the same current appeared to remove carbon from the anode and reduce the rate of degradation of the cell voltage.

Acknowledgements

I would like to express my deep appreciation to both of my supervisors, Professor Eric Croiset and Professor Mark Pritzker for their great guidance, help and encouragement. It was a valuable training process for me working with you.

Special thanks to my committee members, Professor Boxin Zhao, Professor Aiping Yu, Professor Zhongchao Tan and Professor Nicolas Abatzoglou for the time you have taken for my dissertation.

I would like to acknowledge Ministry of Higher Education of Malaysia and Universiti Malaysia Pahang for financial support and study leave throughout these years. I also thank NSERC Solid Oxide Fuel Cell Canada Strategic Research Network from the Natural Science and Engineering Research Council (NSERC) for the great opportunities I had through workshops and meetings while studying in this SOFC field.

I appreciate the help from'Ms Judy Caron, Ms Rose Guderian and Ms Ingrid Sherrer in the Department of Chemical Engineering for administration work and Mr Bert Habicher and Mr Ralph Dickhout for their technical support.

To my colleagues from SOFC and chemical reaction engineering groups, Dr Mazni Ismail, Dr Weifang Yao, Dr Aiyu Yan, Dr Ashraf Amin, Dr Monrudee Phongaksorn, Dr Noorlisa Harun, thank you for all your assistance and knowledge sharing.

Also I owe my gratitude to all my friends in Waterloo for their support, care and memorable time together.

Finally to my mama, my abah, my brother and sisters, thank you for the endless prayers, understanding and unconditional love you have given me.

Table of Contents

AUTHOR'S DECLARATION	ii
Abstract	iii
Acknowledgements	v
Table of Contents	vi
List of Figures	ix
List of Tables	xiii
Nomenclature	xiv
Chapter 1 Introduction	1
1.1 Motivation	2
1.2 Organization of the thesis	4
Chapter 2 Literature Review	5
2.1 Introduction to fuel cells	5
2.2 SOFC thermodynamics	9
2.3 Cell overpotentials	11
2.4 Solid oxide fuel cell operation and component materials	14
2.4.1 SOFC operation	14
2.4.2 SOFC materials	16
2.4.3 SOFC designs	24
2.5 Internal reforming in SOFCs	26
2.6 Direct hydrocarbon utilization in SOFCs	27
2.7 Carbon deposition in SOFCs	28
2.7.1 Type of carbons	30
2.8 Carbon inhibition	33
2.8.1 H_2S as carbon inhibitor	35
2.9 Summary	38
Chapter 3 Experimental Method	39
3.1 SDC and NiO powder synthesis	39
3.2 Button cell fabrication	41
3.3 SOFC testing	44
3.3.1 Cell setup	44
3.3.2 SOFC test station set-up	48

3.3.3 Electrochemical experiments	
3.3.4 Gas outlet analysis	
3.3.5 Quantification of carbon	
3.4 Material characterization	
3.4.1 Conductivity measurement	
3.4.2 Temperature- programmed oxidation (TPO)	
3.4.3 Scanning electron microscopy (SEM) and Energy dispersive x-ray (EDX)	
3.4.4 X-ray photoelectron spectroscopy (XPS)	
3.4.5 X-ray diffraction (XRD)	
3.5 Summary	60
Chapter 4 Ni-SDC anode-supported cells: Performance in H ₂ , CH ₄ and CO-CO ₂	63
4.1 Introduction	63
4.2 Experimental Procedure	63
4.3 Results and Discussions	64
4.3.1 XRD	64
4.3.2 Conductivity	67
4.3.3 Cell dimension and composition	71
4.3.4 Open circuit voltage in H ₂ and CO-CO ₂ feeds	74
4.3.5 Performance in H ₂ , CH ₄ and CO-CO ₂	
4.3.6 Cell stability	
4.4 Summary	90
Chapter 5 Carbon deposition on Ni-SDC anode-supported cells in presence of CH_4 and CO	91
5.1 Introduction	91
5.2 Experimental Procedure	
5.3 Results and Discussions	
5.3.1 Equilibrium composition	
5.3.2 Ni-SDC under CH ₄ and CO	
5.4 Summary	
Chapter 6 H_2S in CH ₄ -based fuel operation: Effect on cell performance and carbon deposition.	
6.1 Introduction	
6.2 Experimental Procedure	
6.3 Results and Discussions	
6.3.1 Continuous introduction of H_2S within CH_4 gas feed	
6.3.2 Introduction of H_2S at short interval followed by CH_4 operation	

