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ABSTRACT 

This thesis introduces new methods in analyzing Electroencephalogram (EEG) signal 
by utilizing EEG spectrogram image and image processing texture analysis called Gray-
level Co-occurrence Matrices (GLCM). The methods attempt to apply in balanced brain 
and Intelligence Quotient (IQ) applications. The relationship between balanced brain 
and IQ application also proposed in this thesis. Collection of BEG signals were recorded 
from 101 volunteers. BEG signals recorded for the balanced brain application contain 
closed eyes state meanwhile for the IQ application contains closed eyes and opened 
eyes state. Before processing the information from the EEG signals, signal 
preprocessing is done to remove artefacts and unwanted signal frequencies. A time-
frequency based technique called EEG spectrogram image was used to generate an 
image from EEG signal. The spectrogram image was produced for each EEG signals 
sub-band frequency Delta, Theta, Alpha and Beta. The GLCM texture analysis derives 
features from EEG spectrogram image. Then, Principal Component Analysis (PCA) 
was applied to reduce the results and selected principal components features were used 
as inputs to the classifier. Two classifiers involved in this experiment are K-Nearest 
Neighbor (KNN) and Artificial Neural Network (ANN). The number of training and 
testing ratio is assessed at 70 to 30 and 80 to 20 to find the best model based on 
percentage of accuracy, sensitivity, specificity as well as Mean Squared Error (MSE). 
The relationship pattern of balanced brain and IQ application were observed via 
histogram and then Scatterplot. The strength and significant of the relationship was 
evaluated by using Pearson correlation test. The percentage of correctness classification 
for balanced brain application is 90% and MSE 0.1. The sensitivity and specificity of 
this application is ranging from 66.67% to 100%. The accuracy for IQ application is 
94.44% and MSE 0.0752. Meanwhile, the sensitivity and specificity of this application 
is ranging from 0% to 100%. The relationship between balanced brain and IQ achieved 
with positive and strong correlation with r ranging between 0.860 to 1.000 and p<0.05 
for some cases. The experiments reported in this thesis showed that the proposed 
technique were highly successful in indexing the balanced brain level and IQ. 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND 

Biomedical engineering is a field of study where principles of engineering 

design and problem solving skills are applied to biological and medical sciences, which 

consequently have helped improve healthcare diagnosis, monitoring and therapy. There 

have been numerous studies in the field that have resulted in the fabrication and 

production of electronics devices that assist medical practitioners in diagnosing the 

health of their patients. One such device is the Electroencephalogram (EEG) which is 

used to analyse the human brain. The device captures brainwaves in the form of electric 

signals which are generated from the activities of neurons in the brain. The brainwaves, 

usually classified into four frequency bands called Delta, Theta, Alpha and Beta signals, 

are widely used for diagnosis of epilepsy, tumor and Alzheimer [1-3], while some 

studies have used brainwaves for determining the levels of balanced brain [4, 5] and 

Intelligence Quotient (IQ) [6, 7] applications. In this thesis, EEG signals from the 

brainwaves is used to determine the levels of balanced brain and IQ in a human being. 

The research on balanced brain is inspired from the studies of brain dominance between 

the left and right hemispheres of the brain. In a high balanced brain situation, both the 

left and right hemispheres of the brain are optimally used; on the contrary, in a low 

balanced brain situation, one uses more of the left hemisphere of the brain, or vice-

versa. Additionally, the studies on IQ is focused on areas of Mathematics and logic; 

high IQ means good knowledge and understanding in Mathematics and logic, and, on 

the contrary, low IQ means less knowledge and understanding in Mathematics and 

logic.

The original EEG signal, which is in time-domain, have to be converted into 

frequency-domain before it can be analysed according to the Delta, Theta, Alpha and 

Beta frequency bands;the signals that lie outside the range of the four frequency bands 

is called noise or artefact. In some studies, all four frequency bands are utilised in the 

analysis, such as in the experiment conducted to analyse the development of the right 

1



hemisphere of the brain of infants [4]; however, in other studies, only certain frequency 

bands are used, such as the use of Alpha and Theta frequency bands in the analysis of 

the levels of IQ in children and adults [6]. 

EEG signals are usually processed using the conventional signal processing 

techniques, such as Power Spectral Density (PSD) and Energy Spectral Density (ESD) 

[8, 9]. The extraction of EEG signals using these techniques have been proven to 

produce good results. However, it is hypothesized that the signals have other features 

that can be extracted compared to the features produced from using the conventional 

techniques. Instead of looking in isolation at the EEG signals either in time-domain or 

frequency-domain, its rich features can be better observed by combining the two 

domains, or time-frequency (TF) domain, that produces an image known as 

spectrogram image. This two-dimensional data has been proven to have strong 

visualization feature and extensive statistic significance compared to the one-

dimensional signal [10]. The use of spectrogram images has been successfully 

performed in experiments using electrocardiogram (ECG) signals [11], a signal which 

is similar to EEG signals. 

Spectrogram image can be processed using a variety of techniques, and one such 

technique is the Gray-level Co-occurrence Matrices (GLCM). By extracting the grey 

values in an image, the technique produces good result when employed to analyse the 

texture of the image. Even though GLCM is widely used in satellite image applications 

[12], it is also applied in analysing spectrogram image of ECG signals [11]. 

Spectrogram image and texture feature analysis using GLCM has been successfully 

applied to ECG signals, hence, it is envisioned that the same could be done with EEG 

signals, in spite of the fact that the two signals have different characteristics. The 

extracted features from the spectrogram image can be classified in accordance with the 

groups that have been determined by various algorithms. Among the most commonly 

used algorithms in researches relating to EEG signals are K-Nearest Neighbour (KNN) 

and Artificial Neural Network (ANN) [13, 14]; both algorithms are supervised 

algorithms, however, KNN is simpler to implement compared to ANN. KNN uses a 

distance and k-variable to classify the features of the spectrogram image, while ANN 

uses parameters such as neurons in hidden layer, learning rate, momentum rate and 

epoch to classify the features. The purpose of using the algorithms is to investigate the



features of the spectrogram and GLCM in order to characterise EEG signals, however, 

the two algorithms have different levels of complexity. 

