Process ar

earch Division

Faculty of Engineering

DEVELOPMENT OF A CONTINUOUS PNEUMATIC JIG FOR SOLID WASTE SEPARATION

By

Mohd Aizudin Bin Abd Aziz, M.Sc., B.Eng(Hons)

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy (PhD)

June, 2014

Abstract

The work presented in this research is related to the recycling of solid waste material which is currently one of the major issues in the waste management system. The main aim of this study was to develop and establish a continuous solid waste separation technique that utilises the basic principles of jigging.

The initial work has explores the potential application of the constructed batch pneumatic jig on the separation of artificial (density tracers) and real materials (solid wastes). The objective is to discover and understand the underlying principle behind the separation process through experimental works. The results obtained have yielded deeper understanding on the inter-relationship between feed characteristic, airflow conditions, pulse frequency and jig separation efficiency. The knowledge and information gathered from the initial work have been used to construct and develop a new continuous pneumatic jig for the same purpose.

Comparison works of the continuous and batch pneumatic jig has indicated that the results obtained from the separation of shredded electrical cable can be repeatable for the sample with approximately 85:15 percentages by weights of copper wire and rubber insulation at the size range of 1.7-2.36 mm. The separation process through continuous pneumatic jig also has showed separation efficiency can be improved when the system incorporated a vibration effect. Furthermore, the jig has also showed it capability on of handling wide range of solid waste material such as compost and WEEE material.

Finally, the study has also revealed some of the pneumatic jig (batch and continuous) limitation that may need to be considered in future development of this technique. Overall, the work on the continuous pneumatic jig has confirmed that solid waste particles could be separated through careful control of the air flow, pulse rate and vibration during separation process. This also indicates some promising future for the continuous pneumatic jig in the solid waste recycling application.

Table of Contents

Abstracti
Affirmationiii
Acknowledgmentsiv
Table of Contentsv
List of Figuresxiii
List of Tables xxi
List of Equationsxxiii
Nomenclaturexxiv
Chapter 1 : Introduction1
1.1 Rationale of the project1
1.2 General practice of a waste management system4
1.3 Research approach7
1.4 Aims and objectives9
1.5 Thesis structure10
Chapter 2 : Review of the dry physical separation techniques11
2.1 Introduction11
2.2 Methods available for solid waste dry separation techniques 14
2.2.1 Sorting process16
2.2.1.1 Manual sorting16

2.2.1.2 Automated sorting17
2.2.2 Magnetic separation19
2.2.3 Electrostatic separation21
2.2.4 Gravity separation23
2.2.4.1 Pneumatic table26
2.2.4.2 Fluidised Bed28
2.2.4.3 Air classifier
2.2.4.4 Vertical vibration separation
2.2.5 Jigging
2.2.5.1 Development of jigging technology
2.2.5.2 General jigging method (particle discharge)
2.2.5.3 Development of jigging theory
2.2.5.4 Factors contributing to the jigging process
2.2.5.5 Current research and recent jig application
2.3 Methods available for separation analysis
2.3.1 Introduction to the quantitative and qualitative analysis 57
2.3.2 Quantitative analysis58
2.3.2.1 Ground penetrating radar

2.3.2.2 Nucleonic density gauge
2.3.2.3 Image processing analysis61
2.3.2.4 Heavy liquid analysis63
2.4 Research direction63
Chapter 3 : Research methodology65
3.1 Introduction65
3.2 Batch process experimental set-up65
3.2.1 Equipment parts and functions
3.2.2 Experimental set-up and operation
3.3 Continuous jig experimental set up70
3.3.1 Equipment parts and functions
3.3.2 Experimental set-up and process
3.4 Material specifications79
3.4.1 Type of material used79
3.4.2 Sample preparation
3.5 Analysis techniques84
3.5.1 Image processing84
3.5.2 Heavy liquid analysis93
Chapter 4 : Fundamental experiment using batch pneumatic jig96