6.3.3 Temperature-programmed oxidation (TPO)12	27
6.3.4 X-ray photoelectron spectroscopy (XPS)12	29
6.4 Summary	35
Chapter 7 H ₂ S in CH ₄ -based fuel operation: Carbon quantification13	36
7.1 Introduction	36
7.2 Experimental Procedure	36
7.3 Results and Discussions	37
7.3.1 Cell performance and gas outlet analysis	37
7.3.2 Carbon quantification14	19
7.4 Summary	57
Chapter 8 Conclusions and Recommendations15	59
8.1 Conclusions	59
8.2 Recommendations for future work16	52
Bibliography16	53
APPENDIX A	77
APPENDIX B	78
APPENDIX C	30
APPENDIX D18	31
APPENDIX E	32

List of Figures

Figure 2-1 A typical current density-voltage (i-V) curve of a fuel cell1	2		
Figure 2-2 Schematic diagram showing SOFC operation1	5		
Figure 3-1 a) SDC ash after combustion; b) NiO ash after calcination4	1		
Figure 3-2 a) Sintered NiO-SDC SDC bi-layer b) NiO-SDC SDC SSC-SDC cell	3		
Figure 3-3 a) Cell set-up b) Button cell is sealed on the alumina tube4	6		
Figure 3-4. Overall steps of cell preparation prior to electrochemical testing	7		
Figure 3-5 A schematic diagram of SOFC test station :4	9		
Figure 3-6 A Nyquist plot of a typical electrochemical system5	;4		
Figure 3-7 Equivalent circuit model used in this electrochemical work	;4		
Figure 3-8 Procedure for experimental procedure in this wok	52		
Figure 4-1 XRD patterns for a) NiO b) SDC and c) NiO-SDC6	6		
Figure 4-2 Impedance spectra for SDC pellet measured at temperatures a) 500-600°C and b) 650-800°C			
c) Equivalent circuit for ionic conductivity measurement	58		
Figure 4-3 Linearized plot of ionic conductivities of SDC electrolyte	10		
Figure 4-4 SEM images of Ni-SDC SDC SSC-SDC cell cross-section a) Cell components b) Cell			
dimensions7	71		
Figure 4-5 a) Cross-section of Ni-SDC SDC SSC-SDC cell and EDX mappings for b) cathode, c)			
electrolyte and d) anode regions	73		
Figure 4-6 OCVs from Nernst equation, theoretical SDC and experimental work for humidified H ₂ 7	76		
Figure 4-7 OCVs from Nernst equation, theoretical SDC and experimental work for 40%CO/60%CO27	77		
Figure 4-8 i-V curves under a) humidified H_2 b) humidified CH_4 and c) dry CH_4 at various temperatures			
	30		
Figure 4-9 i-V curves under a) 40% CO-CO ₂ b) 20% CO-CO ₂ at various temperatures	82		
Figure 4-10 Cell voltage versus time at constant current density of 0.1 A cm ⁻² at 700°C	84		
Figure 4-11 Cell voltage versus time at constant current density of 0.1 A cm ⁻² at 600°C85			
Figure 4-12 a) Equivalent circuit. Electrochemical impedance spectra before and after stability test for b)		
humidified H ₂ , c) humidified CH ₄ and d) 20%CO/CO ₂ at 700°C	87		
Figure 4-13 Electrochemical impedance spectra before and after stability test for a) humidified H ₂ , b)			
humidified CH ₄ and c) 20%CO-CO ₂ at 600°C	89		
Figure 5-1 Equilibrium composition as a function of temperature for SOFC operating with the following	Ş		
feed streams: a) dry CH ₄ (0.35 A cm ⁻²) and b) 40%CO-60%CO ₂ (0.1 A cm ⁻²)	94		

