

UNIVERSITI TEKNOLOGI MARA

EEG SUB-BAND FREQUENCY ANALYSIS OF SPECTROGRAM IMAGE FOR BALANCED BRAINWAVE AND IQ APPLICATIONS

MAHFUZAH BINTI MUSTAFA

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Electrical Engineering

October 2014

ABSTRACT

This thesis introduces new methods in analyzing Electroencephalogram (EEG) signal by utilizing EEG spectrogram image and image processing texture analysis called Graylevel Co-occurrence Matrices (GLCM). The methods attempt to apply in balanced brain and Intelligence Quotient (IQ) applications. The relationship between balanced brain and IQ application also proposed in this thesis. Collection of EEG signals were recorded from 101 volunteers. EEG signals recorded for the balanced brain application contain closed eyes state meanwhile for the IQ application contains closed eyes and opened eyes state. Before processing the information from the EEG signals, signal preprocessing is done to remove artefacts and unwanted signal frequencies. A timefrequency based technique called EEG spectrogram image was used to generate an image from EEG signal. The spectrogram image was produced for each EEG signals sub-band frequency Delta, Theta, Alpha and Beta. The GLCM texture analysis derives features from EEG spectrogram image. Then, Principal Component Analysis (PCA) was applied to reduce the results and selected principal components features were used as inputs to the classifier. Two classifiers involved in this experiment are K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN). The number of training and testing ratio is assessed at 70 to 30 and 80 to 20 to find the best model based on percentage of accuracy, sensitivity, specificity as well as Mean Squared Error (MSE). The relationship pattern of balanced brain and IQ application were observed via histogram and then Scatterplot. The strength and significant of the relationship was evaluated by using Pearson correlation test. The percentage of correctness classification for balanced brain application is 90% and MSE 0.1. The sensitivity and specificity of this application is ranging from 66.67% to 100%. The accuracy for IQ application is 94.44% and MSE 0.0752. Meanwhile, the sensitivity and specificity of this application is ranging from 0% to 100%. The relationship between balanced brain and IQ achieved with positive and strong correlation with r ranging between 0.860 to 1.000 and p < 0.05for some cases. The experiments reported in this thesis showed that the proposed technique were highly successful in indexing the balanced brain level and IQ.

TABLE OF CONTENTS

Page

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xxii

CHAPTER ONE: INTRODUCTION

BACKGROUND	1
PROBLEM STATEMENT	3
OBJECTIVE	3
CONTRIBUTIONS	4
SCOPE OF RESEARCH	4
THESIS LAYOUT	5
	BACKGROUND PROBLEM STATEMENT OBJECTIVE CONTRIBUTIONS SCOPE OF RESEARCH THESIS LAYOUT

CHAPTER TWO: LITERATURE REVIEW

2.1	INTRODUCTION	7
2.2	THE HUMAN BRAIN	7
2.3	EEG SIGNALS	9
	2.3.1 Balanced Brain Applications	12
	2.3.2 IQ Applications	13
	2.3.3 Relationship of Balanced Brain and IQ	14
	2.3.4 Synthetic EEG Signals	15
	2.3.5 Artefact	16
2.4	SIGNAL PROCESSING APPROACH IN EEG SIGNAL ANALYSIS	16
2.5	IMAGE PROCESSING APPROACH IN EEG SIGNAL ANALYSIS	17

2.6 GRAY-LEVEL CO-OCCURRENCE MATRICES (GLCM)	18
2.7 PRINCIPAL COMPONENT ANALYSIS (PCA)	21
2.8 IMPLEMENTATION OF CLASSIFIER ON EEG SIGNALS	21
2.8.1 K-Nearest Neighbour (KNN)	24
2.8.2 Artificial Neural Network (ANN)	26
2.9 HISTOGRAM, SCATTERPLOT AND CORRELATION	
IN EEG SIGNALS	30
2.10 CHAPTER SUMMARY	31
CHAPTER THREE: THEORETICAL BACKGROUND	
3.1 INTRODUCTION	33
3.2 EEG ELECTRODE SYSTEM	33
3.3 EEG SIGNAL PREPROCESSING	34
3.3.1 Band-Pass filter	35
3.3.2 Test of Normality	36
3.4 SHORT TIME FOURIER TRANSFORM (STFT)	39
3.5 GRAY-LEVEL CO-OCCURRENCE MATRICES (GLCM)	40
3.6 PRINCIPAL COMPONENT ANALYSIS (PCA)	44
3.7 K-NEAREST NEIGHBOUR (KNN)	47
3.8 ARTIFICIAL NEURAL NETWORK (ANN)	49
3.9 PERFORMANCE MEASURES	53
3.10 SCATTERPLOT AND CORRELATION	56
CHAPTER FOUR: METHODOLOGY	
4.1 INTRODUCTION	58
4.2 RESEARCH DESIGN PROCESS OF EEG SPECTROGRAM IMAC	ЪЕ
AND GLCM	58
4.3 DATA COLLECTION	59
4.3.1 Equipment Set-up	60
4.3.2 Subjects	62
4.3.3 EEG Procedure and Measurements	63
4.4 SYNTHETIC EEG SIGNALS	64
4.5 DATA PREPROCESSING	66

