OPTIMIZATION OF STEEL FIBRE REINFORCED CONCRETE AS CONCRETE TOPPING IN COMPOSITE SLAB CONSTRUCTION

NOOR NABILAH BINTI SARBINI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JUNE 2014

ABSTRACT

Steel fibre can act as an alternative to replace the conventional prefabricated welded wire mesh (PWWM). It serves as a secondary reinforcement in concrete topping of the precast composite slab construction. Hence, an in-depth study on the performance was conducted to prove the notion. The study was essential due to the differences of behaviours between steel fibre in the compression and the flexural zone of the composite slab. In fact, there was no sufficient knowledge of compression mechanism of steel fibre reinforced concrete (SFRC) due to the lack of study in this area. The main objectives of this study were to investigate the structural performance of composite slab where SFRC was applied in the concrete topping and to develop an analytical model to predict the shear strength of the composite slab by validating the model with the experimental results. Aspect ratio and volume fraction were emphasised in selecting the most suitable type of steel fibre in this study. The experimental results showed that SFRC concrete topping improved the ultimate load and failure mechanism. The results also suggested that the ideal types of steel fibre to be applied in the concrete topping are SF60 and SF33 with optimum volume fraction between 0.75% and 1.00%. Furthermore, it was proven that the SFRC concrete topping has improved the shear capacity of the composite slab by 17%. The performance of the proposed analytical model in predicting the ultimate shear capacity of the composite slab with SFRC concrete topping was considered good due to its strong correlation with the experimental data. This suggested that steel fibre was suitable to replace PWWM as secondary reinforcement in concrete topping in precast composite slab construction. The proposed analytical model can also be used to predict the shear capacity of the composite slab with SFRC concrete topping.

ABSTRAK

Gentian keluli boleh menjadi alternatif untuk menggantikan fabrikasi jaringan besi kimpal (PWWM). Ia bertindak sebagai pengukuh kedua di dalam tutup konkrit bagi pembinaan papak pra-tuang komposit. Maka, kajian mendalam terhadap prestasi ini dijalankan untuk membuktikan pernyataan ini. Penyelidikan ini penting disebabkan perbezaan tingkah laku di antara gentian keluli di dalam zon mampatan dan lenturan bagi papak komposit. Hakikatnya, terdapat kekurangan maklumat terhadap mekanisma mampatan gentian keluli konkrit bertetulang (SFRC) disebabkan kurangnya penyelidikan bagi lapangan ini. Objektif utama penyelidikan adalah mengkaji tingkah laku struktur SFRC sebagai penutup bagi papak komposit dan menerbitkan model analitikal bagi penganggaran kekuatan ricih papak komposit dengan membuktikan model kepada keputusan eksperimen. Nisbah aspek dan pecahan isipadu ditekankan untuk memilih gentian keluli yang paling sesuai dalam penyelidikan ini. Keputusan eksperimen menunjukkan tutup konkrit SFRC meningkatkan beban muktamad dan memperbaiki mekanisma kegagalan. Dapatan kajian turut mencadangkan gentian keluli yang sesuai di dalam tutup konkrit adalah SF60 dan SF33 dengan pecahan isipadu optimum di antara 0.75% dan 1.00%. Selanjutnya, telah terbukti bahawa tutup konkrit SFRC meningkatkan kekuatan ricih papak komposit sebanyak 17%. Prestasi model analitikal yang dicadangkan dalam menganggarkan kapasiti ricih muktamad papak komposit dengan tutup konkrit SFRC didapati sesuai oleh kerana korelasinya yang tinggi dengan data eksperimen. Ini mencadangkan bahawa gentian keluli adalah sesuai bagi mengantikan PWWM sebagai pengukuh kedua di dalam tutup konkrit bagi pembinaan papak pra-tuang komposit. Model analitikal yang dicadangkan turut sesuai digunakan untuk menganggarkan kapasiti ricih bagi papak komposit dengan tutup konkrit SFRC.

