

ENVIRONMENTAL SUSTAINABILITT AND ENGINEERING PERFORMANCE OF OPC-FLY ASH MORTAR MIXES WITH DIFFERENT WORKABILITY

PUTRI ZULAIHA BINTI RAZI

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER ENGINEERING SCIENCE

FACULTY OF ENGINEERING UNIVERSITY OF MALAYA

2014

ABSTRACT

Engineering performance and environmental sustainability of mortar mixes through the incorporation of different replacement levels of fly ash at 10%, 20%, 40% and 60% respectively were investigated. Samples of mortar were prepared by using four different water / binder ratios of 0.35, 0.40, 0.45 and 0.50, and were also prepared with different dosages of superplasticizer to give three ranges of workability that is normal, high and self-compacting spread flow. Engineering performance was assessed through compressive strength at 3, 7, 14, 28 and 90 days and the durability aspect through the water absorption test when mortar reached 28 days of age. Environmental performance or basically the sustainability aspect was assessed through the determination of CO₂ footprint which denotes the environmental impact of each mix. The relationship that is to be investigated lies in the potential of CO_2 reduction in the mortar mixes, when cement was replaced by fly ash. Analysis of relative performance index for engineering performances and environmental sustainability found that regardless of the w/b ratios, for every type of flow, 60% replacement of fly ash gave the lowest relative performance index with an average of 50% less than OPC mortar. Cost analysis revealed that, cost per kg of mortar for self-compacting flow increased by 44% compared to normal flow. Optimum mix analysis found that with replacement of 10% to 20% of fly ash, gave a balance in environmental sustainability performance and engineering performance

ABSTRAK

Tahap prestasi kejuruteraan dan kemampanan alam sekitar bagi campuran simen mortar melalui penggantian abu terbang yang mempunyai peratusan berbeza 10%, 20%, 40% dan 60% masing-masingbdikaji. Sampel mortar disediakan dengan menggunakan empat air / pengikat nisbah yang berbeza 0.35, 0.40, 0.45 dan 0.50, dan juga disediakan dengan dos bahan tambah yang berbeza untuk memberi tiga julat kebolehkerjaan iaitu normal, tinggi dan simen mortar terpadat sendiri. Prestasi Kejuruteraan telah dinilai melalui kekuatan mampatan pada 3, 7, 14, 28 dan 90 hari dan aspek ketahanan melalui ujian penyerapan air apabila mortar mencapai usia 28 hari. Prestasi alam sekitar atau pada dasarnya aspek kemampanan telah dinilai melalui penentuan tahap CO₂ sebagai tanda aras kesan alam sekitar bagi setiap campuran. Hubungan terhadap potensi pengurangan tahap CO2 dalam mortar campuran adalah aspek yang dilihat, apabila kandungan simen digantikan dengan abu terbang. Analisis terhadap indeks prestasi relatif bagi prestasi kejuruteraan dan kemampanan alam sekitar menunjukkan tanpa mengira nisbah air/pengikat, untuk setiap jenis campuran 60% abu terbang menunjukkan tahap indeks prestasi yang rendah dengan purata 50% daripada simen mortar biasa. Analisis kos pula mendapati kos bagi setiap kg mortar terpadat sendiri adalah lebih tinggi sebanyak 44% jika dibandingkan dengan aliran normal. Analisis bagi menentukan campuran optimum mendapati bahawa penggantian abu terbang sebanyak 10% ke 20% memberikan penggantian yang paling optimum kerana dapat membantu dalam kesimbangan kemampanan alam sekitar dan juga pretasi kejuruteraan.

ACKNOWLEDGEMENT

The author would like to express her utmost gratitude to her supervisor, Professor Dr. Hashim Bin Abdul Razak for his invaluable advice, guidance and patience throughout the duration of this study. Numerous people have contributed towards the success of this research. The author wishes to thank the following individuals namely En. Mansor, En. Khairul, En. Ayob (Concrete Laboratory) for their dedicated and unfailing technical support. The author is indebted to his research colleague En. Teuku Ferdi, Mr. Jegathish, who have rendered assistance throughout the course of this study. Last but not least, the author would like to express her deepest appreciation to her beloved husband, En. Arif Azlee Bin Zainudin and beloved families for their endless love, support and encouragement.

