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SINTESIS, PENCIRIAN DAN PELAKSANAAN BERMANGKIN 

Cu/ZnO/SBA-15 BAGI PENGHIDROGENAN KARBON DIOKSIDA 

KEPADA METANOL 

ABSTRAK 

Karbon dioksida (CO2) adalah gas rumah hijau yang utama yang 

menyebabkan kepanasan sejagat. Penukaran CO 2 kepada metanol (CH30H) adalah 

salah satu alternatif kepada mahalnya perampasan CO 2 kaji bumi dan samudera. 

CH30H adalah satu bahan penting dalam industri kimia dan dikenali sebagai satu 

bahan bakar alternatif. Penukaran CO 2 bermangkin dan masa ruang hasil metanol 

(STY) ada1ah bagaimanapun dilaporkan sangat rendah. Oleh itu penting untuk 

membangunkan mangkin secara meningkatkan sifat-sifat penambahan bermangkin. 

Amorfus Santa Barbara 15 (SBA- 15) dengan struktur heksagon yang sangat tersusun, 

diameter hang (-5.5 nm) dan morfologi zarah yang sekata, ketebalan dinding yang 

tebal (3.0 to 5.0 nn), luas kawasan permukaan, dan tinggi kestabilan haba telah 

berjaya disintesis sacara lazim tanpa proses penuaan hidrotermal. SBA-15 yang 

disintesis digunakan sebagai penyokong mangkin. Beberapa mangkin monologam 

dan dwilogam kuprum (Cu) atau/dan zink oxida (ZnO) disokong atas SBA-15 telah 

disintesis secara refluks. Sifat-sifat kima fizik mangkin yang disediakan dikaji 

melalui pembelauan X-ray (XRD), penjerapan nitrogen, anahisis pemetaan gravity 

haba (TGA), mikroskop elektron imbasan (SEM), anahisis serakan tenaga X-ray 

(EDX), mikroskopi elektron transmisi (TEM), and hidrogen-penurunan 

berprogramkan suhu (H2-TPR). Nilai optimum 5 wt.% Cu dan 15 wt.% ZnO 

disokong atas SBA-15 digelarkan sebagai 5CuJ15ZnO/SBA-15 dijumpai berkesan 

untuk memangkinkan penghidrogenan CO2 kepada CH30H. Keadaan optimum 

xvii



proses penghidrogenan CO2 kepada CH30H atas SCull 5ZnO/SBA- 15 dijumpai pada 

tekanan tindak balas 4.0 MPa, suhu tindak balas 250 °C, dan halaju ruang jam jumlah 

gas bahan tindak balas (GHSV) 2400 h1 yang memberi keputusan kepada 22.9% dan 

11796.8 mmol kgcaf' h 1 masing-masing kepada penukaran CO 2 dan CH3 0H STY. 

Satu mekanisme laluan sintesis CH30H dan tindak balas anjakan balikan gas air 

(RWGS) atas CulZnO/SBA-15 dicadangkan, berdasarkan keputusan ujikaji yang 

diperolehi dalam pembelajaran mi. Pengiraan tenaga pengaktifan sintesis CH30H 

dan pembentukan karbon monoksida (CO) adalah masing-masing 35.29 kJ/mol dan 

68.02 kJ/mol, Penukaran CO2 dan CH30H STY adalah stabil sepanjang 24 jam arus 

tindak balas dan didapati tiada nyahaktifan yang ketara. Aktiviti bermangkin 

tertinggi diperoleh melalui mangkin 5CuI15ZnO/SBA-15 boleh dihubungkan kepada 

tingginya serakan Cu dan ZnO keatas permukaan SBA-15, menghasilkan jumlah 

tapak aktif yang lebih banyak, yang diperlukan untuk sintesis metanol. Pengendapan 

ZnO penghijrahan diatas permukaan Cu dijumpai untuk nyahaktif tindakbalas 

RWGS kepada CO; dan oleh itu meningkatkan kememilihan CH30H. 