CONTENTS

.

CHAPTER	TITLE	PAGE
DEC	LARATION	ii
DED	ICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	ГКАСТ	v
ABS	TRAK	vi
CON	TENTS	vii
LIST	T OF TABLES	xii
LIST	TOF FIGURES	xvi
LIST	T OF SYMBOLS	xxvi
LIST	COF APPENDICES	xxxi

1	INTI	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statements	4
	1.3	Research Objectives	9
	1.4	Research Scopes	10
	1.5	Research Significance	11
	1.6	Thesis Synchronization	11

2 REVIEW ON STEEL FIBRE REINFORCED CONCRETE ELEMENT 14 2.1 Introduction 14

2.2	Background of Steel Fibre Reinforced Concrete	15
	0	

2.3	Review	ws on Practicality of SFRC	20
2.4	Mix D	esign Parameters of SFRC	22
2.5	Resista	ances of Steel Fibre Reinforced Concrete	25
2.6	Steel F	Fibre Reinforced Concrete Mechanisms	32
	2.6.1	Fibre Alienations	32
	2.6.2	Fibre Configuration	33
e.	2.6.3	Fibre Count	35
	2.6.4	Reinforcement Area	37
	2.6.5	Stress-Strain Response	39
2.7	Precas	t Concrete Slabs	49
2.8	Previo	ous Works	54
2.9	Summ	ary	64
EXPE	RIME	NTAL METHODOLOGY	67
3.1	Introd	uction	67
3.2	Mecha	anical Properties of Steel Fibre Reinforced	
	Concr	ete	68
	3.2.1	Mix Design and Casting Process	69
	3.2.2	Specimen Details and Preparation	74
	3.2.3	Experimental Procedure	77
3.3	Small	Scale Composite Slab Test	84
	3.3.1	Mix Design and Casting Process	84
	3.3.2	Specimen Details and Preparation	86
	3.3.3	Experimental Procedure	92
3.4	Full S	cale Composite Slab Test	94
	3.4.1	Mix Design and Casting Process	94
	3.4.2	Specimen Details and Preparation	95
	3.4.3	Experimental Procedure	100
		3.4.3.1 Experimental Setup 1	101
		3.4.3.2 Experimental Setup 2	104
3.5	Summ	nary	107

3

4	RES	ULTS O	N THE MECHANICAL PROPERTIES		
	INVI	INVESTIGATION 10			
	4.1	Introd	uction	108	
	4.2	Mecha	anical Properties of the Steel Fibre	109	
	4.3	Fresh	State Condition	112	
		4.3.1	Review on Casting Process	112	
		4.3.2	Slump Test	113	
	4.4	Comp	ressive Strength Test Results	115	
		4.4.1	Validation on the Compressive Strength Test		
			Results	115	
		4.4.2	Behaviour of SFRC in the Compressive Strength	118	
	4.5	Tensil	e Splitting Strength Test Results	122	
		4.5.1	Validation on the Tensile Splitting Strength		
			Test Results	122	
		4.5.2	Behaviour of SFRC in the Tensile Strength	124	
	4.6	Modu	lus of Elasticity Test Results	129	
		4.6.1	Modulus of Elasticity	129	
		4.6.2	Stress-Strain Relationship	131	
		4.6.3	Compressive Toughness	137	
		4.6.4	Failure Modes	140	
	4.7	Flexu	ral Strength Test Results	141	
		4.7.1	Validation on the Flexural Strength Test Results	144	
		4.7.2	Modulus of Rupture	146	
		4.7.3	Flexural Toughness	149	
		4.7.4	Applied Load and Concrete Strain Relationship	158	
		4.7.5	Failure Modes	164	
	4.8	Summ	nary	168	
5	RES	ULTS A	ND DISCUSSION ON COMPOSITE SLABS	171	
	5.1	Introd	uction	171	
	5.2	Small	Scale Results of the Composite Slab	172	
		5.2.1	Fresh State Condition	173	
		5.2.2	Material Properties	175	
			5.2.2.1 Concrete Base	175	