Figure 5-2 Variation of cell voltage over 100 hrs of SOFC operation at 700°C with dry CH ₄ at a current
density of 0.35 A cm ⁻² 95
Figure 5-3 Variation of R_s and R_p over 100 hrs of SOFC operation at 700°C with dry CH ₄ at a current
density of 0.35 A cm ⁻² 96
Figure 5-4 Variation of cell voltage over 75 hrs of SOFC operation at 700°C with humidified H_2 at a
current density of 0.35 A cm ⁻²
Figure 5-5 Variation of R_s and R_p over 75 hrs of SOFC operation at 700°C with humidified H_2 at a current
density of 0.35 A cm ⁻²
Figure 5-6 Variation of cell voltage over 6 hrs of SOFC operation at 550 °C with 40%CO-60%CO ₂ at a
current density of 0.1 A cm ⁻²
Figure 5-7 Variation of R_s and R_p over 6 hrs of SOFC operation at 550°C with 40%CO-60%CO ₂ at a s
current density of 0.1 A cm^{-2} 100
Figure 5-8 SEM micrographs of anode from anode-supported cells of (a, b, c) fresh Ni-SDC and after
operation with (d, e, f) dry CH_4 and (g, h, i) 40%CO-60%CO ₂ feed streams. Left: electrolyte-anode
interface. Centre: middle section. Right: near to fuel entry side102
Figure 5-9 SEM micrograph and EDX mapping in the labelled regions of cross-sections taken from fresh
Ni-SDC
Figure 5-10 SEM micrograph and EDX mapping in the labelled regions of cross-sections taken from the
cell after operation with dry CH_4
Figure 5-11 SEM micrograph and EDX mapping in the labelled regions of cross-sections taken from the
cell after operation with 40%CO-CO ₂
Figure 5-12 EDX scans of carbon content over the labelled line from the electrolyte-anode interface to the
fuel entry side of Ni-SDC anode-supported cells after operation with a) dry CH_4 and b) 40%CO-60%CO ₂
Figure 6-1 Variation of SOFC cell voltage during operation at 0.35A cm ^{-2} and 700°C with a continuous
fuel stream containing a) 10 ppm H_2S in dry CH_4 and b) 2 ppm H_2S in dry CH_4
Figure 6-2 Impedance spectra for Ni-SDC cell at 1 st hour and at the end of operation under 0.35 A cm ⁻²
and 700°C with fuel stream containing a) 10 ppm H_2S in dry CH_4 and b) 2 ppm H_2S in dry CH_4 115
Figure 6-3 Variation of the R_s and R_p values of an SOFC during operation at 0.35A cm ⁻² and 700°C with a
continuous fuel stream containing a) 10 ppm H_2S in dry CH_4 and b) 2 ppm H_2S in dry CH_4 116
Figure 6-4 SEM micrographs of the Ni-SDC anode after operation with a dry CH ₄ -based fuel containing
(a, b) 10 ppm H ₂ S and (c, d) 2 ppm H ₂ S at 0.35 A cm ⁻² and 700°C. (e, f) Fresh Ni-SDC. Left: middle
section. Right: section near fuel entry side

Figure 6-5 SEM micrograph of cross-section and EDX elemental analysis along the indicated line of Ni-
SDC anode operating with (a, c) 10 ppm H ₂ S in dry CH ₄ and (b, d) 2 ppm H ₂ S in dry CH ₄ at 0.35 A cm ⁻²
and 700°C. e) EDX line scans for sulphur in fresh Ni-SDC and Ni-SDC anodes exposed to 10 ppm and 2
ppm H ₂ S
Figure 6-6 SEM micrographs of regions close to the electrolyte-anode interface in Ni-SDC cells operating
with the following fuels: a) dry CH ₄ b) 10 ppm H ₂ S in dry CH ₄ and c) 2 ppm H ₂ S in dry CH ₄ at 0.35 A
cm ⁻² and 700°C
Figure 6-7 Variation of SOFC cell voltage during the first hour of operation at 0.35A cm ⁻² and 700°C
with humidified H_2 fuel for the first 0.1 hour followed by a switch to a) dry CH_4 and b) 10 ppm H_2S in
dry CH ₄ 124
Figure 6-8 Variation of cell voltage over (a) 1^{st} hour and (b) 100 hours of operation at 0.35A cm ⁻² and
700°C when fuel gases are introduced according to the following scheme: humidified H ₂ for 0.2 hour \rightarrow 2
ppm H_2S in H_2 for 0.5 hour \rightarrow dry CH_4 126
Figure 6-9 SEM micrographs for Ni-SDC cell operating with 2 ppm H_2S in H_2 for 0.5 hour followed by
100 hrs dry CH ₄ . (a) Whole anode cross-section b) section near fuel entry side
Figure 6-10 TPO profiles of anodes after exposure to various fuel streams for different durations 128
Figure 6-11 XPS scans in S 2p region of anode cross-sections after exposure to the various fuels
Figure 6-12 XPS scans in Ni 2p region for anode cross-sections after exposure to the various fuels 132
Figure 6-13 XPS spectra for C 1s region for anode cross-sections exposed to various fuels
Figure 7-1 Variation of cell voltage over 100 hrs of SOFC operation at 700 °C with dry CH ₄ at a current
density of 0.35 A cm^{-2} with and without H_2S pre-treatment
Figure 7-2 R_s and R_p measured from EIS at DC current density of 0.35 A cm ⁻² in humidified H ₂ before
and after 100 hrs of operation in dry CH_4 for cells a) without H_2S and b) with H_2S pre-treatment
Figure 7-3 i-V and power density-current density curves measured under humidified H ₂ before and after
100 hrs operation with dry CH ₄ at 700°C for cells a) without H_2S and b) with H_2S pre-treatment
Figure 7-4 Gas outlet compositions during 100 hrs galvanostatic run using dry CH_4 alone at 0.35 A cm ⁻²
and 700°C for cells a) without H ₂ S and b) with H ₂ S pre-treatment
Figure 7-5 Carbon balance during 100 hrs of galvanostatic operation with dry CH_4 for cells with and
without H_2S pre-treatment at 0.35A cm ⁻² and 700°C144
Figure 7-6 a) H_2 , b) CO, c) CO ₂ and d) CH ₄ production while flowing humidified H_2 into the cells after
100 hrs of operation with dry CH ₄ at 0.35A cm ⁻² and 700°C 147
Figure 7-7 SEM micrographs of carbon deposited on Ni-SDC cells after galvanostatic operation with dry
CH_4 and then humidified H_2 for the cells (a, c) without H_2S and (b, d) with H_2S pre-treatment. Top: 5.0
kx. Bottom: 20.0 kx

