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ABSTRACT

By identifying lip movements and characterizing their associations with
speech sounds, the performance of speech recognition systems can be improved,
particularly when operating in noisy environments. Various method have been
studied by research group.around the world to in‘corporate lip movements into
speech recognition in recent years, however exactly how best to incorporate the
additional visual information is still not known: This study aims to extend the
knowledge of relatronshlps between Vlsual and speech information specifically
using lip geometry information due to its robustness to head rotation and the fewer
number of features required to represent movement. A new method has been
developed to extract lip geometry information, to perform classification and to
integrate visual and speech modalities. This thesis makes several contributions.
First, this work presents a new method to extract lip geometry features using the
combination of a skin colour filter, a border following algorithm and a convex hull
approach. The proposed method was found to 1mprove lip shape extraction
performance compared to existing approaches. Lip geometry features 1nclud1ng
height, width, ratio, area, perimeter and various combinations of these features were
evaluated to determine which perforrns best when representing speech in the visual
domain. Second, a novel template matchirlg techniqhe able to adapt dynamic
differences in the way words are uttered by speakers has been developed,- which
determines the best fit of an unseen feature srgnal to those stored in a database
template. Third, following on evaluation of integration strategies, a novel method
has been developed based on alternative decision fusion strategy, in which the
outcome from the visual and speech modality is chosen by rneasuring the quality of
audio based on kurtosis and skewness analysis and driven by white noise confusion.
Finally, the performance of the new methods introduced in this work are evaluated
using the CUAVE and LUNA-V data corpora under a range of different signal to
noise ratio conditions using the NOISEX-92 dataset. '
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CHAPTER 1 1

CHAPTER 1

INTRODUCTION

Automatic speech recognition (ASR) systems are starting to become an
integral part of human computer interfaces (HCI); for example Siri, marketed as the
intelligent personal assistant for the iPhone 48, is able to respond to spoken user
requests [1]. In controlled environments, modern ASR systems are: capable of
producing reliable results, but in mény real-world situations the intrusion of acoustic
noise adversely affects recognition rates [2]. As many potential ASR users wish to
use mobile devices in noisy environments such as vehicles, offices, airport terminals
and train stations, solutions that provide reliable operation at high ambient noise

levels will become increasingly important.

Humans are often able to compensate for noise degradation and uncertainty
in speech informéition by augmenting the received audio with visual information.
Such bimodal perception generates. a rich combination of information that can be
used in the recognition of speech. The fact that humans use bimodal peréeption. is
demonstrated by the ‘McGurk effect’, or as ‘hearing lips and seeing voices’ [3], in
which, when a subject is presented with contradicting acoustic and visual signals,
perception becomes confused, often resulting in a classification that is different from
either the actual audio or visual signal. A well-known example is one of subjects
viewing a video in which a speaker mouths ‘gah’, but which is dubbed With ‘bah’.

Under such circumstances, most subjects report hearing the sound ‘dah’ [4].
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People with hearing impairments may have a reduced ability to receive
information in the audio domain and so will rely more heavily on the visual domain
for speech recognition. The mechanism employed is often termed either ‘lip reading’
or ‘speechreading’. Lip reading is the ability to understand speech through
information gleaned from the lower part of face, typically by following lip, tongue
and jaw movement patterns. Speechreading includes lip reading information, but
may provide additional means of understanding speech such as interpreting whole
face expressions, gestures and body language [S]-{7], as well as employing
environmental conditions, such as fche specific ‘characteristics. of the speaker and. the

time and physical locatioh at which the conversation took place [8].

When integrating lip reading or speechreading into an ASR system, one of
the main issues to address is the selection of the visual features that will be the most
advantageous in enhancing recognition performance. Research centres on two
different types of feature, namely appearaﬁce-based and shape-based. Appearance-
based features are used to model characteristics of the mouth regidn, typically
capturing information related to spatiail frequehcies, whereas shape-baséd features
extract geometrical measurements normally relating to measurements of the lips. In
most research work, the area of the face that provides the information ..most relevant
to ASR, namely thé lips, is chosen, as this is likely to contain the visual information
most closely related to the spoken sounds. Furthérmore, the lip movements will
normally be highly correlated with the speéch sounds themselves, making the

integration of visual features with speech features more straightforward.