TABLE OF CONTENT

PAGE

TITLE

TITLE PAGE	i
ORIGINAL LITERACY WORK DECLARATION	ii
ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEDGEMENT	V.
DEDICATION	vi
TABLE OF CONTENT	vii
LIST OF FIGURES	xiii
LIST OF TABLES	xvii
LIST OF SYMBOLS & ABBREVIATIONS	xviii
LIST OF APPENDICES	XX

CHAPTER 1	INTR	ODUCTION I	PAGE
	1.0	Introduction	1
	1.1	Background of Problems	5
	1.2	Research Objectives	6
	1.3	Research Scope	7
	1.4	Research Significance	7
CHAPTER 2	LITE	RATURE REVIEW	
2.0	Introd	uction	8
2.1	Past W	Vork on SCM	8
2.2	Fly As	sh as Mineral Additives	10
2.3	Sustai	nability	15
	2.3.1	Environmental Sustainability	17
		2.3.1.1 Carbon Index	19
		2.3.1.2 Carbon Footprint	20
	2.3.2	Economical Sustainability	22
2.4	Appro	aches towards Sustainability: Green Technology	24
2.5	Appro	aches in Measuring CO ₂ footprint in Concrete	25
	2.5.1	Estimating based to Inventories Data	25
	2.5.2	Estimating based to reports by Entity Organisatio	n 28
2.6	Metho	ds Involved in Measuring CO2 emission in Concre	ete 30
	2.6.1	Emission Due to Coarse Aggregates	32

viii

	2.6.2	Emission Due to Fine Aggregate	34
	2.6.3	Emission Due to Cement Production	36
	2.6.4	Emission Due to Fly Ash (FA) and Ground	
		Granulated Blast Furnace Slag (GGBFS)	40
	2.6.5	Emission Due to Concrete Batching,	
		Transport and Placement of Concrete	42
2.7	Previo	ous Research Work in Estimating Carbon Foot	orint in
	Concr	ete	44
CHAPTER 3	RESE	CARCH METHODOLOGY	PAGE
3.0	Introd	uction	47
3.1	Mix P	roportion	47
3.2	Mater	ials	48
	3.2.1	Ordinary Portland Cement	48
	3.2.2	Fine Aggregate	48
		3.2.2.1 Sieve Analysis	48
		3.2.2.2 Fineness Modulus	52
	3.2.3	Fly Ash	53
	3.2.4	Water	54
	3.2.5	Admixture	54
3.3	Expe	rimental Work	54
	3.3.1	Mixing Procedure	54

ix

CHAPTER 3	RESEARCH METHODOLOGY	PAGE
	3.3.2 Specimen Preparation	55
3.4	Determination of Fresh Properties	56
	3.4.1 Mini Slump Flow	56
	3.4.2 Mini V-funnel Flow	58
3.5	Determination of Hardened Properties	57
	3.5.1 Water Absorption Test	60
	3.5.1.1 Test Procedure	60
	3.5.1.2 Calculation of Water Absorption	62
	3.5.2. Compressive Strength Test	62
	3.5.2.1 Test Procedure	63
	3.5.2.2 Calculation of Compressive Strength	60
3.6	Environmental Sustainability Performances	64
3.7	Performance Index	64
CHAPTER 4	RESULTS AND DISCUSSION	PAGE
4.0	Introduction	67
4.1	Engineering Performances	67
	4.1.1 Workability Assessment	67
	4.1.1.1 Mini Slump Flow	67
	4.1.1.2 Relative SP Dosage	72
	4.1.1.3 Mini V-Funnel Flow	76

CHAPTER 4	RESU	ULTS AND DISCUSSION	PAGE
	4.1.2	Hardened Properties	80
		4.1.2.1 Water Absorption	80
		4.1.2.1 Relative Water Absorption	84
		4.1.2.3 Compressive Strength	87
		4.1.2.4 Relative Compressive Strength	94
4.2	Enviro	onmental Impact	96
	4.2.1	Compressive Strength versus Environmental	
		Sustainability	98
	4.2.2	Durability versus Environmental	
		Sustainability	101
4.3	Perfor	rmance index	104
	4.3.1	Performance Index (Compressive Strength	
		– Environmental Sustainability)	105
	4.3.2	Performance Index (Durability – Environment	al
		Sustainability)	108
4.4	Cost]	Factor	111
	4.4.1	Cost Factor versus Engineering Performance	113
	4.4.2	Cost Factor versus Environmental	
		Sustainability	119
4.5	Optin	num Replacement Mixes	124

xi

CHAPTER 4RESULTS AND DISCUSSIONPAGE4.5.1Optimum Replacement Mix based to Environmental
Sustainability and Compressive Strength1244.5.2Optimum Mix based to Environmental Sustainability
and Durability130