4.5.1 Artefact Removal	66
4.5.2 Band-pass Filter	66
4.5.3 Test of Normality	66
4.6 DATA CONVERSION	66
4.6.1 EEG Spectrogram Image	68
4.6.2 Gray-level Co-occurrence Matrices (GLCM)	69
4.6.3 Texture Feature	69
4.6.4 Alpha and Beta Ratio for IQ Application	69
4.7 DATA REDUCTION	70
4.8 DATA CLASSIFICATION	71
4.8.1 Data Splitting	71
4.8.2 K-Nearest Neighbour (KNN)	71
4.8.3 Artificial Neural Network (ANN)	72
4 9 PERFORMANCE MEASURES	73
4 10 STATISTICAL ANALYSIS	74
4 11 CHAPTER SUMMARY	76

CHAPTER FIVE: EEG SIGNALS SUB-BAND ANALYSIS	
FOR BALANCED BRAIN APPLICATIONS	
5.1 INTRODUCTION	77
5.2 EQUIPMENT SET-UP RESULT	77
5.3 EEG SIGNALS	79
5.4 SYNTHETIC EEG SIGNALS	83
5.5 SIGNAL PREPROCESSING	88
5.5.1 Artefact Removal	88
5.5.2 Band-pass Filter	89
5.5.3 Test Normality	91
5.6 EEG SPECTROGRAM IMAGE	92
5.7 GLCM TEXTURE FEATURE	94
5.8 PRINCIPAL COMPONENT ANALYSIS (PCA)	97
5.9 K-NEAREST NEIGHBOR (KNN)	98
5.9.1 Data Set 1 With Ratio 70:30	98
5.9.2 Data Set 1 With Ratio 80:20	10

5.9.3 Data Set 2 With Ratio 70:30	103
5.9.4 Data Set 2 With Ratio 80:20	106
5.10 ARTIFICIAL NEURAL NETWORKS (ANN)	109
5.10.1 Data Set 1 With Ratio 70:30	109
5.10.2 Data Set 1 With Ratio 80:20	114
5.10.3 Data Set 2 With Ratio 70:30	118
5.10.4 Data Set 2 With Ratio 80:20	122
5.11 COMPARISON BETWEEN MODELS	126
5.12 CHAPTER SUMMARY	128

CHAPTER SIX: EEG SIGNALS SUB-BAND ANALYSIS FOR INTELLIGENCE QUOTIENT (IQ) APPLICATIONS

6.1	INTRODUCTION	130
6.2	EEG SIGNAL	130
6.3	SIGNAL PREPROCESSING	135
	6.3.1 Artefact Removal	136
	6.3.2 Band-pass Filter	137
	6.3.3 Normality Test	139
6.4	SPECTROGRAM IMAGE	139
6.5	GRAY-LEVEL CO-OCCURRENCE MATRICES (GLCM) TEXTURE	
	FEATURE	143
6.6	PRINCIPAL COMPONENT ANALYSIS (PCA)	149
6.7	K-NEAREST NEIGHBOR (KNN)	150
	6.7.1 Data With Ratio 70:30	150
	6.7.2 Data With Ratio 80:20	153
6.8	3 ARTIFICIAL INTELLIGENCE NETWORKS (ANN)	156
	6.8.1 Data With Ratio 70:30	157
	6.8.2 Data With Ratio 80:20	161
6.9	9 COMPARISON BETWEEN MODELS	165
6.	10 CHAPTER SUMMARY	167

2

CHAPTER SEVEN: RELATIONSHIP BETWEEN BALANCED BRAIN	
AND INTELLIGENCE QUOTIENT (IQ)	
7.1 INTRODUCTION	169
7.2 DESCRIPTIVE STATISTICS	169
7.3 HISTOGRAM	170
7.4 SCATTERPLOT	172
7.5 CORRELATION	181
7.6 SUMMARY OF BALANCED BRAIN CORRELATION WITH IQ	194
7.7 NEW INSIGHT IN THE BALANCE BRAIN AND IQ VALUE	195
7.8 CHAPTER SUMMARY	196
CHAPTER EIGHT: CONCLUSION AND RECOMMENDATION	
FOR FUTURE WORK	
8.1 CONCLUSION	197
8.2 RECOMMENDATION FOR FUTURE WORK	199
REFERENCES	200
APPENDICES	224
AUTHOR'S PROFILE	312