Figure 7-8 Variation of cell voltage with time during 30, 40 and 15 hrs of operation with dry CH ₄ 151
Figure 7-9 Variation of CH ₄ composition and conversion during 30, 40 and 15 hrs of operation with dry
CH ₄ at 0.35 A cm ⁻² and 700°C for the cell (a) without H ₂ S and (b) with H ₂ S pre-treatment
Figure 7-10 Variation of CO composition during galvanostatic operation with humidified H ₂ after 30, 40
and 15 hrs operation in dry CH ₄ at 0.35 A cm ⁻² and 700°C in the cell (a, c, e) without H ₂ S and (b, d, f)
with H ₂ S pre-treatment
Figure 7-11 Variation of CO ₂ composition during galvanostatic operation with humidified H ₂ after 30, 40
and 15 hrs operation in dry CH ₄ at 0.35 A cm ⁻² and 700°C for the cell (a, c, e) without H ₂ S and (b, d, f)
with H ₂ S pre-treatment
Figure 7-12 Variation of CH ₄ composition during galvanostatic operation with humidified H ₂ after 30, 40
and 15 hrs operation in dry CH ₄ at 0.35 A cm ⁻² and 700°C for the cell (a, c, e) without H ₂ S and (b, d, f)
with H ₂ S pre-treatment156
Figure A-1 Temperature program for NiO-SDC SDC bi-layer sintering
Figure A-2 Temperature program for SSC-SDC sintering
Figure A-3 Equilibrium compositions calculated for a) 20% b) 30% c) 40% CO-CO ₂ 180
Figure A-4 IV curves under humidified H_2 before and after 100 hrs dry CH_4 for the cells a) without H_2S
and b) with H_2S at 700°C
Figure A-5 Signals from a) CO b) CO ₂ and c) CH_4 when switching gas composition from Ar to H_2 and to
Ar again

List of Tables

Table 2-1 Half-cell reactions of five major types of fuel cells	7
Table 2-2 Major types of fuel cells (Li, 2006; Demirbas, 2009; Shah, 2007)	8
Table 2-3 Ionic conductivities of ceria-based and YSZ electrolytes at 800°C (Eguchi, 1997)	19
Table 2-4 Electronic conductivities of LSM, SSC, LSCF and BSCF at 600°C (Rembelski et al., 2012))23
Table 3-1 Anode slurry composition during wet-milling	42
Table 3-2 Cathode ink composition	42
Table 4-1 Ionic conductivities of SDC electrolyte	70
Table 4-2 Electrolyte properties from Matsui et al., (2005b)	75
Table 4-3 OCVs of Ni-SDC SDC SSC-SDC cell under humidified H ₂	77
Table 4-4 Open circuit voltage (OCV), maximum power density and limiting current density of Ni-	
SDC SDC SSC-SDC cell under various fuels and temperatures	83
Table 4-5 R_s and R_p before and after stability test at 700 and 600°C	88
Table 7-1 Area under the MS curves for gases generated in humidified H_2 after 30, 40 and 15 hrs of	
galvanostatic operation in dry CH4	157

Nomenclature

Raman symbols

a_i	Activity of reactant or product <i>i</i>
Ce' _{ce}	Concentration of Ce ³⁺ ions
E	Cell potential (V)
E_r	Equilibrium cell potential (V)
. E ⁰	Cell potential at standard condition (V)
Ea	Activation energy
E _B	Binding energy
E_K	Kinetic energy
E_0, I_0	Amplitude of voltage and current
Ĩ,Ĩ	Oscillating voltage and current
F	Faraday's constant (96,487 C mol ⁻¹)
ΔG	Change in Gibbs free energy (J mol ⁻¹)
ΔG°	Standard change in Gibbs free energy (J mol ⁻¹)
hv	Photon energy
Ι	Current (A)
i	Current density (A cm ⁻²)
i _L	Limiting current density (A cm^{-2})
i ₀	Exchange current density (A cm ⁻²)
j	Imaginary unit
k	Boltzmann constant (8.617 ×10 ⁻⁵ eV K ⁻¹)
K _{eq}	Equilibrium constant
ł	Thickness
n	Number of electrons
n_i	Mole flow rate of species i (mol min ⁻¹)
Р	Power density (mW cm^{-2})
p _{O2} ,an	Partial pressures of oxygen at the anode (atm)
р _{02,ca}	Partial pressures of oxygen at the cathode (atm)
R	Gas constant (8.314 J mol ⁻¹ K)
R _s	Ohmic resistance (Ω cm ²)

