TREE WATER UPTAKE ON SUCTION DISTRIBUTION IN UNSATURATED TROPICAL RESIDUAL SOIL SLOPE

MOHD FAKHRURRAZI BIN ISHAK

A thesis submitted in fulfilment of the requirements for the award the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > OCTOBER 2014

ABSTRACT

This study provides an investigation of active root tree zone located at the toe of a slope. This section and its vicinity generated matric suction due to tree water uptake on tropical residual soil slope. The research employed several approaches i.e field monitoring, laboratory experimental and numerical modelling. A field monitoring was carried out to collect matric suction data at the slope with two conditions; in absence of a tree and with a tree located at the toe of a slope. The unsaturated shear strength behaviour of soil under different stress level is investigated, using uncomplicated testing procedure subject to actual matric suction encountered during field monitoring. The numerical simulation modelling was applied based on the laboratory results to obtain the most appropriate condition to replicate the tree water uptake within the soil slope. A decrease in matric suction occured after a long duration of intense rainfall. This condition was function as an initial condition before the water uptake driven by active root tree generated to the maximum matric suction (low moisture content). The pattern of matric suction profiles revealed that majority of matric suction changes was greater at the proximity of tree trunk below 4 m and at a shallow depth of 0.5 m. Transpiration on single mature tree has significantly altered the matric suction or moisture variation distribution on an unsaturated soil slope. This study also illustrated the nonlinear relationship between the apparent shear strength and suction influencing the stability of the slope. The assessment of slope stability due to the influence of a tree induced suction was provided in this research. The factor of safety against slope failure has improved up to 63 % on slope with tree at toe compared to a slope without tree. Lastly, the numerical simulation modelling of matric suction induced by a tree has been verified through comparison to actual field monitoring results recorded during the dry period. Generally, an acceptable aggrement between simulation and field monitoring results has been achieved. This research delivers a strong belief that a preserved mature tree can improve soil properties in slopes designs.

ABSTRAK

Kajian ini merangkumi penyiasatan di zon aktif akar pokok yang terletak di kaki cerun. Di bahagian ini dan kawasan sekitarnya menjanakan sedutan matrik disebabkan pengambilan air daripada pokok di tanah tropika sisa pada sekitar cerun. Penyelidikan ini mengambil beberapa pendekatan iaitu pemantauan di lapangan, ujikaji-ujikaji makmal dan pemodelan berangka. Pemantauan di lapangan yang dijalankan bagi mengumpul data sedutan matrik di cerun dilakukan dalam dua keadaan; tanpa kewujudan pokok dan dengan kewujudan pokok yang terletak di kaki cerun. Sifat kekuatan ricih tanah tak tepu diuji dibawah tahap tekanan yang berbeza dengan menggunakan kaedah yang tidak rumit bergantung kepada nilai sebenar sedutan matrik yang direkodkan semasa pemantauan di lapangan. Simulasi berangka dijalankan berdasarkan keputusan makmal untuk mendapatkan nilai yang paling sesuai bagi menunjukkan pengambilan air daripada pokok di cerun tanah dengan corak sedutan matrik di lapangan. Penurunan sedutan matrik berlaku selepas hujan lebat yang panjang. Situasi ini berfungsi sebagai keadaan awalan sebelum pengambilan air didorong oleh akar pokok yang aktif menjana sedutan matrik kepada nilai yang paling tinggi (kandungan kelembapan yang rendah). Corak profil sedutan matrik mendedahkan bahawa kebanyakan perubahan sedutan matrik adalah lebih besar berdekatan batang pokok berdekatan (4 m) dan pada kedalaman yang cetek (0.5 m). Transpirasi hanya daripada sebatang pokok matang dapat memberikan sumbangan yang amat ketara dalam mengubah sedutan matrik atau kelembapan pada cerun tanah tak tepu. Terdapat hubungan tak linear di antara kekuatan ricih dan sedutan yang mempengaruhi kestabilan cerun. Penilaian kestabilan cerun disebabkan pengaruh sedutan oleh pokok juga terdapat dalam kajian ini. Faktor keselamatan terhadap kegagalan cerun telah bertambah sehingga 63 % pada cerun dengan pokok di kaki berbanding dengan cerun tanpa pokok. Terakhir sekali, simulasi pemodelan berangka sedutan matrik yang dijanakan oleh pokok dan disahkan secara langsung dengan keputusan pemantauan sebenar yang dicatatkan semasa tempoh keadaan kering. Secara amnya, keputusan simulasi dan pemantauan di lapangan menunjukkan hubungan yang munasabah. Kajian ini memberikan keyakinan yang kuat terhadap pemeliharaan pokok matang yang boleh memperbaiki sifat-sifat tanah dalam merekabentuk cerun..