LIST OF TABLES

Tables	Title	Page
Table 2. 1	Description of Biosignal tools	9
Table 2. 2	Description of The Frequency Bands Related to Human	11
	Brainwave	
Table 3. 1	Similarities Between The Biological Neural Network and ANN	49
Table 3. 2	Range of r to Describe the Strength of Relationship	57
Table 4. 1	Synthetic EEG Signals Parameters	64
Table 5. 1	90 Experiments to Validate Equipment Set-up	78
Table 5.2	Number of Samples for Balanced Brain Application	80
Table 5.3	PSD and Frequency Value for The EEG Signals	82
Table 5.4	Number of Samples for Synthetic EEG Signals	83
Table 5.5	PSD and Frequency Value From 3 Samples of Synthetic Data	88
Table 5.6	<i>p</i> -value From Shapiro-Wilk (SW) Test	91
Table 5.7	Number of EEG Spectrogram Images for Data Set 2	93
Table 5.8	Number of EEG Spectrogram Images for Data Set 2	94
Table 5.9	Percentage Accuracy With Varying Distance and Rule for Data	99
	Set 1 With Ratio 70:30	
Table 5. 10	Sensitivity and Specificity for Data Set 1 With Varying k	101
	Variable With Ratio 70:30	
Table 5. 11	Percentage Accuracy With Varying Distance and Rule for Data	101
	Set 1 With Ratio 80:20	
Table 5. 12	Sensitivity and Specificity for Data Set 1 With Varying k	103
	Variable With Ratio 80:20	
Table 5. 13	Percentage Accuracy With Varying Distance and Rule for Data	104
	Set 2 With Ratio 70:30	
Table 5. 14	Sensitivity and Specificity for Data Set 2 With Varying k	106
	Variable With Ratio 70:30	
Table 5. 15	Percentage Accuracy With Varying Distance and Rule for Data	107
	Set 2 With Ratio 80:20	

Table 5. 16	Sensitivity and Specificity for Data Set 2 With Varying k	108
	Variable With Ratio 80:20	
Table 5. 17	Accuracy, MSE, Sensitivity and Specificity for Data Set 1 With	113
	Ratio 70:30	
Table 5. 18	Accuracy, MSE, Sensitivity and Specificity for Data Set 1 With	117
	Ratio 80:20	
Table 5. 19	Accuracy, MSE, Sensitivity and Specificity for Data Set 2 With	121
	Ratio 70:30	
Table 5. 20	Accuracy, MSE, Sensitivity and Specificity for Data Set 2 With	125
	Ratio 80:20	
Table 5. 21	Comparison Between The KNN and ANN Models	126
Table 5. 22	Comparison Between Training and Testing Data Ratio	127
Table 5. 23	Comparison Between The Models Using Different Data Sets	128
Table 6. 1	Number of Samples for IQ Application	131
Table 6. 2	PSD and Frequency Value for The EEG Signals	135
Table 6. 3	<i>p</i> -value From Shapiro-Wilk (SW) Test	139
Table 6. 4	EEG Spectrogram Images for IQ Application	142
Table 6. 5	Percentage Accuracy With Varying Distance and Rule for IQ	151
	Data with Ratio 80:20	
Table 6. 6	Sensitivity and Specificity for IQ Data With Ratio 70:30 While	153
	Varying k Variable	
Table 6.7	Percentage Accuracy With Varying Distance and Rule for IQ	154
	Data With Ratio 80:20	
Table 6.8	Sensitivity and Specificity With Varying k Variable for IQ Data	156
	With Ratio 80:20	
Table 6. 9	Accuracy, MSE, Sensitivity and Specificity for IQ Data With	160
	Ratio 70:30	
Table 6. 10	Accuracy, MSE, Sensitivity and Specificity for IQ Data With	164
	Ratio 80:20	
Table 6. 11	Comparison Between The Models Using a Different Training to	166
	Testing Data Ratio	
Table 6. 12	Comparison Between The Models Using a Different Classifier	167

Table 7.1	Number of Sample, Mean and Standard Deviation for BBI,	170
	IQCE and IQOE	
Table 7.2	Correlation Between Index 1 From Balanced Brain Application	183
	and Index 2 of Eyes-closed State From IQ Application	
Table 7.3	Correlation Between Index 1 From Balanced Brain Application	184
	and Index 2 of Eyes-closed State From IQ Application	
Table 7.4	Correlation Between Index 2 From Balanced Brain Application	185
	and Index 2 of Eyes-closed State From IQ Application	
Table 7.5	Correlation Between Index 2 From Balanced Brain Application	187
	and Index 3 of Eyes-opened State From IQ Application	
Table 7.6	Correlation Between Index 3 From Balanced Brain Application	188
	and Index 3 of Eyes-opened State From IQ Application	
Table 7.7	Correlation Between Index 3 From Balanced Brain Application	189
	and Index 3 of Eyes-closed State From IQ Application	
Table 7.8	Correlation Between Index 5 From Balanced Brain Application	191
	and Index 4 of Eyes-closed State From IQ Application	
Table 7.9	Correlation Between Index 5 From Balanced Brain Application	192
	and Index 6 of Eyes-opened State From IQ Application	
Table 7.10	Correlation Between Index 5 From Balanced Brain Application	193
	and Index 6 of Eyes-closed State From IQ Application	
Table 7.11	Variables That Obtained Positive and Strong Correlation	194
Table 7.12	Mapping New Indices for Balanced Brain and IQ	195