A suitable method to perform the integration -of speech and lip m?vement
features is required in order to achieve good recognition results. Integration can take
place either before the model inférmatiOn is processed (feature fusion) or after
separate classification (decision fusion). However, which approach is the more
effective remains a question yet to be resolved. In this thesis, both integration

strategies are investigated under a number of acoustic noise conditions.
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1.1 Motivation

Several approaches have been proposed for audio-visual speech recognition
(AVSR) systems. The design of such systems depends on the choice of visual
features, the classification approach and the speech database used. In [9], the results
of visual ASR experiments involving the use of the IBM ViaVoice database were
presented in their compérison of four types of visual features, namely discrete cosine
transform (DCT) [10], discrete wavelet transform (DWT) [11], principal componeﬁt
analysis (PCA) [12], and active appearance models (AAM) [13]. A solution using
hidden Markov models (HMMs) [14] as the classifier found that DCT-based> visual

features were the most promising for the recognition task.

In [15], both appearance and shape based visual features were obtained using"
PCA applied to facial animatioﬁ parameters (FAPs) [16] obtained from outer and
inner lip contdurs that in turn were found by tracking using a combination of a
Gradient Vector Field (GVF) [17] and. a .parabolic template. The experiments
showed that under challenging visual conditions (involving changes in head pose
and lighting conditions), the lip reading performance of appearanée-based visual
features suffered. It was also shown that the features obtained from inner-lip FAPs
did not provide as much useful information for lip reading as did those obtained

from the outer-lip FAPs.

In [6], hue and canny edge detection [18] were used to segment the lip
region and shape-based features, including lower and upper mouth width, mouth
opening height and the distance between the horizontal lip line and the upper lip
were extracted. These features were used in experiments to recognize 78 isolated
words using an HMM classiﬁer. Ten subjects from the Carnegie Mellon University
database [19] were used to evaluate the performance of the system, with.a best
classification performance of 46% accuracy being attained when all the geometrical
information and difference (delta) features were included and when operating in

speaker-dependent mode. The performance was found to fall to 21% in the speaker

independent case.
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In [20], the lip region was located using a Bayesian classifier [21] that held
estimates of the Gaussian distributions of face, non-face and lip classes in the red,
green and blue colour space. The researchers then obtained visual features, namely
the affine-invariant Fourier descriptors (AIFDs) [22], the DCT, the rotation-
corrected DCT (rc-DCT) and the B-Spline. template (BST) [20]. The results obtained
using the appearance-based features, DCT and rc-DCT, were better than those
achieved using the shape-based features, AIFDs and BST, and the authors concluded

that this was due to their greater sensitivity to lip shape.

In [23], the authors proposed-an appearance-based lip reading approach that
generated dynamic visual speech features, termed the Motion History Image [24],
that were classified using an artificial neural netwo.rk. The approach captured
movement in image sequences and generated a single grayscale image to represent
the whole image sequence using accumulative image subtraction techniques.
However, this approach proved highly sensitive to environmenfal _changes. In
addition, information about4 the timing of movements was lost following the
combination of sequences into a 'single image, resulting in a consequential
degradation of perfofmance. In [25], the authors reported a technique that computed-
the optical flow .(OF) of lip motions in a video data stream. The-statistical properties
of the vertical OFcomponent were used to form feature vectors suitable for training
a support vector machine classifier. However, as is the case for OF methods in
general, the performance was adversely affected in practical cases due to its

sensitivity to scaling and rotation of the images.

The literature suggests that appearance-based features are generally able to
produce better classification results as they carry more information, but also because
of the complexity of extracting accurate geometrical features when using shape-
based approaches [20]. However, the appearance-based features exhibit a greater
sensitivity to environmental condition changes such as illumination and head pose
[15]. In general, there is a need to develop an approach that is reliable; one possible

approach is to investigate approaches to improve: the performance of shape-based
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methods while maintaining their advantage of their inherent robustness in the face of

changing environmental conditions.

Although the performance of an AVSR system relies heavily on the choice
of visual features, classification approach and the database used, the fusion strategy
adopted to combine the audio and visual modalities has a very significant effect on
recognition performance. Several fusion approaches have been proposed in the
literature, but these can be categorized into two major groups, namely feature fusion
and decision fusion. Feature fusion for AVSR has been previously used [9], [26],
[27], and have the benefit that they model the dependencies between audio and
visual speech information directly. H.ov‘vever, this approach suffers in two respects.
Firstly, due to the both types of information being combined at early stage into
single vector and before the classification itself, if cither the audio or visual
information become corrupted then so does the entire vector. Secondly, Lavagetto
[28] demonstrated that acoustic and visual speech production are not synchronous, at
least at a feature based level. It was shown that, during an utterance, visual
articulators such as the lips, tongue aﬁd jaw perform movements both before the
start and after the end of an acoustic utterance. This time delay is known as the
voice-onset-time [29], defined as the time delay between the movement of the vocal
folds for the voiced partl of a voiced consonant or subsequent vowel and the burst

sound coming from the plosive part of a consonant.