		5.2.2.2 Concrete Topping	177
	5.2.3	Applied Load and Mid-Span Deflection	
		Relationship	178
	5.2.4	Ultimate Shear Capacity	187
	5.2.5	Interface Behaviour	191
	5.2.6	Concrete Strain Distribution of the Small Scale	
		Composite Slab	194
	5.2.7	Failure Mechanism of the Small Scale	
		Composite Slab	205
	5.2.8	Optimization on the SFRC to Reinforced	
		Concrete Topping	208
5.3	Full S	cale Results of the Composite Slab	210
	5.3.1	Concrete Topping Material Properties	211
	5.3.2	Applied Shear Load and Deflection	
		Relationship	212
	5.3.3	Interface Behaviour	216
	5.3.4	Ultimate Shear Capacity	219
	5.3.5	Failure Mechanism	221
5.4	Sumn	nary	225
ANA	LYTIC	AL MODEL OF COMPOSITE SLAB WITH	
STEI	EL FIB	RE REINFORCED CONCRETE TOPPING	227
6.1	Introd	luction	227
6.2	Mech	anical Properties of Steel Fibre Reinforced	
	Conci	rete	228
	6.2.1	Regression Analysis on the Mechanical	
		Properties	228
		6.2.1.1 Verification on the Proposed Model of	
		the Tensile Splitting Strength	233
		6.2.1.2 Verification on the Proposed Model of	
		the Peak Strength	238
	6.2.2	Shear Supplement from Steel Fibres	243
		6.2.2.1 RILEM Approach with Modification	243
		6.2.2.2 Theoretical Approach	250

	6.3	Shear I	Design of SFRC in Concrete Topping of Composite	
		Slab		260
		6.3.1	Theoretical Analysis on the Shear Design Model	260
		6.3.2	Shear Design Model Verification	263
			6.3.2.1 Verification on the Small Scale Test Results	263
			6.3.2.2 Verification on the Full Scale Test Results	270
	6.4	Summa	ary	273
7	CONC	CLUSIC	ONS AND FUTURE WORKS	275
	7.1	Conclu	isions	275
	7.2	Recom	mendation for Future Works	277
REFE	RENCI	ES		279
Append	dices A	- D		289-341

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	System groups under IBS	2
2.1	Classification of fibre reinforced concrete	16
2.2	Summary on proposed models from literatures	26
2.3	Summary on general models from literatures	26
2.4	Summary on properties of Ramli and Dawood (2010)	
	and Song and Hwang (2004)	27
2.5	Summary on proposed models from literatures for the	
	tensile splitting strength	30
2.6	Summary on the proposed models for the flexural strength	31
2.7	Variables from Nataraja et al. (1999)	42
2.8	Summary on different previous works reported for the	
	steel fibre reinforced concrete in a concrete slab	60
3.1	Standard reference and Code of Practice used in the tests	69
3.2	Range of mixture proportions for normal weight macro	
	fibre reinforced concrete (ACI 544.3R-08)	70
3.3	Concrete mix composition for 1m ³ volume	71
3.4	Properties of steel fibre	71
3.5	Summary of the specimens prepared for the mechanical	
	properties investigation	76
3.6	Concrete mix composition of the concrete base	84
3.7	Concrete mix composition of the concrete topping for	
	a small scale specimen	85
3.8	Properties of the concrete topping	91