4.6

Conclusion

CHAPTER 5	CONCLUSION AND RECOMMENDATION	PAGE
5.0	Introduction	138
5.1	Conclusion	138
5.2	Recommendation for Further Improvement	141
REFERENCES		143

135

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 2.1	Strength Development of Fly Ash Concrete	
	Compared to Normal Concrete	14
Figure 2.2	Ideas governing Sustainability	17
Figure 2.3	CO ₂ footprint of concrete making materials in Japan	26
Figure 2.4	Calculated CO ₂	27
Figure 2.5	CO ₂ emission associated with aggregates production	34
Figure 2.6	CO2 emission breakdown of fine aggregates	36
Figure 2.7	CO_2 emission associated with fly ash production	41
Figure 2.8	Concrete batching CO ₂ emission breakdowns	42
Figure 2.9	Concrete CO ₂ emissions system diagram	45
Figure 3.1	Particle size distribution of silica sand	52
Figure 3.2	Standard mini mixer	55
Figure 3.3	Cube mould (50 x 50 x, 50) mm	56
Figure 3.4	Curing of specimens	56
Figure 3.5	Internal dimensions of flow cone	57
Figure 3.6	Mini slump cone and tamping rod	58

xiii

FIGURE NO.	TITLE	PAGE
Figure 3.7	Determination of high slump flow	58
Figure 3.8	V-funnel to determine flow time of mortar	59
Figure 3.9	Determination of V-funnel time	60
Figure 3.10	Determination of water absorption	61
Figure 3.11	Determination of compressive strength	62
Figure 4.1	Slump flow – SP dosage at w/b 0.35	71
Figure 4.2	Relative SP dosage at w/b 0.35	74
Figure 4.3	Relative SP dosage at w/b 0.40'	74
Figure 4.4	Relative SP dosage at w/b 0.45	75
Figure 4.5	Relative SP dosage at w/b 0.50	75
Figure 4.6	V-funnel time – SP dosage at w/b 0.35	77
Figure 4.7	V-funnel time – SP dosage at w/b 0.40	78
Figure 4.8	V-funnel time – SP dosage at w/b 0.45	78
Figure 4.9	V-funnel time – SP dosage at w/b 0.50	79
Figure 4.10	Relative slump flows – relative V-funnel speed	79
Figure 4.11	Water absorption at w/b 0.35	82
Figure 4.12	Water absorption at w/b 0.40	83
Figure 4.13	Water absorption at w/b 0.45	83
Figure 4.14	Water absorption at w/b 0.50	84

xiv

FIGURE NO.	TITLE	PAGE
Figure 4.15	Relative Water Absorption	86
Figure 4.16	Compressive strength w/b 0.35	90
Figure 4.17	Compressive strength w/b 0.40	91
Figure 4.18	Compressive strength w/b 0.45	92
Figure 4.19	Compressive strength w/b 0.50	93
Figure 4.20	Relative strength at w/b 0.35	95
Figure 4.21	CO ₂ footprint of self- compacting mixes	97
Figure 4.22	Strength to environmental sustainability	100
Figure 4.23	Durability to sustainability performance w/b 0.35	102
Figure 4.24	Durability to sustainability performance w/b 0.40	103
Figure 4.25	Durability to sustainability performance w/b 0.45	103
Figure 4.26	Durability to sustainability performance w/b 0.50	104
Figure 4.27	Relative performance index of strength - environmen	tal
	Sustainability	107
Figure 4.28	Relative performance index of durability – environme	ental
	sustainability	110
Figure 4.29	Overall cost comparison of mortar with different wate	er/binder
	ratio	113
Figure 4.30	Cost-strength for w/b 0.35	115
Figure 4.31	Cost-strength for w/b 0.40	116