R _p	Polarizarion resistance ($\Omega \text{ cm}^2$)	
R _b	Bulk grain resistance ($\Omega \text{ cm}^2$)	
R _{gb}	Grain boundary resistance ($\Omega \text{ cm}^2$)	
R _{el} ,	Electrode resistance (Ω cm ²)	
T,	Temperature (K)	
t	Time	
Vö	Oxygen vacancy	
W _{elec}	Work (J mol ⁻¹)	
W _{elec,max}	Maximum work (J mol ⁻¹)	
Ż	Impedance (Ω cm ²)	
Re Z	Real part of impedance ($\Omega \text{ cm}^2$)	
Im Z	Imaginary part of impedance (Ω cm ²)	

Greek Symbols

ά	Activity of reactant or product
η	Overpotential (V)
η_{act}	Activation overpotential (V)
η_{ohm}	Ohmic overpotential (V)
η_{conc}	Concentration overpotential (V)
ø _s	Entropy change due to irreversible losses $(J mol^{-1} K)$
v_i	Stoichiometric coefficient of reactant or product i
ω	Angular frequency (radian s ⁻¹)
ϕ	Phase angle
$\mu_{O_2,an}$	Chemical potentials of oxygen at anode
$\mu_{O_2,ca}$	Chemical potentials of oxygen at cathode
σ_e	Electronic conductivity (S cm ⁻¹)
σ_i	Ionic conductivity (S cm ⁻¹)

Subscripts

са	Cathode
el	Electrolyte
an	Anode

Abbreviation

AC	Alternating current				
AFC	Alkaline fuel cell				
APU	Auxiliary power unit				
BSCF	$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$				
BSE	Backscattered electron				
CPE	Constant phase elements				
CE	Counter electrode				
CHP	Combined heat power				
CTE	Coefficient of thermal expansion				
DFT	Density functional theory				
EDX	Energy Dispersive X-ray				
EIS	Electrochemical impedance spectroscopy				
GDC	Gadolinia-doped ceria				
GNP	Glycine-nitrate process				
IT-SOFC	Intermediate temperature SOFC				
i-V	Current density-voltage				
L	Inductor				
LGSM	$La_{0.88}Sr_{0.12}Ga_{0.82}Mg_{0.18}O_{3-\delta}$				
LSCM	Lanthanum strontium manganese chromite				
LSM	Strontium-doped lanthanum manganite				
LSCF	Strontium-doped lanthanum cobalt iron oxide				
MCFC	Molten carbonate fuel cell				
MIEC	Mixed ionic electronic conductor				
MS	Mass spectrometry				
Ni-SDC	Ni-samaria doped-ceria				
Ni-YSZ	Ni-yttria-stabilized zirconia				
NiO	Nickel oxide				
OCV	Open-circuit voltage				
OSC	Oxygen storage capacity				
PAFC	Phosphoric acid fuel cell				
PEMFC	Proton exchange membrane fuel cell				

xvi

RE	Reference electrode			
S/C	Steam-to-carbon ratio			
SDC	Samaria-doped ceria			
SE	Secondary electron			
SEŅ	Scanning electron microscopy			
SOFC	Solid oxide fuel cell			
SMMO	Sr ₂ MgMoO ₆			
SSC	Strontium-doped samaria cobalt			
TPB	Triple phase boundary			
TPH	Temperature-programmed hydrogenation			
TPO	Temperature-programmed oxidation			
WE	Working electrode			
XRD	X-ray diffraction			
XPS	X-ray photoelectron spectroscopy			
YDC	Yttria-doped ceria			
YST	Yittria-stabilized titania			
YSZ	Yittria-stabilized zirconia			

Chapter 1 Introduction

World-wide energy consumption has dramatically increased over the last two decades due to population and economic growth as well as changes in quality of life. This rapid growth in energy consumption in both industrialized and developing countries has led to an ever increasing dependence on fossil fuels, causing faster depletion of these resources and serious environmental problems (e.g., air pollution and greenhouse gas emissions). To overcome this problem, better use of these energy resources and the development of sustainable and cleaner energy sources are essential.

Fuel cells are efficient energy generation devices that enable clean conversion of chemical energy from fuels into electrical energy. Due to the direct one-step conversion of chemical energy into electrical energy, the efficiency of energy conversion in fuel cells is higher than in conventional combustion turbines. In addition, fuel cells do not generate harmful pollutants such as nitrogen oxides (NO_x), sulphur oxides (SO_x), carbon monoxide (CO) and particulates since combustion does not take place (Li, 2006).