3.9	Concrete mix composition of the concrete topping for	
	a full scale specimen	95
3.10	Reinforcement type and specimen properties in the full	
	scale test	97
3.11	Functions and locations of LVDTs on the specimen	102
3.12	The disturbed region length from all specimens	105
4.1	Density test results of steel fibre	110
4.2	Coefficient of variation for the average density of steel	
	fibre to that of normal density of steel fibre	111
4.3	Results from the concrete slump test	113
4.4	Descriptive statistics results of the compressive strength	
	test results	116
4.5	Results from the compressive strength test at 7 and 28	
	days with the coefficient of variation	120
4.6	Descriptive statistics results of the tensile splitting	
	strength test results	123
4.7	Degree of correlation range from the Pearson method	124
4.8	Results on the coefficient of correlation	124
4.9	Results from the tensile test at 28 days with the	
	coefficient of variation	127
4.10	The Modulus of Elasticity at 28 days with the respective	
	coefficient of variation	131
4.11	The parameters for Toughness Ratio calculations	138
4.12	Parameters from the flexural test according to	
	ASTM C1609/1609M-10	142
4.13	Descriptive statistics results for the peak strength	145
4.14	Results on the degree of correlation	145
4.15	Parameters from the flexural test	147
4.16	Residual strength and Toughness from the flexural test	154
4.17	The cracking distance from the nearest applied load	
	location to the fracture position	167
4.18	Summary on the most ideal type of steel fibre and the	
	most optimum amount of volume fraction	170
5.1	Results from the concrete slump test	174

5.2	Compressive strength, f_{cu} and tensile strength, f_{ct} results	
	at 7 and 28 days for the concrete base	176
5.3	The average compressive strength at 7 and 28 days for	
	the concrete topping	177
5.4	The average tensile splitting strength at 28 days for the	
	concrete topping	177
5.5	First cracking load with the respective mid-span deflection	184
5.6	Maximum applied load with the respective maximum	
	mid-span deflection	185
5.7	Average maximum applied load with the respective	
	coefficient of variation	186
5.8	Ultimate shear capacity of the small scale composite slab	188
5.9	Descriptive statistics results for the ultimate shear capacity	189
5.10	Results on the coefficient of correlation	191
5.11	Interface slips at maximum load measured at the left, δ_{slip1}	
	and right, δ_{slip2} hand sections	193
5.12	Concrete strains at the extreme top fibre, interface and	
	extreme bottom fibre	204
5.13	The concrete topping properties for all specimens	212
5.14	The interface slips at the ultimate shear load	217
5.15	The ultimate shear capacity and maximum deflection	220
6.1	Mechanical properties models from previous works	229
6.2	Regression analysis results on the proposed models for	
	the tensile splitting strength	233
6.3	Results from the regression analysis of the proposed	
	models for the peak strength	238
6.4	Results from the regression analysis on the proposed	
	models for the residual strength at net deflection of $L/150$	246
6.5	Shear stress supplement from steel fibres	254
6.6	Results from the regression analysis on the proposed	
	models for the shear supplement from steel fibres	257
6.7	Calculation on the design ultimate shear strength in	
	first proposed model	265

6.8	Proportion of design shear strength to that of experimental	
	ultimate shear strength in first proposed model	266
6.9	Calculation on the design ultimate shear strength in second	
	proposed model	269
6.10	Calculation on the design ultimate shear strength in the first	
	proposed model for the full scale test results	271
6.11	Calculation on the design ultimate shear strength in the	
	second proposed model for the full scale test results	271

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	The reinforcing steel projected from supporting beam	3
1.2	PWWM is reinforced in the concrete topping of the	
	composite slab	3
1.3	Precast slab reinforced with PWWM in an in-situ concrete	
	topping	5
1.4	Crack penetrate into concrete topping reinforced with	
	PWWM	7
1.5	Crack penetrate into concrete topping reinforced with	
	steel fibres	7
1.6	Reinforcing mechanism of PWWM to prevent crack	7
1.7	Reinforcing mechanisms of steel fibres to prevent crack	8
2.1	Type I Steel-fibre reinforced concrete	17
2.2	Type II Glass-fibre reinforced concrete	17
2.3	Type III Synthetic-fibre reinforced concrete	17
2.4	Type IV Natural-fibre reinforced concrete	17
2.5	Hooked-end deformed steel fibre (Collated)	18
2.6	Hooked-end deformed steel fibre (Loosed)	19
2.7	Crimped steel fibre	19
2.8	Corrugated steel fibre	19
2.9	Straight steel fibre	19
2.10	Relationship between fibre reinforcing index and volume	
	fraction from previous researchers	23
2.11	Relationship between compressive strength performance	
	to the volume fraction	28