4.1	Intr	oduction96
4.2	Initi	al tests with the pneumatic jig96
4.2	2.1	Initial experiments using density tracers
4.2	2.2	Result and discussions97
4.3	Vali	dation of the imaging technique99
4.4	Perf	formance test for the batch pneumatic jig
4.4	4.1	Introduction 102
4.4	1.2	General experimental conditions and procedures 103
4.4	1.3	Single factor effect - frequency of pulsation
4	1.4.3.	1 Results and discussions 104
4.4	1.4	Single factor effect- air flow rate effect 106
4	1.4.4.	1 Results and discussions 106
4.4	4.5	Multiple factor effects - pulse frequency and air flow rate 108
2	1.4.5.	1 Results and discussions 109
4.4	4.6	General observation related to jigging theories 111
4.5	Tes	t of real waste material113
4.	5.1	Introduction113
4.	5.2	Batch process experiments 113

4.5.3	Initial results and discussion114
4.6 As	sessing the separation of chopped electrical cables 120
4.6.1	Introduction120
4.6.2	General experimental condition and procedures 120
4.6.3	Single factor effect – pulse frequency 121
4.6.3	3.1 Results and discussion121
4.6.4	Single factor effect - air flow rate 122
4.6.4	1.1 Results and discussions
4.7 Co	mposite effect and the effect of time on separation 124
4.7.1 factor	Results and discussion for interaction effect and time 124
4.8 Cc	onclusion 126
Chapter 5	: Developing a continuous pneumatic jig 127
5.1 In	troduction
5.2 In	itial test results and observations128
5.2.1	Actions and solutions 129
5.3 Se	econd attempt results and observations
5.3.1	Actions and solutions135
5.4 Tł	nird attempt results and observations 135

5.4.1 Actions and solutions137
5.5 Test on the sloped surface of the separation chamber 139
5.6 Final design of the bed142
5.7 Initial test of the modified pneumatic jig
5.7.1 Initial test with real material
5.8 Development of the continuous process
5.8.1 Particle flows149
5.8.2 Design of the particle flow process
Chapter 6 : Assessment of the continuous pneumatic jig 155
6.1 Introduction155
6.2 Batch process separation of copper wire and rubber insulation (preliminary experiments)
6.2.1 Results and discussions158
6.3 Batch process separation of copper wire and rubber insulation, a further test
6.3.1 Effect of the air flow and pulse rate on the separation efficiency
6.3.2 Results and discussions 160
6.3.3 Impact of vibration on the separation efficiency 167
6.3.4 Results and discussions

х

6.3.4.1 Effect of jigging incorporated with vibration towards
the separation efficiency168
6.3.4.2 Effect of vibration alone to the separation process 171
6.4 Assessment of continuous process on the pneumatic jig 172
6.4.1 Introduction172
6.4.2 Initial setting for the continuous experiment
6.4.3 Effect of air flow and pulse rate
6.4.3.1 Results and discussion177
6.4.4 Effect of vibrational force178
6.4.4.1 Results and discussion180
6.4.5 Effect of bed thickness ratio
6.4.5.1 Results and discussion183
6.5 Separation of other samples 184
6.5.1 Introduction184
6.5.2 Sample 1: Combination of plastics, glass and stones 185
6.5.2.1 Results and discussion (batch mode)
6.5.2.2 Results and discussion (continuous mode) 188
6.5.3 Sample 2 : Compost 192
6.5.3.1 Results and discussion193

6.5.4 Sample 3: Printed circuit board (PCB) 197
6.5.4.1 Results and discussion 199
Chapter 7 : Conclusions and Recommendations
7.1 Conclusions
7.2 Recommendations and Future Work
Referencesi
Appendix xiv
Appendix 1: Country Classification According to Region xiv
Appendix 2: MATLAB Algorithmxvii
2.1 Previous researcher algorithmxvii
2.2 The modified algorithm from previous researcher for RGB
imagexvii
2.3 Algorithm for HSV xix
2.3 Algorithm for NTSCxxii
2.4 Algorithm for YCBCRxxv