xviii



SYNTHESIS, CHARACTERIZATION AND CATALYTIC PERFORMANCE 

OF Cu/ZnO/SBA-15 FOR HYDROGENATION OF 

CARBON DIOXIDE TO METHANOL 

ABSTRACT 

Carbon dioxide (CO2) is the primary greenhouse gas that causes global 

warming. The conversion of CO 2 into methanol (CH3 0H) is an alternative to the 

costly geological and oceanic CO 2 sequestration. CH30H is an important feedstock in 

the chemical industries and known as an alternative fuel. The catalytic CO2 

conversion and CH30H space time yield (STY) is however reported to be 

considerably low. It is therefore of importance to develop novel catalysts with 

improved properties for catalytic growth. Santa Barbara Amorphous 15 (SBA-1 5)

 with highly ordered hexagonal structure, uniform pore diameter ('--'5.5 nm) and 

particle morphology, thicker wall-thickness (3.0 to 5.0 nm), high surface area 

(585.20 M2 /g) and high thermal stability was successfully synthesized by the 

conventional method without hydrothermal aging process. The synthesized SBA-15 

was used as catalyst support. A number of monometallic and bimetallic catalyst of 

copper (Cu) or/and zinc oxide (ZnO) supported on SBA-15 were synthesized by 

simple reflux method. The physicochemical properties of the as-prepared catalysts 

were investigated by X-ray diffraction (XRD), nitrogen adsorption, 

thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy 

dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and 

hydrogen-temperature programmed reduction (H 2-TPR). The best amount of 5 wt.% 

Cu and 15 wt.% ZnO supported on SBA-1 5 designated as SCull 5ZnO/SBA-1 5 was 

found to effectively catalyze the hydrogenation of CO 2 to CH3 011. The best process 

xix



conditions for CO 2 hydrogenation to CH30H over 5Cu/15ZnO/SBA-15 were found 

to be the reaction pressure of 4.0 MPa, the reaction temperature of 250 °C, and the 

reactants total gas hour space velocity (GHSV) of 2400 h' that resulted to 22.9% and 

11796.8 mmol kgcat' h' of CO2 conversion and CH3 0H STY, respectively. A 

reaction mechanism of CH 30H synthesis route and reverse water gas shift (RWGS) 

reaction on CulZnO/SBA-15 was proposed, based on the experimental results 

obtained in this study. The calculated activation energies of CH 30H synthesis and 

carbon monoxide (CO) formation were 35.29 kJ/mol and 68.02 kJ/mol, respectively. 

The CO2 conversion and CH30H STY were stable during 24 h of reaction on stream 

and no obvious deactivation was observed. The higher catalytic activity obtained 

over the novel SCu/l 5ZnO/SBA-15 catalyst can be correlated to the high dispersion 

of Cu and ZnO on the SBA-15 surfaces, creating greater amount of Cu-ZnO active 

sites, which are necessary for CH30H synthesis route. The deposited ZnO migration 

on the Cu surfaces was found to deactivate the RWGS reaction to form CO; and 

therefore increasing the CH30H selectivity. 
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CHAPTER 1

INTRODUCTION 

1.1	 Global warming 

Global warming is referring to gradual increase in the earth's atmosphere and 

ocean average temperature. This phenomenon has occurred over the past 100 years and 

currently is still being one of the major environmental problems. Scientists from the 

global warming research declared that the global warming has increased the earth 

average temperature between 0.4 to 0.8 °C and it is predicted to increase up to 1.4 to 5.8 

°C over the next hundred years (Livescience, 2013). The evidences of earth warming can 

be seen by changes in weather and climate. More floods, droughts, intense rain, severe 

heat waves and other climates related events happen more frequently now. Big changes 

can be seen in glaciers and oceans, where the ocean are warming and becoming more 

acidic, ice caps are melting and sea level are rising (EPA, 2013). The most recent report 

of National Oceanic and Atmospheric Administration (NOAA) stated that the global 

average temperature in May 2013 was among the top three warmest months of May in 

past 130 years (NOAA, 2013). 