2 12	Relationship between the compressive strength	
2.12	nerformances and the fibre reinforcing index	29
2 13	Stress distributions in a fibre for different length	34
2.15	Estimation of the fibre count (Zollo, 1997)	36
2.14	Design stress_strain diagram for concrete	50
2.15	$(BS EN 1992_1_1) \cdot 2004)$	40
2.16	Relationship between the compressive strain at maximum	40
2.10	compressive stress and fibre reinforcing index from previous	
	works	, 46
2.17	Palationship between the ultimate compressive strain of	70
2.17	SEBC and fibre reinforcing index from previous works	16
2 19	Palotionship between the maximum compressive stress of	-0
2.10	SEBC and the corresponding compressive strain from	
	previous works	40
2.10	Hellow core slab	50
2.19	Half alab	50
2.20	Single or Double too slab	50
2.21	Paper agges are extend from inside of flat slab	50
2.22	No robor cocces installed	52
2.23	Relationship between the energy observation and the fibre	55
2.24	Relationship between the energy absorption and the note	55
2.25	Polationship between the concrete commensative strength	55
2.25	Relationship between the concrete compressive strength	56
2.26	and the fibre reinforcing index	30
2.26	Conventional composite slab failure from Girnammar and	57
2.07	Pajari (2008)	57
2.27	SFRC as concrete topping of composite slab failure from	57
0.00	Girhammar and Pajari (2008)	57
2.28	Relationship between the applied load and deflection	
	from Girhammar and Pajari (2008)	58
2.29	The shear force exhibited by every specimens from	
_	Girhammar and Pajari (2008)	59
2.30	Relationship between the compressive strength with the	
	respective authors	61

2.31	Relationship between the thickness of SFRC element			
	with the respective authors	62		
3.1	Methodology on the experimental work	67		
3.2	Rotary drum mixer machine	73		
3.3	Fresh state of SFRC	74		
3.4	Cube specimens before dismantling of the steel moulds	76		
3.5	Cylinder specimens before dismantling of the steel moulds	77		
3.6	Prism specimens before dismantling of the steel moulds	77		
3.7	Slump test	78		
3.8	Cube compressive strength test setup	79		
3.9	Tensile splitting strength test setup	80		
3.10	Modulus of Elasticity test setup	81		
3.11	Schematic diagram for flexural strength test	83		
3.12	Position of flexural strength test setup and demec points	83		
3.13	The prepared moulds for the concrete base	86		
3.14	The steel reinforcement arrangement	87		
3.15	The casting process for the concrete base	87		
3.16	Fresh concrete bases after casting	87		
3.17	The top surface of the concrete base roughened in the			
	transverse direction	88		
3.18	Concrete bases are cured using wet burlap	88		
3.19	Mould preparations for the concrete topping	89		
3.20	The prepared concrete topping mould for the control slab			
	specimens	90		
3.21	Fresh concrete topping after casting	90		
3.22	Concrete topping are cured using wet burlap	90		
3.23	The finished composite slab specimen in the small scale			
	test	91		
3.24	Schematic diagram of the testing arrangement in the			
	small scale test	93		
3.25	Actual test set up of the small scale test	93		
3.26	Precast slab detailed dimensions	96		
3.27	The top surface of the precast slab is air vacuum	98		
3.28	Mould preparations for casting the concrete topping	98		