List of Figures

Figure 2.1 The example of the MRF flow chart (LLC, 2006, Barnala, 2011)
Figure 2.2 The manual sorting process in the recycling industry in San Francisco (Sullivan, 2003)17
Figure 2.3 Optical based sorting system by Clara All-metal Separator (Cui, 2005)
Figure 2.4 Schematic diagram of the magnetic separation process, edited from Svoboda and Fujita (2003)20
Figure 2.5 Principle of magnetic separation (Habib, 2010)21
Figure 2.6 Electrostatic separator (separation by conductive induction) (Tilmatine et al., 2009)22
Figure 2.7 Schematic design of the laboratory-scale air table (Dodbiba and Fujita, 2004)
Figure 2.8 Fluidisation stages (Perry and Green, 2008)
Figure 2.9 The fluidised bed separator; a; medium feed (M), b; feed (F), c; porous plate, d; splitter, e; heavy product outlet f; light product outlet, g; vibratory engine, f; air inlet (de Jong, 1999)30
Figure 2.10 Air Separator types:- (a) gravitational, (b) gravitational- cross-flow or expansion chamber, (c) centrifugal-counter-flow, (d) centrifugal-cross-flow (Adapted from(Shapiro and Galperin, 2005)).32
Figure 2.11 Simulation of the Brazil Nuts Effect (BNE) Large particles rise to the surface after a certain time of shaking (Rosato et al., 1987)

Figure 2.12 Vibration separation between bronze and glass (Mohabuth, 2007)
Figure 2.13 Berard Washer (Chapman and Mott, 1928)36
Figure 2.14 Pneumatic Allair-jig by Allmineral (2010)42
Figure 2.15 Denver jig is one of the jigging through screen methods (Richardson et al., 2002)43
Figure 2.16 Hydrodynamic state of a bed during a single jig stroke (Nwafor, 2008)
Figure 2.17 Internal jigging mechanism (Edited from (Nwafor, 2008)
Figure 2.18 Process of mapping the rebar inside concrete wall (Imaging, 2010)59
Figure 2.19 Nucleonic density gauge components (BERTHOLD, 2009)60
Figure 2.20 Formation of HSV colour model62
Figure 3.1 Upper part of the batch pneumatic jig66
Figure 3.2 The batch pneumatic jig70
Figure 3.3 Pneumatic jig as received from LINDHURST Engineering 71
Figure 3.4 The thick metal discs inside the vibrator73
Figure 3.5 The Star-gate extraction system74
Figure 3.6 Blade image inside the rotary valve (Rotolok Valves, 2011)
Figure 3.7 Programmable logic control unit front board

Figure 3.8 (a) Initial condition of the wire (b) Wire after cutting80
Figure 3.9 The crusher used in the sample preparation process (Retsch, 2009)81
Figure 3.10 (a) incomplete liberated electrical cables (b) well liberated electrical cables
Figure 3.11 Samples used in the batch process experiments: a) red density tracer (1.4 g/cm ³), b) white plastic pellet (0.93 g/cm ³), c) glasses (2.95 g/cm ³), d) blue density tracer (2.7 g/cm ³), e) copper rich (8.9 g/cm ³) and f) rubber insulation (1.31 g/cm ³)
Figure 3.12 Flow chart for the sample preparation process
Figure 3.13 Image acquisition setup85
Figure 3.14 Initial image acquired and the cropped images used for image analyses
Figure 3.15 Edge detection of the image87
Figure 3.16 Image segmentation into red and blue regions using different colour formats
Figure 3.17 Example of red and blue particles distribution before and after separation90
Figure 3.18 Sink Float Analysis Method (Mohabuth, 2007)94
Figure 4.1 Segregation of mixed density tracers
Figure 4.2 The grade comparison of blue density tracers for top layer
Figure 4.3 Grade comparison of blue density tracers for bottom layer 101