The global warming has been created by greenhouse gases (GHG5) that are 

capable of absorbing infrared radiation, thereby trapping and holding heat in the 

atmosphere. Records from total GHGs emissions in 2011 show that the largest 

contributor is carbon dioxide (G02), followed by methane (CH 4), nitrous oxide (N20) 

and several other fluorine-containing halogenated substances (HFC5, PFCs, SF6) with 

emissions of 83.7, 8.8, 5.3 and 2.2%, respectively as shown in Figure 1.1 (IPCC, 2007). 

The impact of GHGs on global warming depends on three factors: abundance of the gas 

in the planet, duration of its stay in the atmosphere and its global warming potential 

(GWP) (EPA, 2013). The GWP of a greenhouse gas is defined as the ratio of the time-
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integrated radiative forcing from the direct release of 1 kg of a trace substance relative to 

that of 1 kg of a reference gas (IPCC, 2001). CO2 has a major impact because of its 

abundance and ability to stay in the atmosphere up to thousands of years. CH4 can stay 

in the atmosphere about 10 years and its GWP is 21 times than that of CO2. Meanwhile, 

GWP of N20 is 310 and its atmospheric lifetime is 114 years. In case of fluorinated 

gases (HFCs, PFCs, and SF6), their high heat trapping capacity makes them potential 

gases contributing to global warming, although they present in very small concentrations 

(IPCC, 2001; EPA, 2013). 

Figure 1.1: GHGs emission by gas in 2011 (IPCC, 2011). 

The natural atmospheric concentrations of GHGs have changed by human 

activities parallel with the growth of energy consumption, transportation, man-made 

materials and technology (IPCC, 2007; NOAA, 2013). The largest source of CO2, and 

overall greenhouse gas emissions, is fossil fuel combustion and its consumption has 

increased since the industrial revolution; around 270 years ago (Bill et al., 1997). CH4 
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emissions are primarily resulted from domestic livestock, agricultural activities, coal 

mining, and decomposition of wastes in landfills. Agricultural soil management, mobile 

source fuel combustion and stationary fuel combustion are the major sources of N20 

emissions. Semiconductor manufacturing, primary aluminium production by-product, 

and electrical transmission and distribution systems are the primary contributors to 

fluorinated compounds emission (Song, 2006). 

1.2	 CO2 in atmosphere 

CO2 is considered as an important ingredient in the carbon cycle of the earth and 

in the ecological system for plants and animals life, since it is used as carbon source in 

photosynthesis process and in food production. However, the abundance of CO2 is more 

than carbon cycle demand which has led to environmental pollution. The level of CO2 

concentration in the atmosphere has been increasing significantly from decade to decade 

since 1955 and the most recent data of atmospheric CO2 are 399.89 ppm for May 2013 

(NOAA 2013, EPA, 2013). In addition to fossil-fuel combustion, several other sources 

emit significant quantities of CO2. These sources are not limited to non-energy use of 

fuels but also iron and steel production and cement production (Figure 1.2). 
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Figure 1.2. Sources of CO2 emissions, Tg CO2 Eq. = million metric tons CO2 

equivalent (IPCC, 2011). 

1.3	 COz conversion for global sustainability 

Reducing the CO2 concentration and emission in the atmosphere is among the 

most important concerns for environmental protection and also global climate change. 

Under this circumstance, revolutionary approaches with innovative ideas are needed for 

green living environment as long term solution. The use of CO2 as feedstock for 

producing chemicals is not only interesting for mitigation of GHGs emission, but is an 

interesting challenge to explore new concepts and opportunities for catalysis and 

industrial chemistry. Products that can be made from CO2 include methanol, synthetic 

gas, dimethyl ether, ethylene, propylene, dimethyl carbonate, cyclic carbonate, and a 

variety of others (Alizadeh et al., 2009; Lee et al., 2008; Lu et al., 2004; Ma et al., 2009; 

Ramin et al., 2005; Zhang et al., 2006).
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