FIGURE NO.	TITLE	PAGE
Figure 4.32	Cost-strength for w/b 0.45	117
Figure 4.33	Cost-strength for w/b 0.50	118
Figure 4.34	Cost-CO ₂ footprint w/b 0.35	120
Figure 4.35	Cost-CO ₂ footprint w/b 0.40	121
Figure 4.36	Cost-CO ₂ footprint w/b 0.45	122
Figure 4.37	Cost-CO ₂ footprint w/b 0.50	123
Figure 4.38	Optimum replacement mix based to compressive strengt	h
	w/b 0.35	126
Figure 4.39	Optimum replacement mix based to compressive strengt	h -
	w/b 0.40	127
Figure 4.40	Optimum replacement mix based to compressive strengt	h
	w/b 0.45	128
Figure 4.41	Optimum replacement mix based to compressive strengt	h
	w/b 0.50	129
Figure 4.42	Optimum replacement mix based to water absorption	•
	w/b 0.35	- 131
Figure 4.43	Optimum replacement mix based to water absorption	
	w/b 0.40	132
Figure 4.44	Optimum replacement mix based to water absorption	
	w/b 0.45	133
Figure 4.45	Optimum replacement mix based to water absorption	
	w/b 0.50	134

xvi

LIST OF TABLES

TABLE NO.

TITLE

Table 2.1	CO ₂ footprint from Cement Production	27
Table 2.2	Specific CO ₂ equivalent Foot-print per concrete constitue	nt 28
Table 2.3	CO ₂ emission in Various Types of Blended Cements	29
Table 2.4	CO ₂ Emission for concrete constituent	29
Table 2.5	Overall CO ₂ emission comparisons	30
Table 2.6	CO ₂ emissions associated with admixture manufacture	32
Table 3.1	Mix proportion w/b 0.35 and 0.40	50
Table 3.2	Mix proportion w/b 0.45 and 0.50	51
Table 3.3	Grading requirement for fine aggregate	52
Table 3.4	Result of Sieve Analysis and Finess Modulus	53
Table 3.5	Chemical composition and physical properties	53
Table 3.6	CO ₂ emissions of concrete constituent in Malaysia	64
Table 4.1	Ranges of water absorption for all w/b ratio	82
Table 4.2	Cost per kg of mix constituents	112

PAGE

LIST OF SYMBOLS AND ABBREVIATIONS

- CO_2 Carbon dioxide GHG Green house gases SCC Self-compacting concrete Self-compacting mortar SCM SP Superplasticizer FA Fly ash Micrometer μm **GGBFS** Ground granulated blast furnace slag OPC Ordinary Portland cement MPa Mega Pascal N_2O Nitrous Oxide CH_4 Methane PFC Perfluorocarbons HFC Hydrofluorocarbons SF₆ Sulphur hexafluoride GWP Global warming potential CO₂-e Carbon Dioxide Equivalent SAP Standard Assessment Procedure
- WBCSD World Business Council for Sustainable Development

LIST OF SYMBOLS AND ABBREVIATIONS

CKD	Cement kiln dust
CaCO ₃	Calcium carbonate (Limestone)
SiO ₄	Quartz
CaSO ₄	Calcium sulphate (Gypsum)
NaCl	Sodium chloride
K_2SO_4	Arcanite
2(C ₂ S) CaCO ₃	Spurite
2(C ₂ S)·CaSO ₄	Sulphospurite
CaO	Calcium oxide (Lime)
Ca (OH) ₂	Calcium hydroxide (Free Lime)
H ₂ O	Hydroxide
TNT	trinitrotoluene
ANFO	Ammonium nitrate and fuel oil
AA	Alkali-activated
XRF	X-ray fluorescence

LIST OF APPENDICES

Appendix 1	Figure for	Slump Flow and	l SP Dosage	W/B 0.40
------------	------------	----------------	-------------	----------

- Appendix 2 Figure for Slump Flow and SP Dosage W/B 0.45
- Appendix 3 Figure for Slump Flow and SP Dosage W/B 0.50
- Appendix 4 Figure for Relative Strength W/B 0.40
- Appendix 5 Figure for Relative Strength W/B 0.45

Appendix 6 Figure for Relative Strength W/B 0.50

Appendix 7 Compressive Strength W/B 0.35

- Appendix 8 Compressive Strength W/B 0.40
- Appendix 9 Compressive Strength W/B 0.45
- Appendix 10 Compressive Strength W/B 0.50