Figure 4.4 Efficiency-time of separation for density tracers at
frequency of 60, 75, 86, 100 and 120 cycle/min and at constant air
flow velocity of 30 cm/s104
Figure 4.5 Efficiency-time of separation for density tracers at constant
nulso frequency of 86 cycle/min
pulse frequency of oo cycle/fillin
Figure 4.6 Separation efficiency of composite effect
Figure 4.7 Separation efficiency of composite effect (including the
intermediate parameters)111
Figure 4.8 Separation of white plastic pellets and rubber insulation 116
Figure 4.9 Separation of glass and rubber insulation116
Figure 4.10 Separation of glass and conner rich wire 117
rigure 4.10 Separation of glass and copper her with minimum 11/
Figure 4.11 SEM images of the crush glass at 20 and 100 μm 117
Figure 4.12 None separated mixture of copper wire and rubber
insulation
Figure 4.13 Well and poor liberation of the electrical cable 119
Figure 4.14 Separation of copper rich wire and rubber insulation 119
Figure 4.15 Separation of copper rich wire and rubber insulation
(single factor)
Figure 4.16 Separation efficiency of the air flow rate effect 123
Figure 4.17 Separation efficiency of composite effect (frequency of
pulsation and air flow rate)
Figure 4.18 Separation efficiency at 2 and 5 minute 126
Figure 5.1 Initial design of the continuous pneumatic jig 127

Figure 5.2 Modification of the jig as a proper batch process 130
Figure 5.3 Copper rich fraction trapped inside the connector between the pneumatic valves and the blower
Figure 5.4 The initial screen (2 mm), and the other two wire meshes with the width of 0.75 mm and 0.5 mm
Figure 5.5 Channelling during testing (highlighted by red arrows). 133
Figure 5.6 Comparison between the size of the current separation chamber and the previous separation chamber
Figure 5.7 The reduced size of the current pneumatic jig
Figure 5.8 Channelling at the back of the separation chamber 136
Figure 5.9 The air flow illustration inside the continuous pneumatic jig
Figure 5.10 Reduced Separation Area137
Figure 5.11 (a) Sample tested using cylindrical chamber, 5.11 (b) Areas tested on the flat bed surface
Figure 5.12 Stratified layers of copper rich and rubber insulation . 139
Figure 5.13 Localised particle motion instead of bed lifting 140
Figure 5.14 Experiment condition on an empty slope surface 141
Figure 5.15 2-D sketch of the top, front and side view of the penumatic jig
Figure 5.16 Jigging test using the modified pneumatic jig
Figure 5.17 Non symmetrical structure of the pneumatic jig 146
Figure 5.18 Symmetrical structure of the pneumatic jig

Figure 5.19 Ratio of particles used for the bed to be lifted (mixture of white pellets and rubber insulation)
Figure 5.20 Shredded sample from the scrap yard 148
Figure 5.21 Separation outcome for the sample from the scrap yard
Figure 5.22 (a) Separated mixture of copper wire and white pellets, (b) the flow of particles from the back compartment to the front compartment
Figure 5.23 The current flow of particles from back compartment to the front compartment
Figure 5.24 The idea of the process flow using paper box gates \dots 153
Figure 5.25 Product of top and bottom layer during separation of the white pellet and copper wire154
Figure 6.1 Modified compartments for continuous pneumatic jigging
Figure 6.2 Whittled outlet streams (refer Figure 5.25) 156
Figure 6.3 Top and bottom gaps for the second Perspex plate 156
Figure 6.4 Outlet stream for light product157
Figure 6.5 Outlet streams for heavy and light product
Figure 6.6 Initial and final condition of the bed (mixture of new shredded cable)159
Figure 6.7 Separation efficiency of the back compartment 160
Figure 6.8 Separation efficiency for the front compartment

Figure 6.9 Comparison of separation efficiency between current
system (continuous pneumatic jig) and the previous system (batch jig)
Figure 6.10 The difference between the previous and the current separation area
Figure 6.11 Conditioning of air flow in the current design, modified from Lelièvre et al., (2002)
Figure 6.12 Separation efficiency of jigging with vibration and jigging without vibration at a constant pulse rate (180 cycle / min) for the back compartment
Figure 6.13 Separation efficiency of jigging with and without vibration at constant pulse rate (180 cycle/min) for front compartment 170
Figure 6.14 The bed condition when subjected to vibration effect. 171
Figure 6.15 Sloped bed formation due to the vibration at 45 [°] angle
Figure 6.16 Different particle sizes used in the initial setting test 175
Figure 6.17 Separation efficiency for the continuous pneumatic jig.
Figure 6.18 Separation efficiency obtained at different vibrational force
Figure 6.19 Impact of bed thickness ratio towards separation efficiency
Figure 6.20 Batch mode separation of a mixture of silica sand and polypropylene