LIST OF FIGURES

Figures	Title	Page
Figure 2. 1	Four region of human brain [29]	8
Figure 2. 2	Human brain lobes [30]	9
Figure 2. 3	Brainwaves pattern [44]	10
Figure 3. 1	10-20 Electrode System [223]	34
Figure 3. 2	Band-pass Frequency Response	35
Figure 3. 3	Sample of Histogram	37
Figure 3. 4	Graph of Cumulative Distribution Function	38
Figure 3. 5	Orientations for Four Different Angles	41
Figure 3. 6	Matrix 4x4 to Illustrate Reference Pixel and Neighbor Pixel	41
Figure 3. 7	Sample of Image 4 x 4 with 0 to 3 Grey Tones	42
Figure 3.8	(a) Sample of Image, and (b) Symmetrical GLCM for $\theta=0^0$	42
Figure 3. 9	Calculation of Symmetrical GLCM for (a) θ =45 ⁰ , (b) θ =90 ⁰ ,	43
	and (c) θ =135 ⁰	
Figure 3. 10	ANN Structure with a (a) Single Hidden Layer, and (b) Multi-	50
	layer	
Figure 3. 11	Mathematics Model of ANN	51
Figure 3. 12	An Example of ANN Architecture with Backpropagation	52
	Algorithm	
Figure 3. 13	A 2x2 Truth Table	54
Figure 3. 14	Sample of a 3x3 Truth Table	55
Figure 3.15	Construct a 2x2 Truth Table for Class 1	55
Figure 3. 16	Truth Tables for Class 2 and 3	55
Figure 4. 1	Block Diagram of Methodology	59
Figure 4. 2	Experiment Equipment Set-up	61
Figure 4. 3	The Model of MATLAB Simulink for The g.MOBIlab	62
	Device	
Figure 4. 4	The EEG Connection Set-up	63

Figure 4. 5	Generation and Verification Process of Synthetic EEG	65
	Signals	
Figure 4. 6	Data Conversion Stages for (a) Balanced Brain Application,	68
	and (b) IQ Application	
Figure 4. 7	Flowchart of Statistical Analysis	75
Figure 5. 1	Result of (a) Before Off-set Correction, and (b) After	78
	Correction	
Figure 5. 2	Marks of The Questionaire That Form The Indices	79
Figure 5.3	Graph of The Delta Band for The (a) Left Channel, and (b)	80
	Right Channel	
Figure 5. 4	Graph of The Theta Band for The (a) Left Channel, and (b)	81
	Right Channel	
Figure 5. 5	Graph of The Alpha Band for The (b) Left Channel, and (b)	81
	Right Channel	
Figure 5. 6	Graph of The Beta Band for The (a) Left Channel, and (b)	82
	Right Channel	
Figure 5.7	Graph of Unbalance EEG Signals for Delta Band From The	84
	(a) Left Channel, and (b) Right Channel	
Figure 5.8	Graph of Unbalance EEG Signals for Theta Band From The	84
	(a) Left Channel, and (b) Right Channel	
Figure 5.9	Graph of Unbalance EEG Signals for Alpha Band From The	85
	(a) Left Channel, and (b) Right Channel	
Figure 5. 10	Graph of Unbalance EEG Signals for Beta Band From The (a)	85
	Left Channel, and (b) Right Channel	
Figure 5.11	Graph of Unbalance Synthetic EEG Signals for Delta Band	86
	From The (a) Left Channel, and (b) Right Channel	
Figure 5. 12	Graph of Unbalance Synthetic EEG Signals for Theta Band	86
	From The (a) Left Channel, and (b) Right Channel	
Figure 5. 13	Graph of Unbalance Synthetic EEG Signals for Alpha Band	87
	From The (a) Left Channel, and (b) Right Channel	
Figure 5. 14	Graph of Unbalance Synthetic EEG Signals for Beta Band	87
	From The (a) Left Channel, and (b) Right Channel	
Figure 5. 15	EEG Signals Before Removal of Artefact	89