3.29	Composite slab specimens is cured using wet burlap	98
3.30	Finished composite slab specimen for the full scale	
	test in the longitudinal direction	99
3.31	Finished composite slab specimen for the full scale	
	test in the transverse direction	99
3.32	Transferring process of the specimen to the test frame	100
3.33	Schematic diagram for the Experimental Setup 1	101
3.34	The actual Experimental Setup 1 testing arrangement	101
3.35	Location of LVDT1 to measure deflection	102
3.36	Location of LVDT2 to measure deflection	103
3.37	Location of LVDT3 and LVDT5 at the end of the right	
	hand side to measure interface slip and vertical movement	103
3.38	The location of LVDT4 at the end of the left hand side	
	to measure interface slip	103
3.39	Support 2 shifted location in the Experimental Setup 2	105
3.40	Schematic diagram for the Experimental Setup 2	106
3.41	The actual Experimental Setup 2 testing arrangement	106
4.1	Relationship between the density of steel fibre and	
	aspect ratio	110
4.2	Relationship between concrete slump and volume fraction	114
4.3	Conditions of the packing density for an aggregate-fibre	
	mixture	114
4.4	Frequency of the compressive strength test results	116
4.5	Compressive strength distributions within the 95% CI	117
4.6	Relationship between the compressive strength and	
	volume fraction	119
4.7	Mode of failure of the cube specimens after the	
	compressive strength test for SF60	121
4.8	Mode of failure of the cube specimens after the	
	compressive strength test for SF50	121
4.9	Mode of failure of the cube specimens after the	
	compressive strength test for SF33	121
4.10	Frequency of the tensile splitting strength test results	123

4.11	Tensile splitting strength results distribution within the	
	95% CI	123
4.12	Relationship between the tensile splitting strength and	
	volume fraction at 28 days	126
4.13	Failure modes of the cylinders at the end of the tensile	
	splitting test for SF60	128
4.14	Failure modes of the cylinders at the end of the tensile	
	splitting test for SF50	128
4.15	Failure modes of the cylinders at the end of the tensile	
	splitting test for SF33	128
4.16	Relationship between Modulus of Elasticity and	
	volume fraction	131
4.17	General stress-strain relationships	133
4.18	The softening branch of the stress-strain relationship SF60	133
4.19	The softening branch of the stress-strain relationship SF50	134
4.20	The softening branch of the stress-strain relationship SF33	134
4.21	The softening branch of the stress-strain relationship for all	
	types of fibre at the respective volume fractions	136
4.22	Definition of toughness ratio, $T.R$	137
4.23	The relationship between toughness ratio and volume	
	fraction	140
4.24	Failure modes of the cylinders at the end of compression	
	test for SF60	140
4.25	Failure modes of the cylinders at the end of compression	
	test for SF50	141
4.26	Failure modes of the cylinders at the end of compression	
	test for SF33	141
4.27	Relationship between load and net deflection for Case 1	143
4.28	Relationship between load and net deflection for Case 2	143
4.29	Frequency on the peak strength results together with the	
	distribution curve	145
4.30	Peak strength distribution with 95% CI	145
4.31	Relationship between the first peak strength and	
	volume fraction	148

4.32	Relationship between the peak strength and volume fraction	148
4.33	Relationship between the applied load and mid-span	
	deflection for control	150
4.34	Relationship between the applied load and mid-span	
	deflection for SF60	151
4.35	Relationship between the applied load and mid-span	
	deflection for SF50	152
4.36	Relationship between the applied load and mid-span	
	deflection for SF33	153
4.37	Relationship between the toughness and volume fraction	156
4.38	Relationship between the residual strength at net deflection	
	of $L/600$ and volume fraction	156
4.39	Relationship between the residual strength at net deflection	
	of $L/150$ and volume fraction	157
4.40	Relationship between the applied load and strain for the	
	control specimen	158
4.41	Relationship between the applied load and strain for SF60	159
4.42	Relationship between the applied load and strain for SF50	160
4.43	Relationship between the applied load and strain for SF33	161
4.44	Pull-out behaviour on fibre embedded length on shorter side	163
4.45	Failure mode of the control specimen	164
4.46	Failure of the SF60 specimens	165
4.47	Failure of the SF50 specimens	165
4.48	Failure of the SF33 specimens	166
5.1	Relationship between concrete slump and volume fraction	175
5.2	Failure mode of the cube from the compressive strength	
	test	176
5.3	Failure mode of the cylinder from the tensile strength test	176
5.4	Location of LVDTs in the small scale composite slab test	178
5.5	Relationship between applied load and mid-span deflection	
	for the control specimens	179
5.6	Relationship between applied load and mid-span deflection	
	for SF60 specimens	180