CHAPTER 1

INTRODUCTION

1.0 Introduction

Sustainability has become a central issue in the construction industry nowadays. Sustainable construction implementation and the effort to create green buildings has become a significant subject in Malaysia in current years and have been addressed under the Malaysian Construction Industry Master Plan (2005 - 2015). As a productive sector, the construction industry constantly contributes significantly to the Malaysian economy. Current statistics depicts that construction industries growth recorded 5.3% in 2007 and this value put in 2.1% of the total Gross Domestic Product (GDP) of Malaysia (Kamar & Hamid, 2011). These have led to the enforcement of law by the Ministry Of Energy, Green Technology and Water for the construction players in meeting sustainable requirements for their construction projects. These include the utilization of green materials, the provision of safe environment, and the utilization of non-toxic or non-hazardous materials during pre- and post- construction activities. Based to the Kyoto Protocol 1997, The United Nations Climate Change conference in Bali 2007, G8 Summit in Italy 2009, and Copenhagen Commitment 2009, with the objective to assist in combating the climate change many developed countries targeting for realistic greenhouse gas (GHG) emission reduction (Ng, Chen, & Wong, 2013). Signed in 1997, the Kyoto protocol aim for decreasing the greenhouse gas emissions in developed countries by 5.2% from the 1990 level by 2008-2012. With respect to Kyoto protocol goals, in order to reduce its CO2 emissions, cement industry has been optimistic maintaining and developing its manufacturing process. The European Union

commenced the Emissions Trading Directive in 2003, in order to practise the Kyoto target, plant-specific CO_2 caps establish into the major power manufacturing and energy intensive industry sectors (e.g. cement, oil refining, steel, pulp, and paper) (Europian Union, 2003). Significant cost impact will occur if the cement industries fail in meeting the quotas, hence they are strongly encouraged to follow the protocol.

Cement plays a vital task in terms of financial and public significance since its principal rests in building and improving infrastructure facilities. Concrete and mortars, a cement based material are utilize in particularly bulk quantity. World population growth and the urban development in many countries will definitely warrant the utilization of cement and cement-based materials. For instance, concrete production was recorded for more than 10 billion tons back in 2009. It is also crucial to note that this industry also generates heavy pollutants. A total of 4% global warming origins from human activities were released from cement production which accounted for 5-6%. These leads to release large amounts of organic pollutants, including dioxins and heavy metals also particles (Rodrigues & Joekes, 2010). It was reported that without any changes in technology and scientific method, 50% CO_2 will simply released by the production of cement industry (Lund, 2007).

Sustainability is mainly governed by three main pillars namely economy, social and environmental. Economy is a contributor to sustainability, where the utilization of any green material will help provide low economic impact and in addition will boost Malaysia's gross profit. Through the utilization of waste materials, this will somehow help mitigate the hazard to the community and improve the social life of the community itself since safer environment is able to be created. The environment is the main factor contributing to sustainable issues, since we are nowadays troubled by the ozone depletion which is harmful to our atmosphere. Large amount of greenhouse gases released may cause the depletion of ozone. The clinker production in cement manufacturing is established for quite some time as a main contributor of CO_2 emission worldwide. Attempts to reduce CO_2 emission in concrete include reducing the clinker content in the cement production since one tonne of carbon dioxide (CO_2) tends to be produced during the production of one tonne clinker (Fantilli & Chiaia, 2013); this means that the CO_2 emission in concrete mixes is reduced by minimizing the cement content. In order to do this, a constituent material or supplementary cementing materials or preferably fly ash is required to replace and reduce the cement content. CO_2 which is emitted during the production of concrete can be measured by examining the CO_2 footprint of the concrete.

Fly ash is products that originate from the ignition of pulverized coal from thermal power plants. The system so called as powder-collection eliminates the fly ash, as a fine particulate residue, from the combustion gases before they are released into the atmosphere. Fly ash which is categorized as a fine waste material is the most consumed mineral additive added to concrete mix production worldwide. (Malhotra and Ramezanianpour, 1994) maintain that inclusion of fly ash in concrete, may affects most aspects of concrete since it acts both as fine aggregate or a cementitious component. Fly ash affects the rheological properties in fresh state and strength, porosity and durability during the hardened state. In spite of that, it helps in saving the cost and energy consumed in the manufacturing of concrete.

In Malaysia, fly ash is categorized as an industrial waste material, where it is normally deposited into landfill. Fly ash is normally discarded to the environment without giving any financial return; normally there is merely environmental pollution observed, together with issues of disposal (Karim, Zain, Jamil, Lai, & Islam, 2011). Billion tons of industrial wastes are generated annually and the amount of land-filled wastes are radically increased in consequence of industrial development and urbanization (Zhang, Gao, Gao, Wei, & Yu, 2013). For instance, production of fly ash in Malaysia is believed approaching over 2 million tons annually and anticipated to double-up in 2013 since the stipulation for energy is increased fast (RockTron International, 2010). The increased production of fly-ash from thermal plants causes the quantities of fly-ash deposited into landfills to double. Thus, less consumption in the industrial waste materials will result in the disposal landfill space being occupied by time. Furthermore, the occupied space in landfills nowadays has become environmental problems worldwide. This issues become even worse since it is reported by (Izquierdo & Querol, 2012) that leachate of fly ash deposited into the landfill produces traceable elements that may harm the environment and consequently leading to the social community being exposed to hazard.