Therefore, there is a need for a research to examine the rich features of EEG 

signals using spectrogram image and GLCM analysis as it is envisaged that the 

technique would enhance the signal processing technique used in the analysis of EEG 

signals. 

1.2 PROBLEM STATEMENT 

Most studies show that EEG signals are analysed in time-domain and frequency-

domain. This method has proven to give good results for analysing EEG signals. , EEG 

signal is non-stationary signal which the frequency varies over time. Therefore, the 

analysis in time-domain or frequency-domain is ineffective. If the analysis is executed 

in the frequency domain, the frequency will be analysed but the time is negligible. 

There is the possibility of another technique to investigate the richness of EEG signals. 

Thus the combination of time-domain with, frequency-domain is a suitable technique to 

analyse EEG signals. This combination is called spectrogram image. And so, the 

spectrogram image can be analysed using GLCM texture analysis, which is one of 

image processing technique. The GLCM is able to characterise the texture of a 

spectrogram image. The spectrogram image and GLCM may surpass the time-domain 

and frequency domain analysis in EEG studies. The technique will shows the richness 

of EEG signals in terms of sub-band for the applications of balanced brain and IQ. 

1.3 OBJECTIVE 

The aim of the study is to investigate the application of spectrogram image for 

analysing sub-band frequency of EEG signals, and the proposed technique is to be 

implemented in determining the levels of balanced brain and IQ. To achieve this aim, 

the tasks in the research are divided into: 

1. Producing the spectrogram image from sub-band frequency of brain waves. 

2. Extracting GLCM features from spectrogram image. 
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3.	 Classifying the spectrogram image using KNN and ANN and verifying the 

results of the classification with questionnaires. 

4.	 Correlating the GLCM features of balanced brain with IQ. 

1.4 CONTRIBUTIONS 

As a result of the study, three aspects of knowledge that contributes to the field 

of biomedical engineering are presented in this thesis. The first contribution is that the 

proposed technique using EEG spectrogram and GLCM texture analysis is to be 

implemented in balanced brain applications. The second contribution is that the 

proposed method using EEG spectrogram and GLCM texture analysis is to be 

implemented in IQ applications. Different conditions are required when collecting data 

for the two applications; for balanced brain application, data are collected under one 

state condition - with both eyes closed, while for IQ application, data are collected 

under two states condition - with both eyes closed and opened. Other than that, data for 

balanced brain application is verified using brain dominance questionnaire, whereas 

data for IQ application requires the volunteers to answer the IQ test with their eyes 

open. The third contribution is to analyse using statistical method and establish the 

correlation between balanced brain and the IQ. Consequently, it is expected that 

electronics devices based on the proposed technique is produced which could be used to 

create a healthier Malaysian society. 

1.5 SCOPE OF RESEARCH 

The initial part of the study involved implementing the spectrogram image 

technique to analyze the sub-band frequency of EEG signals that is applied to balanced 

brain and IQ applications. The acquisition of EEG signals is conducted at Biomedical 

Research Laboratory for Human Potential, FKE, Universiti Teknologi MARA (UiTM), 

Malaysia. 

In the study, the number of male and female volunteers is 101 in the age group 

from 18 to 50 years old. This is the range of adult age is widely used in EEG studies 

[15-17]. Those who are older than 50 years were not included in the study as their 

human productivity have decreased [18]. Most of the volunteers are students and staffs 
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from UiTM. On top of that, the volunteers must be healthy and are not on any 

medication or prescription drugs that are known to affect EEG reading for at least one 

month prior to the commencing of the experiment [19-21]. Volunteers who are sick, for 

example, has fever, cough or cold is not allowed to participate the experiment, but when 

he or she recovers, they are allowed to participate the experiments. 

Since the volunteers are required to respond to the questionnaires and IQ 

questions, it is essential that the volunteers' vision must be normal or corrected to 

normal [22]. The volunteers involved in the experiments are different for balanced brain 

and IQ application. In addition, the data collection are performed in two different 

sessions. The EEG signals recorded in eyes-closed for balanced brain application, while 

the EEG signals recorded in eyes-closed and eyes-opened for IQ application. 

The GLCM texture analysis is employed to extract the features of the 

spectrogram of BEG signals and these features is classified using KNN and ANN. The 

results from the classification exercise are verified with the aid brain dominance 

questionnaires and IQ questions. Software programming development is carried out 

using MATLAB and SPSS is used to conduct statistical analysis on the results. 

Finally, the results obtained from KNN and ANN are evaluated and compared in 

terms of accuracy, MSE, sensitivity and specificity. 

1.6 THESIS LAYOUT 

This thesis consists of eight chapters. Chapter 1 begins with the background 

information on brain waves and its importance in the study of balanced brain and IQ 

applications. Also included in this chapter are the objectives and scopes of the study. 

Chapter 2 reviews the literature related to this study. This chapter describes 

several definitions and information related to the brain, brainwaves, EEG, balanced 

brainapplication, IQ application, EEG signals in TF domain, image texture analysis and 

classifiers. 

Chapter 3 describes the theories that are applied in this thesis, which cover 

aspects on BEG signal processing, STFT, GLCM, PCA, KNN and ANN. All 

calculations and algorithms related to the theories are described in this chapter. 

Chapter 4 presents the methodology implemented to conduct the experiments 

carried out in this study, which cover topics on the utilization of spectrogram image and 
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