Figure 5. 16	EEG Signals After Removal of Artefact	89
Figure 5. 17	Sample of EEG Signals Before Passing Through a Band-pass	90
	Filter	
Figure 5. 18	EEG Signals Sample After Filtered With a Band-pass Filter	91
Figure 5. 19	Spectrogram Images for (a) Delta Band From Left Channel	93
-	(b) Delta Band From Right Channel (c) Theta Band From	
	Left Channel (d) Theta Band From Right Channel (e) Alpha	
	Band From Left Channel (f) Alpha Band From Right	
Figure 5. 20	GLCM Texture Features With 0 ⁰ , 45 ⁰ , 90 ⁰ , 135 ⁰ Orientations	97
C	for One Sample From Index 5. The Texture Features Are (a)	
	Autocorrelation, (b) Contrast, (c) Correlation, (d) Cluster	
	prominence, (e) Cluster shade, (f) Dissimilarity, (g) Energy,	
	(h) Entropy, (i) Homogeneity, (j) Maximum probability, (k)	
	Variance, (l) Sum average, (m) Sum variance, (n) Sum	
	entropy, (o) Different variance, (p) Different entropy, (q)	
	Information of correlation 1, (r) Information of correlation 2,	
	(s) Inverse difference normalized, and (t) Inverse difference	
	moment normalized	
Figure 5. 21	Scree Plot of Texture Features for Balanced Brain	98
	Applications	
Figure 5. 22	Accuracy in Percentage and MSE With Varying k Variable	100
	for Data Set 1 With Ratio 70:30	
Figure 5.23	Accuracy in Percentage and MSE With Varying k Variable	102
	for Data Set 1 With Ratio 80:20	
Figure 5. 24	Accuracy in Percentage and MSE With Varying k Variable	104
	for Data Set 2 With Ratio 70:30	
Figure 5. 25	Accuracy in Percentage and MSE With Varying k Variable	107
	for Data Set 2 With Ratio 80:20	
Figure 5.26	Training Performance and Prediction Accuracy With Varying	110
	Number of Neurons for Data Set 1 With Ratio 70:30	
Figure 5. 27	Training Performance and Prediction Accuracy With Varying	111
	Learning Rate for Data Set 1 With Ratio 70:30	
Figure 5.28	Training Performance and Prediction Accuracy With Varying	112

Momentum Rate for Data Set 1 With Ratio 70:30

Figure 5. 29	Training Performance and Prediction Accuracy With Varying	113
	Epoch for Data Set 1 With Ratio 70:30	
Figure 5. 30	Training Performance and Prediction Accuracy With Varying	114
	Number of Neurons for Data Set 1 With Ratio 80:20	
Figure 5. 31	Training Performance and Prediction Accuracy With Varying	115
	Learning Rate for Data Set 1 With Ratio 80:20	
Figure 5. 32	Training Performance and Prediction Accuracy With Varying	116
	Momentum Rate for Data Set 1 With Ratio 80:20	
Figure 5.33	Training Performance and Prediction Accuracy With Varying	117
	Epoch for Data Set 1 With Ratio 80:20	
Figure 5. 34	Training Performance and Prediction Accuracy With Varying	118
	Number of Neurons for Data Set 2 With Ratio 70:30	
Figure 5.35	Training Performance and Prediction Accuracy With Varying	119
	Learning Rate for Data Set 2 With Ratio 70:30	
Figure 5. 36	Training Performance and Prediction Accuracy With Varying	120
	Momentum Rate for Data Set 2 With Ratio 70:30	
Figure 5. 37	Training Performance and Prediction Accuracy With Varying	121
	Epoch for Data Set 2 With Ratio 70:30	
Figure 5. 38	Training Performance and Prediction Accuracy With Varying	122
	Number of Neurons for Data Set 2 With Ratio 80:20	
Figure 5. 39	Training Performance and Prediction Accuracy With Varying	123
	Learning Rate for Data Set 2 With Ratio 80:20	
Figure 5. 40	Training Performance and Prediction Accuracy With Varying	124
	Momentum Rate for Data Set 2 With Ratio 80:20	
Figure 5. 41	Training Performance and Prediction Accuracy With Varying	125
	Epoch for Data Set 2 With Ratio 80:20	
Figure 6. 1	Graph of The Delta Band From (a) The Left Channel, and (b)	131
	The Right Channel for Eyes-closed State	
Figure 6. 2	Graph of The Theta Bands From (a) The Left Channel, and	132
	(b) The Right Channel for Eyes-closed State	
Figure 6. 3	Graph of The Alpha Band From (a) The Left Channel, and (b)	132
	The Right Channel for Eyes-closed State	

Figure 6. 4	Graph of The Beta Band From (a) The Left Channel, and (b)	133
	The Right Channel for Eyes-closed State	
Figure 6. 5	Graph of The Delta Band From (a) The Left Channel, and (b)	133
	The Right Channel for Eyes-opened State	
Figure 6. 6	Graph of The Theta Bands From (a) The Left Channel, and	134
	(b) The Right Channel for Eyes-opened State	
Figure 6. 7	Graph of The Alpha Band From (a) The Left Channel, and (b)	134
	The Right Channel for Eyes-opened State	
Figure 6. 8	Graph of The Beta Band From (a) The Left Channel, and (b)	135
-	The Right Channel for Eyes-opened State	
Figure 6. 9	A Sample of EEG Signals Before Removal of Artefact	136
Figure 6. 10	A Sample of EEG Signals After Removal of Artefact	137
Figure 6. 11	A Sample of EEG Signals Before Passing Through The Band-	138
	pass Filter	
Figure 6. 12	A Sample of EEG Signals After Passing Through The Band-	138
	pass Filter	
Figure 6. 13	Spectrogram Images in Eyes-closed for (a) Delta Band From	141
	Left Channel (b) Delta Band From Right Channel (c) Theta	
	Band From Left Channel (d) Theta Band From Right Channel	
	(e) Alpha Band From Left Channel (f) Alpha Band From	
	Right Channel (g) Beta Band From Left Channel (h) Beta	
	Band From Right Channel	
Figure 6. 14	Spectrogram Images in Eyes-opened for (a) Delta Band From	142
	Left Channel (b) Delta Band From Right Channel (c) Theta	
	Band From Left Channel (d) Theta Band From Right Channel	
	(e) Alpha Band From Left Channel (f) Alpha Band From	
	Right Channel (g) Beta Band From Left Channel (h) Beta	
	Band From Right Channel	