Mortar has been extensively used as binder and in rectification of structural works. Conventional-type mortar using the combination of sand, cement and water has been used since decades. As mortar serves as the basis for the workability properties of self-compacting concrete (scc), these properties could be assessed by self-compacting mortars (scm) which serve .As an integral part of designing self-compacting concrete, self-compacting mortar acts as basis for the workability properties (Şahmaran, Christianto, & Yaman, 2006).

Engineering properties is the common measure for determining the characteristics and nature of any materials. Engineering properties can be categorized into two states which are the fresh state behaviour and hardened state behaviour. Fresh state is determined as the materials are in raw condition or mixed in dry or wet condition. Fresh state measurement in mortar mixes includes the slump flow, V-funnel, density, viscosity. Meanwhile, the hardened state is determined as the mixes undergo a hardening process and in a hardened physical state, normally in cube or cylindrical cube. The measurements for the hardened state include the compressive strength, absorption test, shrinkage test and other measurements.

High sensitivity to greenhouse issues, global warming and sustainability at present times has become major concern in this research. Environmental issues have become central to economic and political debates these days. Since the cement manufacturing generates the largest percentage of the production of carbon dioxide in the environment and approximately 5% of the world's anthropogenic CO₂ emissions, the use of cement in concrete technology should be minimized. Portland cement is accountable for 74% to 81% of the total CO₂ emission and leading as primary source of CO₂ emission released by concrete producers (Flower & Sanjayan, 2007). Typical approaches to alleviate emissions, solely on the production of cement, will not be capable to compensate the increase by factor of 2.5 for the next 40 years of cementbased products. Further improvements are necessary including raise in the effectiveness of cement use (Damineli, Kemeid, Aguiar, & John, 2010). Using residues from other industrial sectors can also improve the sustainability of cement industry (F. A. Rodrigues, 2011). A major decrease of Portland cement clinker in the concrete will occur by utilizing superplasticizer sufficiently and usage of high reactive cements. Furthermore, optimization of particle-size distribution and lessening the water proportion will provides similar reduction of cement clinker (Proske, Hainer, Rezvani, & Graubner, 2013).

In order to minimize the usage of ordinary Portland cement in concrete technology, waste products such as fly ash powder are used that acts as a substitution of cement in concrete. Sustainable technology is also seen as a key element in serving to diminish greenhouse issue. Environmental sustainability in concrete mixtures was mainly focused on producing "green concrete" by using or replacing part of the mixture with "green products". Recent research that has focused particularly on the environmental sustainability aspect in concrete is done by (Henry, Pardo, Nishimura, & Kato, 2011).

5

(Becchio, Corgnati, Kindinis, & Pagliolico, 2009) replacing ordinary aggregates with wastes from woodworking activities known as mineralized wood concrete (MWC) as an opportunity for composing additional sustainable lightweight concrete

(Fantilli & Chiaia, 2013) in their research investigate the combination of mechanical behaviour and the environmental aspect. They were targeting of develop an ecological concrete with satisfactory engineering performances, by proposing an index of ecological-mechanical ratios.

Concrete is material that commonly used widely as building material in the world. Producing green concrete is the aim of this research and to implement it, mortar was selected as the main subject. The utilization of waste material is synonymous with the production of green concrete, since waste materials such as fly ash that is deposited into landfills without further consumption, consume a lot more space in landfill than necessary and it will further become environmental problems worldwide. Conventional concrete has become too common when replaced with waste materials, thus new technology in concrete so-called the self-compacting concrete (scc) initially developed in Japan has been adopted in this research. With the aim to produce green concrete by utilizing fly ash, and produce less CO₂ to the environment, environmental sustainability becomes a key criterion in ensuring that the green issues are achieved. Thus, CO₂ footprint is determined and a relationship between environmental sustainability and engineering performances is developed.

- 1.2 Research Objectives
- i. To determine the effect of fly ash for different flowability mortar.
- ii. The relationship between engineering properties performance (strength and durability) and environmental sustainability performance (CO₂ footprint)

6