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	TITI	LE OF PROJECT	i
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	ГКАСТ	v
	ABS	ГКАК	vi
	TAB	LE OF CONTENTS	vii
	LIST	OF TABLES	xiv
	LIST	OF FIGURES	xvi
	LIST	OF SYMBOLS	xxiv
	LIST	OF APPENDICES	xxvii
	INTI	RODUCTION	1
	1.1	Background of the Study	1
	1.2	Problem Statement	4
	1.3	Objectives	5
	1.4	Scope of Study	6
	1.5	Significance of Study	7

Thesis Organization

1.6

LITE	RATURE REVIEW	11
2.1	Introduction	11
2.2	Tropical Residual Soil	12
	2.2.1 Formation and Degree of Weathering	13
2.3	Unsaturated Soil Behavior	16
	2.3.1 Soil Matric Suction	17
	2.3.2 Soil Water Characteristic Curve	
	(SWCC)	18
	2.3.3 Hydraulic Conductivity Function	22
2.4	Shear Strength of Unsaturated Soil	24
	2.4.1 Axis Translation Technique	28
2.5	Rainfall Infiltration	29
	2.5.1 Infiltration On Slope Depth Of Wetting	
	Front And Redistribution	29
2.6	Richard's Equation	31
2.7	Tree Water Uptake	33
	2.7.1 Root Water Uptake Process	35
	2.7.2 Transpiration	39
2.8	Field Monitoring	41
2.9	Numerical Simulation Of Tree Water Uptake	
	Model	44
2.10	Concluding Remarks	46

RESE	EARCH	METHOI	DOLOGY	48
3.1	Introdu	ction		48
3.2	Parame	eters Analy	vsis	51
3.3	The St	udy Area		52
	3.3.1	Topograp	bhy	52
	3.3.2	Regional	Geology	53
	3.3.3	Subsurfac	ce Investigation	56
3.4	Soil C	Characteriz	ation	58
		3.4.1	Soil Properties	58
3.5	Index	Properties	Test	60
	3.5.1	Laborato	ry Permeability Tests	62
	3.5.2	Determir	nation of Soil Water	
		Characte	ristic Curve (SWCC)	63
	3.5.3	Mineralc	ogy and Fabric Tests	64
3.6	Engin	eering Pro	perty Tests	65
	3.6.1	Determin	nation Unsaturated Shear Strength	67
		3.6.1.1	Determination Of Variation	
			Matric Suction	68
	3.6.2	Unconso	blidated Undrained Tests	72
3.7	Field	Monitorin	g	72
	3.7.1	Field M	onitoring Work	73
	3.7.2	Field In	strumentations	77
		3.7.2.1	Installation Of Gypsum Block	79
		3.7.2.2	Installation Of Tensiometers	81
		3.7.2.3	Installation And Calibration Of	
			Rain Gauge	83

3.8	Acacia	Mangium	<i>i</i> Tree		85
3.9	Gid So:	ftware Pro	ogram		86
3.10	Numer	ical Mode	elling		87
3.11	Conclu	uding Ren	narks		88
PREL	IMINA	RY DAT	A		90
4.1	Introdu	uction			90
4.2	Residu	ial Soil Pi	rofile		91
4.3	Soil P	roperties			95
	4.3.1	Index Pr	operties and Soil		
		Classifie	cations	9	96
	4.3.2	Mineral	ogy and Microfabric		
		Characte	eristics		101
	4.3.3	Enginee	ring Properties		123
		4.3.3.1	Shear Strength		105
		4.3.3.2	Saturated Hydraulic		
			Conductivity		106
	4.3.4	Hydraul	ic Properties		108
		4.3.4.1	Soil Water Characteristic		
			Curve (SWCC)		109
		4.3.4.2	Hydraulic Conductivity		
			Function		112
4.4	Field N	Monitorin	g Result		113
4.5	Conso	lidated Is	otropic Undrained Tests		138