Relationship between applied load and mid-span deflection	
for SF50 specimens	181
Relationship between applied load and mid-span deflection	
for SF33 specimens	182
Relationship between the average maximum applied load	
and volume fraction	187
Ultimate shear capacity distribution for all composite	
slab specimens	189
Ultimate shear capacity with 95% CI	190
Behaviour of composite slab specimen under applied load	193
Relationship between the applied load and concrete strain	
for the control specimen	195
Relationship between the applied load and concrete strain	
for concrete topping reinforced with SF60	196
Relationship between the applied load and concrete strain	
for concrete topping reinforced with SF50	197
Relationship between the applied load and concrete strain	
for concrete topping reinforced with SF33	198
Strain distribution diagram of the composite slab from	
control specimen	200
Strain distribution diagram of the composite slab from	
SF60 specimens	201
Strain distribution diagram of the composite slab from	
SF50 specimens	202
Strain distribution diagram of the composite slab from	
SF33 specimens	203
Failure modes of the control specimens	205
Failure mode of the SF60 composite slab	
(selected specimens)	206
Failure mode of the SF50 composite slab	

5.7

5.8

5.9

5.10

5.11 5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23Failure mode of the SF50 composite slab
(selected specimens)2075.24Failure mode of the SF33 composite slab
(selected specimens)207

5.25	Location of LVDTs in the Experimental setup 1 for the	
	full scale test	212
5.26	Location of LVDTs in the Experimental setup 2 for the	
	full scale test	213
5.27	Relationship between the applied shear load and deflection	
	for S1	214
5.28	Relationship between the applied shear load and deflection	
	for S2	214
5.29	Relationship between the applied shear load and deflection	
	for S3	215
5.30	Relationship between the applied shear load and deflection	
	for S4	216
5.31	Relationship between the applied shear load and deflection	
	for S5	216
5.32	Relationship between the applied shear load and interface	
	slip for S1	217
5.33	Relationship between the applied shear load and interface	
	slip for S2	218
5.34	Relationship between the applied shear load and interface	
	slip for S3	218
5.35	Relationship between the applied shear load and interface	
	slip for S4	218
5.36	Relationship between the applied shear load and interface	
	slip for S5	218
5.37	Ultimate shear capacity relationships between experimental	
	setup 1 and setup 2	220
5.38	Failure modes for specimen S1	223
5.39	Failure modes for specimen S2	223
5.40	Failure modes for specimen S3	224
5.41	Failure modes for specimen S4	224
5.42	Failure modes for specimen S5	225
6.1	Linear probability plot for regression standardized residual	
	of the proposed model for the tensile splitting strength	235

6.2	Correlation between the test results and the proposed	
	models with 1:1 line for the tensile splitting strength	236
6.3	Relationship between the proposed models and the	
	experimental results for the tensile splitting strength	237
6.4	Linear probability plot for regression standardized	
	residual of the proposed model for the peak strength	240
6.5	Correlation between the test results and the proposed	
	models with 1:1 line for the peak strength	241
6.6	Relationship between the proposed models and the	
	experimental results for the peak or flexural strength	242
6.7	Linear probability plot for regression standardized residual	
	of the proposed model for the residual strength at net	
	deflection of $L/150$	248
6.8	Correlation between the test results and the proposed	
	models with 1:1 line for the residual strength at net	
	deflection of $L/150$	249
6.9	Transformed section of small scale composite slab	252
6.10	Compressive zone contribution	253
6.11	Relationship between the shear stress from steel fibres	
	and the volume fraction	255
6.12	Linear probability plot for regression standardized residual	
	of the proposed model for the shear supplement from	
	steel fibres	258
6.13	Correlation between the test results and the proposed	
	models with 1:1 line for the shear supplement from	
	steel fibres	259
6.14	Stress trajectories in homogeneous element	261
6.15	Relationship between the design ultimate shear strength	
	from the first proposed model and the ultimate shear	
	strength from the small scale test results with 1:1 line	268
6.16	Relationship between the design ultimate shear strength	
	from the second proposed model and the ultimate shear	
	strength from the small scale test results with 1:1 line	268

