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Abstract

This thesis contributes to the research and development towards achieving better
structural health monitoring (SHM) system for composite structures. Compos-
ites are widely used in critical engineering applications due to the advantage of
higher specific strength and stiffness compared to other conventional materials.
However, comp051te laminates have a very high probability of unexpected damage
development during service. This study uses fiber Bragg grating (FBG) sensor
to create a practical and robust SHM tool based on monitoring the acoustic
emission, in order to provide continuous information of the structure’s condition.
The remarkable capability of using the FBG sensors for dynamic sensing has been
demonstrated, in particular for the wave propagation based SHM. Combined with
FBQ sensor technologies, the wave propagation based SHM such as acoustic emis-
sion (AE), ultrasonic evaluation and acousto-ultrasonics becomes more exciting.
The FBG sensor has the ability of acquiring both static and dynamic strains with
a single sensor. Besides, the physical size of FBG sensor provides greater access to
embed them in composite structures without significantly affecting its structural
properties. This study also emphasizes some drawbacks in the use of piezoelectric
sensors in the wave propagation based SHM of composite structures, specifically
in the AE applications. In most optical fiber based SHM applications to date,
people have used only FBG sensors with wavelength 1550 nm. The FBG sensors
with this wavelength are commonly used in industries such as telecommunications
and health. However, there is an option of using near infra-red (NIR) FBG range
which is comparably cheap in terms of total system design, yet offers the same
performance of a conventional 1550 nm range FBGs. This research work presents
the NIR FBG dynamic sensing system, as a wave propagation-based SHM system
for monitoring the damages in thin glass fiber reinforced composite plates. The
NIR-FBG sensor system has been validated successfully, in particular for thin
composite plate’s applications. The sensor system has shown its unique capabil-
ity whereby it can be applied in the area which cannot be accessed by standard
piezoelectric based system. The developed NIR FBG sensor system has shown
its competitiveness and ability to replace-the-piczoslectiicmssnsess Aenlrlluag W AV E

propagation based SHM’ of laminated CO“‘@QR}E%WTAKMN aly’s
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o Stress

3 Strain

Oij 2 X 2 stress matrix

E Young’s modulus
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of wand T

Continuous Wavelet Transform (CWT) of a function
Basic wavelet or mother wavelet

Scale

Wavelet centre frequency

Discrete Wavelet Transform of a function

~ Arrival time of a specific frequency, f

Length

Sound wave attenuation
Attenuation coefficient
Decay constant
Photon’s energy
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SNR

nm

kHz
MHz

Planck’s constant

Wavelength

Speed of light in vacuum
Energy of the conduction band
Energy of the valence band
Current

Power

Electron charge

Quantum efficiency
Temperature

Responsivity

Refractive index

Grating period

Order of the grating

Thermal expansion
Thermo-optic coeflicient
Effective photo-elastic constant

.Poisson probability distribution
Mean number of photoelectrons detected at At

Signal to noise ration
Wavespace vector
nanometer

Hertz

~ kilohertz

megahertz



Acronyms and Abbreviations

SHM
NDE
FBG
AE
ELE
MAE
MEMS
NIR
PZT
GFRP
CFRP
NDT
FSDT
CLPT
FFT
STFT
CWT
DWT
FRP
PAC
FTC

Structural Health Monitoring
Nondestructive Evaluation

Fiber Bragg Grating

Acoustic Emission

Elastic Emission

Modal Acoustic Emission
Microelectromechanical System
Near Infra Red

Piezoelectric Transducer

Glass Fibre Reinforced Plastic
Carbon Fibre Reinforced Plastic
Nondestructive Testing
First-Order Shear Deformation Theory
Classical Laminated Plate Theory
Fast Fourier Transform

Short Time Fourier Transform

"Continuous Wavelet Transform

Discrete Wavelet Transform
Fiber Reinforced Polymer
Physical Acoustic Corporation
First Threshold Crossing
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