4.6	Suction Requirement In Unconsolidation	
	Undrained (UU)	139
	4.6.1 Unconsolidated Undrained Tests	140
	4.6.2 Unsaturated Shear Strength	
	Parameters	142
	4.6.2.1 Unsaturated Shear	
	Strength	142
4.7	Unsaturated Shear Strength Behaviour And Suction Variation	138
4.8	Pattern Suction Distribution At Slope Without Tree And 1m From Tree	
	Respond To Single Rainfall Event	148
4.9	Concluding Remarks	156
EFFI SUC	ECT OF TREE WATER UPTAKE ON TION DISTRIBUTION	158
5.1	Introduction	158
5.2	Rainfall Intensities Patterns	159
5.3	Tropical Residual Soil Layer	161
	5.3.1 Infiltration To Wetting Front	163
5.4	Analysed of In-Situ Matric Suction	166
	5.4.1 Pattern of Matric Suction Due To	
	Tree Water Uptake	166
	5.4.2 Matric Suction Profiles Due To	
	Tree Water Uptake	173
5.5	Field Monitoring Representation	179

	5.5.1 Matric Suction Contour Due To Tr	ee
	Water Uptake	
5.6	Concluding Remarks	
ANA SLO	LYSIS OF TREE INDUCE SUCTION ON PE STABILITY	
6.1	Introduction	
6.2	Unsaturated Soil Slope	
	6.2.1 Unsaturated Soil Shear Strength Model	
	6.2.2 Procedure to determine the non- linear failure envelope	
6.3	Stability of Unsaturated Slopes	
	6.3.1 Assessing Slope Stability	
6.4	Matric Suction Related To Factor Of Safety (FOS)	
	6.4.1 Tree Induce Suction Influence Stability Of Slope	
	6.4.2 Slope Stability Analyses	
6.5	Concluding Remarks	
TRF NUN	EE INDUCE SUCTION AND MERICAL MODELLING	
7.1	Introduction	
7.2	Comparison With Nonlinear Failure	
	Envelope	
	7.2.1 Fitting of experimental results with	L
	failure envelope (Fredlund et al.,	
	1996)	

xii

7.3	Development Of Soil Matric Suction	
	During Drying Season	217
7.4	The Water-Uptake Model	220
	7.4.1 Development of Two-Dimensional Axi-	
	Symmetric Water Uptake Equation	221
7.5	Input Data From Laboratory Results	218
7.6	Comparisons between Field and Simulated	
	modelling Suction Distributions	227
	7.6.1 Numerical Simulation And Field Matric	
	Suction Measurements	227
7.7	Concluding Remarks	231
CON	ICLUSIONS AND RECOMMENDATIONS	233
8.1	Summary	233
8.2	Engineering Properties And Shear Strength	
	Envelop Of Residual Soils	235
8.3	Distribution Of Matric Suction Profiles	223
8.4	Non-linear shear strength envelop and FOS	237
8.5	Numerical Simulation And Field	
	Measurements	238

REFERENCES	241
Appendices A – G	262 - 320

LIST OF TABLES

TITLE

TABLE NO.

2.1	Rooting information and relative water demands for some common tree species, modified after Crow (2004)	38
2.2	Transpiration rate for trees	40
3.1	The regional geological succession stratigraphy and formation in the study area	54
3.2	Sources of the field identification system (Singh, 1992)	57
3.3	Target moisture content values and target suctions	70
3.4	Target weights for target suctions for unsaturated soil specimens	71
3.5	Technical detail of instrument at study area	75
4.1	The properties of the soil material in this study area	95
4.2	Physical indices of residual soil from within Singapore - Johor Bahru - Kulai area	99

PAGE

4.3	Percentages of residual soil components based on grain size from within Singapore - Johor Bahru - Kulai area	100
4.4	Mineral constituents obtained from XRD test	101
4.5	Mineral compositions obtained from the mineralogy tests	102
4.6	Shear strength properties of study area	105
4.7	Engineering properties of residual soil from within Singapore-Johor Bahru – Kulai area	107
4.8	SWCC parameters of the residual soils	110
4.9	SWCC parameter of the residual soil (sandy SILT) from within Singapore-Johor Bahru-Kulai	111
4.10	Undrained compressive strengths for UU tests for several ranges of suctions and cell pressures	141
4.11	Unsaturated shear strength parameters (ϕ^b , C_{app}): (a) Specimens under cell pressure 20 kPa; (b) Specimens under cell pressure 50 kPa; (c) Specimens under cell pressure 100 kPa; (d) Specimens under cell pressure 200 kPa	143
4.12	Values of angle of frictional resistance to the contribution of matric suction (ϕ^b) in Aev	147
4.13	Reduction ratio of ϕ ' for the highest suction pressure tested (300 kPa)	148
5.1	Rainfall patterns used in infiltration analysis from 18th December to 23rd December 2011	160
5.2	Rainfall patterns used in infiltration analysis from 31st February to 4th February 2012	160