6.17	Transformation on the full scale composite slab specimen	
	into homogeneous slab	270
6.18	Relationship between the design ultimate shear strength	
	from the first proposed model and the ultimate shear	
	strength from the full scale test results with 1:1 line	272
6.19	Relationship between the design ultimate shear strength	
	from the second proposed model and the ultimate shear	
	strength from the full scale test results with 1:1 line	272

LIST OF SYMBOLS

ROMAN UPPER CASE LETTERS

$A_{c,cube}$	-	Cross-sectional area of the specimen which is perpendicular
		to the applied compressive force, mm ²
A_c	-	Area of concrete cross section, mm ²
A_f	-	Cross-sectional area of individual fibre, mm ²
A_{fx}	-	Total area of effective fibre reinforcement, mm ²
A_s	-	Area of longitudinal steel reinforcement, mm ²
CI	-	Confidence interval
COV	-	Coefficient of variation
$C_{Rd,c}$	-	Nationally determined parameter proposed by RILEM for
		shear design
Ε	-	Modulus of Elasticity, kN/mm ²
F_{cube}	-	Maximum compression force at failure, N
F _{split}	-	Maximum load at failure, N/mm ²
FC	-	Fibre count
L/D	-	Fibre aspect ratio
MOR	-	Modulus of rupture, N/mm ²
N _{ed}	-	Axial force due to load, kN
P _{crack}	-	First cracking load, kN
P _{max}	-	Maximum load, kN
P _{flex}	-	The load at first peak, peak and residual, N
P_{I}	-	First peak load, kN
P_P	-	Peak load, kN
P_{150}^{D}	-	Residual load at net deflection of $L/150$, kN

P_{600}^{D}	-	Residual load at net deflection of L/600, kN
RI	-	Fibre reinforcing index, %
RI_w	-	Fibre reinforcing index by means of weight fractions
		of fibres, %
<i>R</i> _{<i>e</i>,3}	-	Equivalent flexural ratio in JCI-SF
R^2	-	Coefficient of correlation
<i>T.R</i> .	-	Toughness ratio
T_{150}^{D}	-	Flexural toughness
V	-	Ultimate shear capacity, kN
V _{cz}	-	Shear force contribution from the compressize zone, kN
V_f	-	Fibre volume fraction, %

ROMAN LOWER CASE LETTER

a/d	-	Shear span-to-effective depth ratio
b	-	Width of the section, mm
<i>b</i> _{flex}	-	The width of specimen in flexural strength test failure, mm
b_{v}	-	Shear width of the section, mm
d	-	Depth of section, mm
<i>d</i> _{flex}	-	The depth of specimen in flexural strength test failure, mm
<i>d</i> _{split}	-	The designated cross-sectional dimension in tensile strength
		test, mm
е	-	Demec coefficient
f _{cy}	-	Cylinder compressive strength, N/mm ²
f _{cu}	-	Cube compressive strength, N/mm ²
fcu,base	-	Cube compressive strength of a concrete base, N/mm^2
$f_{cu,topping}$	-	Cube compressive strength of a concrete topping, N/mm ²
f _{ct}	-	Tensile splitting strength, N/mm ²
f_p	-	Peak strength, N/mm ²
f _{Rk,4}	-	Residual flexural strength measured in BS EN 14651:2005,
		N/mm ²