Known as a high temperature fuel cell operating between 600-1000°C, solid oxide fuel cell (SOFC) can operate with electrical energy efficiencies above 50%. A very important feature of SOFC is that it can operate with many types of fuel including H₂, syngas and hydrocarbons. High temperature operation enables direct conversion of hydrocarbons to occur within the SOFC itself, thereby solving the problems associated with having to purify the fuels before introduction into the fuel cell. When H₂ only is used as fuel, SOFCs emit only water and heat with no pollutants (Stambouli and Traversa, 2002). With other fuels such as hydrocarbons (e.g., CH₄) or synthesis gas (syngas), the carbon dioxide (CO₂) content in the SOFC exhaust stream becomes high since it is not diluted with nitrogen. This may offer better efficiency for eventual CO₂ capture (Dijkstra and Jansen, 2002).

SOFC applications include essentially stationary power generation ranging from residentialscale power units (1 to 5 kW) to on-site power plants (100 kW to 1 MW) and larger-scale distributed power plants (2 to 10 MW). In multi-kW power generation, SOFCs are commonly incorporated with combined heat power (CHP) systems which utilize the generated heat to produce steam and/or provide space heating or domestic hot water. In multi-MW systems, SOFCs can be integrated with gas turbines for further electricity generation using the unreacted portion of the feed stream to the fuel cell. SOFCs are also used for smaller applications such as automobile auxiliary power units (APUs) (5 kW) and portable devices (20-500 W) (Minh, 2004).

Although SOFCs have great potential, technical barriers must be resolved before their widespread commercialization becomes possible. The main challenges are associated with the high costs of the cell component materials and interconnects and the poor long-term performance and stability at the high operating temperatures (i.e., 800-1000°C for high temperature SOFC). Also, when hydrocarbon fuels are used, carbon deposition occurs on the anode and degrades SOFC performance. The accumulation of the carbon in the anode deteriorates performance by impeding the transport of fuel to the active anode sites and in the worst case, by destroying the anode structure.

1.1 Motivation

Intermediate-temperature-SOFCs (IT-SOFCs) which operate from 500 to 700°C have received considerable attention among researchers since they enable much less expensive materials to be used and are more stable due to less thermal degradation than at higher temperatures. However, a decrease in temperature increases the ohmic resistance of the cell operating with the state-of-the-art material (yttria-stabilized zirconia, YSZ). Therefore, the use of materials with better ionic conductivity and a SOFC design aimed at reducing the thickness of the electrolyte is desirable.

Doped ceria (doped-CeO₂) exhibits higher ionic conductivity than YSZ at low operating temperatures. In addition, it has been reported that the presence of ceria in the anode cermet enhances the electrochemical oxidation reaction (Murray *et al.*, 1999). Anode-supported cell design features a thin electrolyte with a thick anode which also serves as the cell support. The thick anode also offers a large number of catalyst sites for chemical and electrochemical reactions to take place when the SOFC is directly fuelled with hydrocarbons. In this work, Ni-samaria doped-ceria (Ni-SDC) anode-supported cells are used. Their performance and the tendency for carbon deposition to occur when hydrocarbon fuels (i.e., CH_4) and CO are used have been examined in this thesis.

Ni-based anodes are highly active for chemical and electrochemical reactions and have high electronic conductivity. However, Ni metal provides a good surface for the formation of carbon and so is prone to carbon deposition when hydrocarbons are fed directly to the anode. Consequently, researchers have made great efforts to improve the carbon tolerance of Ni-based anodes. Most of this work has involved modification of Ni-based anodes during cell fabrication by alloying or impregnating the Ni with metals, noble materials or alkaline earth oxides (Nikolla *et al.*, 2009a; Takeguchi *et al.*, 2003; Asamoto *et al.*, 2009). In this work, we examine the potential to minimize carbon formation by introducing a gas stream containing sulphur in the form of H_2S into the SOFC anode.

Sulphur compounds are well known to be able to poison catalysts and electrodes and thereby terminate electrochemical and chemical reactions. It has been shown that a few ppm of H₂S (e.g. 2-15 ppm at 800 °C) are sufficient to dramatically degrade the electrochemical performance (Matsuzaki and Yasuda, 2000) and methane reforming activity (Rasmussen and Hagen, 2010) in SOFCs. However, according to DFT calculations by Abild-Pedersen *et al.* (2005), the introduction of the appropriate sulphur-bearing species which has a strong affinity for Ni, can inhibit carbon formation by adsorption onto Ni sites that are active for carbon formation. In a work with methane steam reforming, Rostrup-Nielsen (1984) also reported that the used of 1 ppm H₂S for catalyst pretreatment has eliminated the carbon filaments, leaving only amorphous carbon on the Ni catalyst.

Since sulphur compounds can poison catalysts if present in excess amounts, it is important to determine the range of concentrations at which they can suppress carbon formation, but do not unduly poison the Ni-based anodes. Researchers have focused on the negative effects of sulphur on the reforming activity and electrochemical reactions on Ni-based anodes when SOFC is fuelled directly with CH₄. Yet, very little research so far has focused on the potential positive effect of sulphur to inhibit carbon deposition. For this reason, we focus on this topic in this work.