5.3	Depth of infiltration in soil layer on 18th December 2011, 19th December 2011 and 23rd December 2011	164
5.4	Depth of infiltration in soil layer on 31st February 2012, 2nd February 2012 and 4th February 2012	165
6.1	Experimental values of shear strength with value of ϕ^b angle of tropical residual soil	191
6.2	Non-linear value of ϕ^b angle at several suction ranges	196
6.3	Comparison of FOS by various methods of analysis	202

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Classification of the weathering profile (McLean and Gribble, 1979)	15
2.2	Typical vertical matric suction profile (Lee, 2008)	18
2.3	Typical soil water characteristic curves (Fredlund and Xing, 1994)	20
2.4	Soil water characteristic curves for sandy soil, a silty soil, and a clayey soil. (Fredlund and Xing, 1994)	21
2.5	Typical suction-dependent hydraulic conductivity function (Soilvision, 2007)	23
2.6	Extended Mohr-Coulomb failure envelopes for unsaturated soil (Fredlund and Rahardjo, 1993)	26
2.7	Volumetric water content and suction in the development of wetting front (Wang <i>et al.</i> , 2003)	31
2.8	Water use by trees, modified after Nisbet (2005)	36
2.9	Typical nature of root architecture at top of the river banks	39
3.1	Flow chart of research methodology	50
3.2	Location of Acacia manggium tree	52
3.3	Regional geology of Johor Bahru-Skudai-Kulai (Burton, 1973)	55
3.4	Field investigations (trial pit) at the study area	58

3.5	field investigation (trial pit) at depth 1.5 m	59
3.6	Constant head permeameter under testing	62
3.7	Pressure plate extractor test setup in Universiti Putra Malaysia	64
3.8	Consolidation Isotropic Undrained (CIU)Triaxial compression test	67
3.9	Two unsaturated soil specimen inside the oven to decrease moisture content and weights to reach target weights	70
3.10	Cross-sectional view of the research plot design at Faculty of Electrical Engineering, UTM	74
3.11	Jet-fill Tensiometers and Gypsum Moisture Blocks are installed at Station Slope area according to depth	75
3.12	Jet-fill Tensiometers and Gypsum Moisture Blocks are installed at Station Flat according to depth	76
3.13	Acacia mangium tree located at the toe of slope with position of instrument (tensiometer, gypsum block & rain gauge)	77
3.14	Calibration and capability of Tensiometer and Gypsum blocks	79
3.15	a) Gypsum block installed at the study area b) The gypsum block is connected to lead wires meter reader	80
3.16	Meter reading on the suction Soil Moisture Observation Chart	81
3.17	Tensiometer installed at field study	82
3.18	Rain gauge at study area	84
3.19	Acacia mangium tree at toe of slope	85
3.20	Acacia mangium leaves	86
	 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 	 3.13 Acacia mangium tree located at the toe of slope with position of instrument (tensiometer, gypsum block & rain gauge) 3.14 Calibration and capability of Tensiometer and Gypsum blocks 3.15 a) Gypsum block installed at the study area b) The gypsum block is connected to lead wires meter reader 3.16 Meter reading on the suction Soil Moisture Observation Chart 3.17 Tensiometer installed at field study 3.18 Rain gauge at study area 3.19 Acacia mangium tree at toe of slope 3.20 Acacia mangium leaves

	٠	٠	٠
XV	1	1	1

4.1	Field scale of trial pit toward Face A, B and C	92
4.2	Interpretation of profile residual soil from Faculty of Electrical Engineering	93
4.3	General subsurface profile of Faculty of Electrical Engineering	94
4.4	Particle size distribution of tropical residual soil (sandy SILT)	97
4.5	Grade VI residual soil of sandy SILT, magnified 200 times using a scanning electron microscope (SEM)	103
4.6	Sandy SILT using magnified 500 scanning electron microscope (SEM), shows typical subangular blocky of mineral	104
4.7	The soil-water characteristic curves (SWCC) of the residual soils	109
4.8	Hydraulic conductivity function with responds to matric suction of the residual soils predicted by using Van Genutchten's method (1980)	112
4.9	Hydraulic conductivity functions with responds to volumetric water content of the residual soils predicted by using Van Genutchten's method (1980)	113
4.10	Field matric suction respond to rainfall distribution at slope without tree during monitoring period of July 2011 to December 2012The rainfall simulator	115- 117
4.11	Field matric suction respond to rainfall distribution at Station Slope 1, 2 and 3 during monitoring period of July 2011 to December 2012	119- 127
4.12	Field matric suction respond to rainfall distribution at Station Flat 1, 2 and 3 during monitoring period of July 2011 to December 2012	129- 137
4.13	Effective stress failure envelopes and Mohr's circles for sample 1, 2 and 3	139