Figure 6. 15	GLCM Texture Features With 0 ⁰ , 45 ⁰ , 90 ⁰ , 135 ⁰ Orientations	146
6	for Index 7 in Eyes-closed State. The Texture Features Are	
	(a) Autocorrelation, (b) Contrast, (c) Correlation, (d) Cluster	
	prominence, (e) Cluster shade, (f) Dissimilarity, (g) Energy,	
	(h) Entropy, (i) Homogeneity, (j) Maximum probability, (k)	
	Variance, (l) Sum average, (m) Sum variance, (n) Sum	
	entropy, (o) Different variance, (p) Different entropy, (q)	
	Information of correlation 1, (r) Information of correlation 2,	
	(s) Inverse difference normalized, and (t) Inverse difference	
	moment normalized	
Figure 6. 16	GLCM Texture Features With 0 ⁰ , 45 ⁰ , 90 ⁰ , 135 ⁰ Orientations	149
-	for Index 7 in Eyes-opened State. The Texture Features Are	
	(a) Autocorrelation, (b) Contrast, (c) Correlation, (d) Cluster	
	prominence, (e) Cluster shade, (f) Dissimilarity, (g) Energy,	
	(h) Entropy, (i) Homogeneity, (j) Maximum probability, (k)	
	Variance, (1) Sum average, (m) Sum variance, (n) Sum	
	entropy, (o) Different variance, (p) Different entropy, (q)	
	Information of correlation 1, (r) Information of correlation 2,	
	(s) Inverse difference normalized, and (t) Inverse difference	
	moment normalized	
Figure 6. 17	Scree Plot of Texture Features for IQ Applications	150
Figure 6. 18	Accuracy in Percentage and MSE With Varying k Variable	152
	for IQ Data With Ratio 70:30	
Figure 6. 19	Accuracy in Percentage and MSE With Varying k Variable	155
	for IQ Data With Ratio 80:20	
Figure 6. 20	Training Performance and Prediction Accuracy With Varying	157
	Number of Neurons for IQ Data With Ratio 70:30	
Figure 6. 21	Training Performance and Prediction Accuracy With Varying	158
	Learning Rate for IQ Data With Ratio 70:30	
Figure 6. 22	Training Performance and Prediction Accuracy With Varying	159
	Momentum Rate for IQ Data With Ratio 70:30	
Figure 6. 23	Training Performance and Prediction Accuracy With Varying	160
	Epoch for IQ Data With Ratio 70:30	

Figure 6. 24	Training Performance and Prediction Accuracy With Varying	161
C C	Number of Neurons for IQ Data With Ratio 80:20	
Figure 6. 25	Training Performance and Prediction Accuracy With Varying	162
0	Learning Rate for IQ Data With Ratio 80:20	
Figure 6. 26	Training Performance and Prediction Accuracy With Varying	163
C	Momentum Rate for IQ Data With Ratio 80:20	
Figure 6. 27	Training Performance and Prediction Accuracy With Varying	164
	Epoch for IQ Data With Ratio 80:20	
Figure 7. 1	Histogram for (a) Balanced Brain Application, (b) IQ	171
2	Application With Close Eyes State, and (c) IQ Application	
	With Open Eyes State	
Figure 7.2	Matrix Scatterplot for Index 1 From Balanced Brain	173
-	Application and Index 2 From IQ Application With Eyes-	
	closed State	
Figure 7.3	Matrix Scatterplot for Index 2 From Balanced Brain	174
-	Application and Index 2 From IQ Application With Eyes-	
	opened State	
Figure 7.4	Matrix Scatterplot for Index 2 From Balanced Brain	175
	Application and Index 2 From IQ Application With Eyes-	
	closed State	
Figure 7. 5	Matrix Scatterplot for Index 2 From Balanced Brain	176
	Application and Index 3 From IQ Application With Eyes-	
	opened State	
Figure 7. 6	Matrix Scatterplot for Index 3 From Balanced Brain	177
	Application and Index 3 From IQ Application With Eyes-	
	opened State	
Figure 7.7	Matrix Scatterplot for Index 3 From Balanced Brain	178
	Application and Index 3 From IQ Application With Eyes-	
	closed State	
Figure 7.8	Matrix Scatterplot for Index 5 From Balanced Brain	179
	Application and Index 4 From IQ Application With Eyes-	
	closed State	