Figure 6.21 Batch mode separation of a mixture of rubber insulation and glass
Figure 6.22 Batch mode separation of a mixture of silica sand and glass
Figure 6.23 Batch mode separation of a mixture of rubber insulation and polypropylene
Figure 6.24 Batch mode separation of all the materials in Table 6.5.
Figure 6.25 Comparison of the effect of air flow rate on a mixture of silica sand and polypropylene and a mixture of rubber insulation and glass
Figure 6.26 Comparison of the effect of pulse rate on a mixture of silica sand and polypropylene and a mixture of rubber insulation and glass
Figure 6.27 Separation process of compost sample; a) Before separation, b) After separation, c) Cross sectional from top view 194
Figure 6.28: Dust generated during the batch process separation of the compost sample
Figure 6.29 Grade–Weight percentage of compost and contaminants contained in the product
Figure 6.30 Top and bottom fraction of shredded PCBs sample 200
Figure 7.1 Possible design for future development

List of Tables

Table 1.1 Current and predicted amount of Municipal Solid Waste(MSW) generated in 2025 (Daniel Hoornweg and Bhada-Tata, 2012).3
Table 2.1 Circumstances in which dry beneficiation could beconsidered (Lockhart, 1984)15
Table 2.2 Particle size ranges for gravity separation (Gupta and Yan,2006)25
Table 2.3 Pneumatic jig design (Burt, 1984, Chapman and Mott, 1928,Collins, 1995)40
Table 3.1 Range of fan speed used68
Table 3.2 Range of jigging cycle used69
Table 3.3 Generated centrifugal force based on the angle of two discinside a vibrator78
Table 3.4 Ranges of jigging cycle used
Table 3.5 Comparison of the percentage area between red and blueregions using different colour format.89
Table 4.1 Experiment conditions for composite effect
Table 4.2 Sample used for the experiments in batch process 113
Table 4.3 Separation outcome
Table 4.4 Overall experiments conducted using the electrical cablescomponents
Table 6.1 Vibration strength used to test the effect of vibration 168
Table 6.2 Parameter tested for the effect of vibrational force 179

Table 6.3 The main combination of the parameters 17 17	79
Table 6.4 Parameter tested for the effect of bed thickness ratio 18	32
Table 6.5 Combination of samples used in the tests 18	85
Table 6.6 Mass distribution for top and bottom stream	95
Table 6.7 Density of material collected from each fraction	99

List of Equations

Equation 2.1	
Equation 2.2	24
Equation 2.3	3
Equation 2.4	46
Equation 2.5	5
Equation 3.1	
Equation 3.2	2
Equation 3.3	390
Equation 3.4	191
Equation 3.	591
Equation 3.0	591
Equation 3.	795
Equation 3.8	395
Equation 3.	995
Equation 4.	1
Equation 4.	2
Equation 5.	1
Equation 5.	2133
Equation 5.	3134
Equation 5.	4140

Nomenclature

Abbreviations

WEEE	Waste of Electrical and Electronic Equipment
ELV	End of Life Vehicle
CDW	Construction and Demolition Waste
MSW	Municipal Solid Waste
AFR	Africa
EAP	East Asia and Pacific
ECA	Eastern and Central Asia
LAC	Latin America and the Caribbean
MENA	Middle East and North Africa
OECD	Organization for Economic Co-operation and Development
MRF	Material Recovery Facility
PBDDs	Poly-Brominated Dioxins
PBDFs	Furans
EPA	United States Environmental Protection Agency
CRT	Cathode Ray Tube
BNE	Brazil Nuts Effect
DEM	Discrete Element Method
CFD	Computational Fluid Dynamics

PE	Polyethylene
PVC	Polyvinyl Chloride
PLC	Programmable Logic Control
PTFE	Polytetrafluoroethylene
GPR	Ground Penetrating Radar
ROI	Region of Interests
RGB	Red Green and Blue
SPT	Sodium Polytungstate
SEM	Scanning Electron Microscope
РСВ	Printed circuit board
NDG	Nucleonic Density Gauge