Briefly, the main objectives in this work were:

- To evaluate the performance of Ni-ceria-based (Ni-SDC) cells and their susceptibility towards carbon deposition when directly fed with hydrocarbons (i.e., CH₄) and CO.
- To investigate the effect of incorporating H₂S into the inlet gas stream on carbon deposition at the SOFC anode when operating Ni-SDC cell with CH₄ fuel.

1.2 Organization of the thesis

This thesis is organized into eight chapters.

Chapter 1 presents a general introduction of the research and discusses the research motivation and objectives of the research. This is followed in Chapter 2 with background on fuel cells and SOFC operation, a review of the types of electrolyte, anode and cathode materials used in SOFCs, discussion of the forms of carbon that deposit in SOFC anodes and describes the previous efforts to minimize carbon deposition in Ni-based anodes. Chapter 3 provides details on the procedures to synthesize the electrolyte and anode materials, fabricate the cell and cell set-up, carry out the electrochemical experiments, analyze gas composition and characterize the anode constituents and morphology. The results of experiments carried out to evaluate the performance and stability of anode-supported Ni-SDC cells operating with different fuels (H2, CH4 and CO) at temperatures ranging from 600 to 700°C are presented in Chapter 4. Chapter 5 focuses on carbon deposition in Ni-SDC cells when operating with CH4 and CO fuels. Chapter 6 describes the results of applying different strategies for introducing H₂S into the Ni-SDC cells operating with dry CH4 fuel to mitigate the deleterious effects of carbon formation. Based on the results obtained in Chapter 6, a procedure to reduce the extent of carbon deposition during SOFC operation with dry CH₄ fuel that involves pre-treating the anode with a gas stream containing low concentrations of H₂S is explored further in Chapter 7. In particular, the effects of this approach on SOFC performance, outlet gas composition, CH4 conversion and the amount of carbon deposited are determined. Finally, the thesis closes with conclusions and recommendations for future work in Chapter 8.

Chapter 2 Literature Review

This chapter is divided into three main parts. The first part begins with a background discussion on fuel cells and thermodynamics with specific focus on SOFC operation. As this research is aimed at operating SOFCs at intermediate temperatures, an overview of suitable materials for fuel cell components and cell design are also given. The second part of the chapter covers the topics of internal reforming, direct utilization of hydrocarbon fuels in SOFCs and problems associated with the use of hydrocarbon fuels such as carbon deposition. Included is a review of the forms of carbon that deposit in SOFC anodes. Finally, in the third part of the chapter, efforts to minimize carbon deposition in Ni-based anodes and use H_2S to inhibit carbon formation are discussed.

2.1 Introduction to fuel cells

Fuel cells are very promising devices for energy transfer and power generation. Using the principle of electrochemical conversion, fuel cells produce electricity directly from chemical energy available in their reactants (fuel and oxidant) (O'Hayre *et al.*, 2006). Fuel cells are theoretically more efficient than heat engines and batteries. A heat engine converts the chemical energy into thermal energy and then into mechanical energy before transforming it into electrical energy. This multistep energy conversion tends to lower the overall energy efficiency. Compared to heat engines, fuel cells have potentially higher energy efficiency and are not restricted by Carnot efficiency.

Batteries share the same operational principles as fuel cells where electrical energy is generated directly from reactants through electrochemical reactions. Batteries operate as both energy conversion and energy storage devices. A primary battery undergoes only one discharge cycle in which its chemical reactants are consumed and no attempt is made to recharge it. The maximum amount of energy available depends entirely on the amount of chemical reactants stored within the device. Meanwhile, a secondary battery operates through repeated charge/discharge cycles and requires an external electric power source to regenerate its chemical reactants are consult of the other hand, act solely as

energy conversion units by producing electrical energy as a fuel and oxidant are continuously supplied (Li, 2006).

The conventional pathway of generating electricity involves the thermal combustion of fuel. In a heat engine when hydrogen is used as its fuel, hydrogen reacts with oxygen to produce water and heat:

$$H_2 + \frac{1}{2}O_2 \to H_2 O + heat$$
 2.1

The cleavage of the bonds within H_2 and O_2 and the formation of water involve the transfer of electrons between atoms. The resulting energy change associated with these bonds is released as heat which can be converted into intermediate forms of energy and finally into electricity (O'Hayre *et al.*, 2006). In fuel cells, electrons that move from high-energy reactants to low-energy product are directly harvested as electrical energy. This is made possible since the fuel and oxidant reactants and the sites for oxidation and reduction are spatially separated so that the electrons necessary to complete the overall reaction must flow through an external circuit. The electrode via the external circuit to complete the reaction. The net reaction in a fuel cell is exactly the same as in a heat engine when the fuel is combusted (O'Hayre *et al.*, 2006). A significant amount of energy in the form of heat is also generated within fuel cells. Thus, the simultaneous utilization of this exhaust heat and electrical energy in a fuel cell-gas turbine can potentially improve the overall efficiency of power generation.