The literature has widely reported superior results for decision-fusion AVSR
systems compared to those obtained for feature fusion-[6], [9], [15], [27]. Decision
fusion allows the synchronous classification of the audio and visual modalities and
has the flexibility to allow the relative weightings of the modalities to be altered for
final classification. However, a major drawback of this approach is that.the fusion
itself normally only takes place at the end of the utterance being recognized, which,
compared to the feature-fusion case, can lead to a delay in generating the

classification result and so make interactive sessions appear unnatural.
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In the research community, opiniofls remain divided as to which is the more
effective of the two fusion strategies in terms of speech recognition performance.
Decision fusion generally appears to be favoured for in the implementation of an
AVSR system under noisy environmental conditions, for the following two reasons.
Firstly, decision fusion allows the modelling of AVSR systems asynchronously,
since the audio and visual information are processed independently. Secondly, as
decision fusion often delivers partial classification decision outcomes, it is able to
provide a basis for their ranking and collation. Adaptive weights can then be applied
to adjust the relative contributions of each partial outcome for making a final

decision.

1.2 Aim and objectives

The aim of the research in this thesis is to improve the performance of
automatic speech recognition systems by incorporating dynamic visual information

from the mouth region. The objectives of this research are listed below.

e Develop an automatic feature extraction technique that is able to extract lip

geometry information from the mouth region.

e Analyse the classification performance using a range of lip geometry features
and determine which individual featme or which combination of features

performs the best in representing speech in the visual domain.

* Design a state-of-art audio-visual speech recognition system using dynamic

geometry features obtained from the lip shape.

¢ Evaluate the robustness of the audio-visual speech recognition system in

noisy environments using a range of candidate integration strategies.
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1.3 Original contributions

Several contributions to the field of AVSR have been made in the research

work and are listed as below.

e A new method has been established that is able to extract automatically lip
geometry information such as height, width, ratio, area and perimeter from
the mouth region by utilizing a skin colour filter, a border following
technique and the convex hull approach. This method is more reliable and
requires less computation in extracting lip geometry features compared to
conventional methods which generally use either the active contour or the
active shape model. The results of this work were presented at IEEE Visual
Communications and Image Processing Conference in San Diego, USA in

November 2012 [30]. Details of the work can be found in Chapter 3.

e A demonstration has been produced of the robustness of the new lip
geometrical features when affected by head rotation and brightness changes.
The performance of the geometrical-based method reméined consistent,
while the éppearance-based approach was adversely affected by the changes
in environmental conditions. The results of this work were presented at the
IEEE EUROCON 2013 conference in Zagreb, Croatia in July 2013 [31}].

Details of the work can be seen in Chapter 3.

e A novel template probabilistic multi-dimension dynamic time warping (TP-
MDTW) technique has been introduced to calculate the probability of each
template being the best match to an unseen example based on the similarity
with templates in a database. The assumption is that a template having the
greatest similarity to other templates should be recognized as the most
probable to occur and those templates having least similarity are less likely
to occur. The results of this work have been accepted by the Journal of
Visual Communication and Image Representation (Elsevier). Details of the

work are in Chapter 4.
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e A solution has been proposed to the ‘curse of dimensionality’ issue in the
feature fusion based AVSR system and hés been achieved by obtaining a
small set of simple and efficient geometrical features that have a highly
descriptive information content for the recognition task. The results of this
work were presented at the IEEE International Symposium on
Communications, Control, and Signal Processing 2014 in Athens, Greece in

May 2014[32]. Details of the work can be found in Chapter 5.

e A novel adaptive fusion method has been introduced to select decision
outcomes from the audio and Videb modalities by assessing the audio noise
content using skewness aﬁd kurtosis values. The proposed system is able to
select a preferred classification modality dependent on the estimated audio
noise in the system. Compared to conventional feature-fusion and decision-,
fusion methods, the proposed method is able to follow closely the better
performer from audio-only and video-only modalities across all levels and
types of noise. Details of the work are presented in Chapter 6 and a journal

paper is in preparation.

e A new data corpus termed the Loughborough University - audio-visual
(LUNA-V) speech corpus has been developed, whose video is of higher
definition than those currently made available by other researchers. The
corpus consists of 10 speakers each uttering 10 isolated digits and five
sentences, with the sentence design adopted from the CUAVE and TIMIT
databases. The new data corpus allows the validation of the method
developed earlier in the thesis, not only by having a second source of images,
but also by being able to assess whether features obtained to a better
resolution can improve recognition performance. The LUVA-V data corpus
has been made available to other reseafchers in the field. Details of the work

can be found in Chapter 7 and a journal paper is in preparation.
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