4.14	Soil Water Characteristic Curve (SWCC) based on gravimetric water content versus suction	140
4.15	Apparent shear strength versus suction at low cell pressures (20 and 50 kPa)	144
4.16	Apparent shear strength versus suction at high cell pressures (100 and 200 kPa)	145
4.17	Apparent shear strength envelopes with direction of dilation increasing	146
4.18	Matric suction profiles on slope without tree as result of an intense and short rainfall	149
4.19	Matric suction profiles on slope 1m from tree as result of an intense and short rainfall	151
4.20	Matric suction profiles on slope without tree as result of an antecedent rainfall	152
4.21	Matric suction profiles on slope 1m from tree as result of an antecedent rainfall	153
4.22	Matric suction profiles on slope without tree as result of prolonged antecedent rainfall	154
4.23	Matric suction profiles on slope 1m from tree as result of prolonged antecedent rainfall	155
5.1	Matric suction distribution due to rainfall on 18th December 2011, 19th December 2011 and 23rd December 2011	162
5.2	Matric suction distribution due to rainfall on 31st February 2012, 2nd February 2012 and 4th February 2012	162
5.3	Field matric suction profiles directly 1m from tree (Station slope 1)	167

5.4	Field matric suction profiles directly 2m from tree (Station slope 2)	168
5.5	Field matric suction profiles directly 4m from tree (Station slope 3)	169
5.6	Field matric suction profiles at toe of slope without tree	170
5.7	Ranges of measurement matric suction at 1m from tree (Station Slope 1) from 25th December 2011 to 6th January 2012	171
5.8	Ranges of measurement matric suction at 2m from tree (Station Slope 2) from 25th December 2011 to 6th January 2012	172
5.9	Ranges of measurement matric suction at 4m from tree (Station slope 3) from 25th December 2011 to 6th January 2012	172
5.10	Ranges of measurement matric suction at at toe of slope without tree from 25th December 2011 to 6th January 2012	173
5.11	Field matric suction results on 24 December 2011 at Station Slope and Slope without tree	174
5.12	Field matric suction results on 24 December 2011 at Station Flat and Slope without tree	174
5.13	Field matric suction on 2nd January 2012 at Station Slope and Slope without tree	175
5.14	Field matric suction on 2nd January 2012 at Station Flat and Slope without tree	176
5.15	Field matric suction on 6th January 2012 at Station Slope and slope without tree	177
5.16	Field matric suction on 6th January at Station Flat and slope without tree	177

xx

5.17	Finite element mesh of measured slope geometry with tree at toe of slope				
5.18	Matric suction (kPa) contour on 2nd January 2012	181			
5.19	Matric suction (kPa) contour on 6th January 2011	182			
6.1	Non-linear variation of shear strength relative to matric suction for tropical residual soil (Toll <i>et al.</i> , 2000)	192			
6.2	Illustrating the effect of desaturated and shear strength, relationship between soil-water characteristic curve and shear strength versus matric suction envelope (Gan and Fredlund, 1996)	193			
6.3	Non-linear in failure envelope with several ϕ^b value on the shear strength versus matric suction plane (Fredlund <i>et al.</i> , 1987)	194			
6.4	Non-linearity in the failure envelope on the apparent strength versus suction plane Comparison between	195			
6.5	Forces acting on a slice through a sliding mass with a circular slip surface, modified after Fredlund and Rahadjo (1993)	197			
6.6	Identification of the critical slip surface using commercial software (SLOPE/W)	201			
6.7	Detail of slope geometry with slip surface and location of slices	202			
6.8	Variation of FOS with matric suction	204			
6.9	Matric suction (kPa) variations with critical slip surface and slices on slope at Faculty Electrical Engineering	205			
6.10	Moisture content profiles at distance 1 m from tree (Station slope 1)	206			
6.11	Moisture content profiles at distance 2 m from tree (Station slope 2)	207			
6.12	Moisture content profiles at distance 4 m from tree (Station slope 3)	207			