A fuel cell consists of three main components: i) fuel electrode (anode) and ii) oxidant electrode (cathode) separated by iii) an electrolyte. The anode and cathode are connected to an external circuit to provide a pathway for the electrons generated/consumed by the electrochemical reactions. The half-cell reactions at the anode and cathode involve ions and electrons. The ions migrate through the electrolyte, while the electrons are transported between the electrodes through the external circuit in the form of electricity. To achieve a high reaction rate and a large power output, the electrodes are porous to maximize the surface area in contact with the reactants, while the electrolyte is thin to minimize its ionic resistance (Varga, 2007). The electrodes provide sites for the electrolyte acts as an ionic conductor, electronic insulator

and a barrier to separate the reactants. Ions can also flow through the electrodes because the electrodes are composite porous materials containing ionically conducting materials (Li, 2006). During fuel cell operation, gaseous fuel (e.g., hydrogen) is delivered to the anode and gaseous oxidant (i.e., 'oxygen from air) is supplied to the cathode. By-products can also be formed at the electrodes depending on the fuel. These by-products are also transported out of the electrode into the gas stream (Haile, 2003).

Fuel cells are primarily classified into five major types: alkaline fuel cells (AFCs), phosphoric acid fuel cells (PAFCs), proton exchange membrane fuel cells (PEMFCs), molten carbonate fuel cell (MCFCs) and solid oxide fuel cells (SOFCs). These five major fuel cells operate via different half-cell reactions depending upon the characteristics of the electrolyte. The principal half-cell reactions operating in each fuel cell are given in Table 2-1.

Fuel Cells	Anode Reaction	eaction Cathode Reaction	
AFC	$H_2 + 20H^- \rightarrow 2H_20 + 2e^-$	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	
PAFC	$H_2 \rightarrow 2H^+ + 2e^-$	$0_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	
PEMFC	$H_2 \rightarrow 2H^+ + 2e^-$	$0_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	
MCFC	$H_2 + CO_3^{2-} \rightarrow H_2O + CO_2 + 2e^-$	$O_2 + 2CO_2 + 4e^- \rightarrow 2CO_3^{2-}$	
	$\mathrm{CO} + \mathrm{CO}_3^{2-} \rightarrow \mathrm{2CO}_2 + 2\mathrm{e}^-$		
SOFC	$H_2 + 0^{2-} \rightarrow H_2O + 2e^-$	$0_2 + 4e^- \rightarrow 20^{2-}$	
	$\mathrm{CO} + \mathrm{O}^{2-} \rightarrow \mathrm{CO}_2 + 2\mathrm{e}^{-}$		

Table 2-1 Half-cell reactions of five major types of fuel cells

Among these fuel cells, AFCs were the first developed and successfully operated in space shuttle missions. Attempts to use AFCs for terrestrial applications, however, have been restricted due to the requirement that pure H_2 and O_2 be used. Acid-based PAFCs are available in commercial units that can generate up to 200 kW power. Nevertheless, this type of fuel cell is not yet considered to be commercially mature. PEMFCs and SOFCs have received the most attention in recent years. With membrane electrolyte and low-temperature operations, PEMFCs are ideal for transportation and have been employed in most prototypes for fuel-cell-powered vehicles. The demand for alternative power generation has drawn considerable interest in developing SOFCs. Due to their high operating temperatures, SOFCs are able to utilize hydrocarbon fuels, making them more flexible with respect to fuel options than the other types. MCFCs which are the other high temperature cells are still in the early stages of development and pre-commercial demonstration (Li, 2006). The operating characteristics of the five types of fuel cells are summarized in Table 2-2.

	Type of fuel cells					
Features	AFC	PAFC	PEMFC	MCFC	SOFC	
Electrolyte	KOH aqueous (immobilized)	H ₃ PO ₄ solution (immobilized)	Polymer membrane	Molten carbonate salt	Ion- conducting ceramic	
Electrodes	Pt (Anode/ Cathode)	Pt (Anode/ Cathode)	Pt (Anode/ Cathode)	Ni (Anode/ Cathode)	Ni-YSZ (Anode) La _{0.8} Sr _{0.2} MnO ₃ (Cathode)	
Charge carrier	OH.	H ⁺	H^+	CO ₃ ²⁻	O ²⁻	
Operating temperature (°C)	60-80	160-220	50-80	600-700	600-1000	
Fuels	H ₂	H ₂	H ₂ , CH ₃ OH, C ₂ H ₄ OH	H ₂ , CO, CH ₄	H_2 , CO, CH ₄	
Efficiency (%)	60-70	40-45	45-60	60-65	55-65	
Applications	Transportation, space travel	Stationary power generation, CPH	Transportation, portable equipment, space travel	Stationary power generation, CPH	Stationary power generation, CPH	

Table 2-2 Major types of fuel cells (Li, 2006; Demirbas, 2009; Shah, 2007)

CHP: Combined heat and power