LIST OF ABBREVIATIONS

Abbreviations

EEG	Electroencephalogram
IQ	Intelligent Quotient
PSD	Power Spectrum Density
ESD	Energy Spectrum Density
TF	Time-frequency
ECG	Electrocardiogram
GLCM	Gray-level Co-occurrence Matrices
KNN	K-Nearest Neighbor
ANN	Artificial Neural Network
BCI	Brain Computer Interfacing
BMI	Brain Machine Interfacing
STFT	Short Time Fourier Transform
PCA	Principal Component Analysis
MEG	Magnetoencephalogram
GSR	Galvanic skin response
EOG	Electrooptigram
WAIS	Wechsler Adult Intelligence Scale
FD	Fractal Dimension
EMG	Electromyogram
ICA	Independent Component Analysis
BSS	Blind Source Separation
MLP	Multilayer Perceptron
FIR	Finite Impulse Response
FFT	Fast Fourier Transform
LMS	Least-mean-square
SNR	Signal-to-noise Ratio
MCD	Mild Cognitive Disturbances
LDA	Linear Discriminant Analysis

RBF Radial Basis Function Networ	k
D + Man Carrow Empon	
RMSE Koot Mean Squared Error	
MSE Mean Squared Error	
SSE Sum of Squared Error	
KS Kolmogorov-Smirnov	
SW Shapiro-Wilk	
FT Fourier Transform	
ERP Event Related Potentials	
AR Alpha Ratio	
BR Beta Ratio	
PDF Probability Density Function	

CHAPTER ONE INTRODUCTION

1.1 BACKGROUND

Biomedical engineering is a field of study where principles of engineering design and problem solving skills are applied to biological and medical sciences, which consequently have helped improve healthcare diagnosis, monitoring and therapy. There have been numerous studies in the field that have resulted in the fabrication and production of electronics devices that assist medical practitioners in diagnosing the health of their patients. One such device is the Electroencephalogram (EEG) which is used to analyse the human brain. The device captures brainwaves in the form of electric signals which are generated from the activities of neurons in the brain. The brainwaves, usually classified into four frequency bands called Delta, Theta, Alpha and Beta signals, are widely used for diagnosis of epilepsy, tumor and Alzheimer [1-3], while some studies have used brainwaves for determining the levels of balanced brain [4, 5] and Intelligence Quotient (IQ) [6, 7] applications. In this thesis, EEG signals from the brainwaves is used to determine the levels of balanced brain and IQ in a human being. The research on balanced brain is inspired from the studies of brain dominance between the left and right hemispheres of the brain. In a high balanced brain situation, both the left and right hemispheres of the brain are optimally used; on the contrary, in a low balanced brain situation, one uses more of the left hemisphere of the brain, or viceversa. Additionally, the studies on IQ is focused on areas of Mathematics and logic; high IQ means good knowledge and understanding in Mathematics and logic, and, on the contrary, low IQ means less knowledge and understanding in Mathematics and logic.

The original EEG signal, which is in time-domain, have to be converted into frequency-domain before it can be analysed according to the Delta, Theta, Alpha and Beta frequency bands; the signals that lie outside the range of the four frequency bands is called noise or artefact. In some studies, all four frequency bands are utilised in the analysis, such as in the experiment conducted to analyse the development of the right

hemisphere of the brain of infants [4]; however, in other studies, only certain frequency bands are used, such as the use of Alpha and Theta frequency bands in the analysis of the levels of IQ in children and adults [6].

EEG signals are usually processed using the conventional signal processing techniques, such as Power Spectral Density (PSD) and Energy Spectral Density (ESD) [8, 9]. The extraction of EEG signals using these techniques have been proven to produce good results. However, it is hypothesized that the signals have other features that can be extracted compared to the features produced from using the conventional techniques. Instead of looking in isolation at the EEG signals either in time-domain or frequency-domain, its rich features can be better observed by combining the two domains, or time-frequency (TF) domain, that produces an image known as spectrogram image. This two-dimensional data has been proven to have strong visualization feature and extensive statistic significance compared to the one-dimensional signal [10]. The use of spectrogram images has been successfully performed in experiments using electrocardiogram (ECG) signals [11], a signal which is similar to EEG signals.

Spectrogram image can be processed using a variety of techniques, and one such technique is the Gray-level Co-occurrence Matrices (GLCM). By extracting the grey values in an image, the technique produces good result when employed to analyse the texture of the image. Even though GLCM is widely used in satellite image applications [12], it is also applied in analysing spectrogram image of ECG signals [11]. Spectrogram image and texture feature analysis using GLCM has been successfully applied to ECG signals, hence, it is envisioned that the same could be done with EEG signals, in spite of the fact that the two signals have different characteristics. The extracted features from the spectrogram image can be classified in accordance with the groups that have been determined by various algorithms. Among the most commonly used algorithms in researches relating to EEG signals are K-Nearest Neighbour (KNN) and Artificial Neural Network (ANN) [13, 14]; both algorithms are supervised algorithms, however, KNN is simpler to implement compared to ANN. KNN uses a distance and k-variable to classify the features of the spectrogram image, while ANN uses parameters such as neurons in hidden layer, learning rate, momentum rate and epoch to classify the features. The purpose of using the algorithms is to investigate the features of the spectrogram and GLCM in order to characterise EEG signals, however, the two algorithms have different levels of complexity.