6.13	Matric Suction (kPa) encounter at the base of the slice (refer to figure 6.9)	208
6.14	Factor of safety versus time for slopes with and without tree at toe (July 2011-December 2012)	209- 210
7.1	Comparison of nonlinear failure envelope for the soil at study area	217
7.2	Progressive development of matric suction during drying periods at 1m from tree	218
7.3	Progressive development of matric suction during drying periods at 2m from tree	219
7.4	Progressive development of matric suction during drying periods at 4m from tree	219
7.5	Simulated (period time 21 days) and measured matric suction profile from 20th July 2012 to 11th August 2012 at 1 m from tree	228
7.6	Simulated (period of time 21 days) and measured matric suction profile from 20th July 2012 to 11th August 2012 at 2 m from tree	229
7.7	Simulated (period of time 21 days) and measured matric suction profile from 20th July 2012 to 11th August 2012 at 4 m from tree	229
7.8	Contour of matric suction (kPa) in the vicinity of <i>Acacia mangium</i> tree at toe of slope (a) numerical simulation (b) actual field measurement results	230

LIST OF SYMBOLS

A _{ev}	-	Air entry value
c'	-	Effective cohesion
е	-	Void ratio
g	-	$Gravity = 9.81 \text{ m/s}^2$
Gs	-	Specific gravity
Ι	-	Rainfall intensity
k	-	Water coefficient of permeability
k _{sat}	-	Saturated permeability
Κ(ψ)	-	Hydraulic conductivity of wetted zone
L_{f}	-	Wetting front depth
L _r	-	Redistribution depth
m_{w}	-	Slope of soil water characteristic curve (SWCC)
n	-	Porosity
q	-	Rainfall unit flux
t	-	Time
<i>u</i> _a	-	Pore-air pressure
<i>u</i> _w	-	Pore-water pressure
$(u_a - u_w)$	-	Matric suction
W	-	Total weight of soil
W _{ev}	-	Water entry value

β	-	Slope inclination angle
χ	-	Parameter related to the soil degree of saturation
φ'	-	Effective friction angle
ϕ^b	-	Angle indicating unsaturated
γd	-	Unit weight of dry soil
γw	-	Unit weight of water = 9.81 kN/m^3
π	-	Osmotic suction
θ	-	Volumetric water content
Θ_i	-	Initial volumetric water content
Θ_r	-	Residual volumetric water content
Θ_s	-	Volumetric water content at saturation of absorption curve
$ ho_b$	·_	Bulk density
ρ_d	-	Dry density
$ ho_w$	-	Density of water
σ	-	Total normal stress
σ'	-	Effective normal stress
τ_{f}	-	Shear stress at failure
Ψ	-	Suction
Ψ_{min}	-	Minimum Suction value
ψ_T	-	Total suction
$C(\psi)$	-	Specific moisture capacity (cm ⁻¹)
r _r	-	Maximum rooting radial (cm)
S_m	-	Shear force mobilized on the base of each slice (kN)
$S(\psi, z, r)$	-	Sink term $(cm^3/cm^3/s)$
T, T_j	-	Potential Transpiartion rate

Zr	-	Maximum rooting depth (m)
α(ψ)	-	Pressure head dependent reduction factor
Ν	-	Total force on the base of the slice (kN)
0	-	The centre of slip rotation
Θ	-	Normalized volumetric water content
χ	-	Parameter related to the soil degree of saturation
C_{app}	-	Apparent shear strength
q_u	-	Undrained compressive strength
Ws	-	Weight of solid soils in the specimen
W_T	-	Target weight of the specimen
W_w	-	Weight of water in the specimen
$(\Delta \sigma_d)_f$	-	Deviator stress at failure
З	-	Axial strain
ω	-	Moisture content
ω_0	-	Initial moisture content
ω_T	-	Target moisture content of the specimen

xxvii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Summary of Consolidated Isotropic Undrained (CIU) Test Result	262
В	Unconsolidated Undrained Test Results	265
С	Field Monitoring Data at Slope Of Faculty Of Electrical Engineering	286
D	Calculation Of FOS Related To Saturated Slope	300
Е	Calculation Of FOS With Variation of Matric Suction and ϕ^b Angle	301
F	Calculation Of FOS Without and With Tree At Toe	305
G	List Of Publications	319