Therefore, there is a need for a research to examine the rich features of EEG signals using spectrogram image and GLCM analysis as it is envisaged that the technique would enhance the signal processing technique used in the analysis of EEG signals.

1.2 PROBLEM STATEMENT

Most studies show that EEG signals are analysed in time-domain and frequencydomain. This method has proven to give good results for analysing EEG signals. , EEG signal is non-stationary signal which the frequency varies over time. Therefore, the analysis in time-domain or frequency-domain is ineffective. If the analysis is executed in the frequency domain, the frequency will be analysed but the time is negligible. There is the possibility of another technique to investigate the richness of EEG signals. Thus the combination of time-domain with frequency-domain is a suitable technique to analyse EEG signals. This combination is called spectrogram image. And so, the spectrogram image can be analysed using GLCM texture analysis, which is one of image processing technique. The GLCM is able to characterise the texture of a spectrogram image. The spectrogram image and GLCM may surpass the time-domain and frequency domain analysis in EEG studies. The technique will shows the richness of EEG signals in terms of sub-band for the applications of balanced brain and IQ.

1.3 OBJECTIVE

The aim of the study is to investigate the application of spectrogram image for analysing sub-band frequency of EEG signals, and the proposed technique is to be implemented in determining the levels of balanced brain and IQ. To achieve this aim, the tasks in the research are divided into:

- 1. Producing the spectrogram image from sub-band frequency of brain waves.
- 2. Extracting GLCM features from spectrogram image.

- 3. Classifying the spectrogram image using KNN and ANN and verifying the results of the classification with questionnaires.
- 4. Correlating the GLCM features of balanced brain with IQ.

1.4 CONTRIBUTIONS

As a result of the study, three aspects of knowledge that contributes to the field of biomedical engineering are presented in this thesis. The first contribution is that the proposed technique using EEG spectrogram and GLCM texture analysis is to be implemented in balanced brain applications. The second contribution is that the proposed method using EEG spectrogram and GLCM texture analysis is to be implemented in IQ applications. Different conditions are required when collecting data for the two applications; for balanced brain application, data are collected under one state condition - with both eyes closed, while for IQ application, data are collected under two states condition - with both eyes closed and opened. Other than that, data for balanced brain application is verified using brain dominance questionnaire, whereas data for IQ application requires the volunteers to answer the IQ test with their eyes open. The third contribution is to analyse using statistical method and establish the correlation between balanced brain and the IQ. Consequently, it is expected that electronics devices based on the proposed technique is produced which could be used to create a healthier Malaysian society.

1.5 SCOPE OF RESEARCH

The initial part of the study involved implementing the spectrogram image technique to analyze the sub-band frequency of EEG signals that is applied to balanced brain and IQ applications. The acquisition of EEG signals is conducted at Biomedical Research Laboratory for Human Potential, FKE, Universiti Teknologi MARA (UiTM), Malaysia.

In the study, the number of male and female volunteers is 101 in the age group from 18 to 50 years old. This is the range of adult age is widely used in EEG studies [15-17]. Those who are older than 50 years were not included in the study as their human productivity have decreased [18]. Most of the volunteers are students and staffs from UiTM. On top of that, the volunteers must be healthy and are not on any medication or prescription drugs that are known to affect EEG reading for at least one month prior to the commencing of the experiment [19-21]. Volunteers who are sick, for example, has fever, cough or cold is not allowed to participate the experiment, but when he or she recovers, they are allowed to participate the experiments.

Since the volunteers are required to respond to the questionnaires and IQ questions, it is essential that the volunteers' vision must be normal or corrected to normal [22]. The volunteers involved in the experiments are different for balanced brain and IQ application. In addition, the data collection are performed in two different sessions. The EEG signals recorded in eyes-closed for balanced brain application, while the EEG signals recorded in eyes-closed and eyes-opened for IQ application.

The GLCM texture analysis is employed to extract the features of the spectrogram of EEG signals and these features is classified using KNN and ANN. The results from the classification exercise are verified with the aid brain dominance questionnaires and IQ questions. Software programming development is carried out using *MATLAB* and *SPSS* is used to conduct statistical analysis on the results.

Finally, the results obtained from KNN and ANN are evaluated and compared in terms of accuracy, MSE, sensitivity and specificity.

1.6 THESIS LAYOUT

This thesis consists of eight chapters. Chapter 1 begins with the background information on brain waves and its importance in the study of balanced brain and IQ applications. Also included in this chapter are the objectives and scopes of the study.

Chapter 2 reviews the literature related to this study. This chapter describes several definitions and information related to the brain, brainwaves, EEG, balanced brainapplication, IQ application, EEG signals in TF domain, image texture analysis and classifiers.

Chapter 3 describes the theories that are applied in this thesis, which cover aspects on EEG signal processing, STFT, GLCM, PCA, KNN and ANN. All calculations and algorithms related to the theories are described in this chapter.

Chapter 4 presents the methodology implemented to conduct the experiments carried out in this study, which cover topics on the utilization of spectrogram image and