

A study of tyre cavity resonance noise mechanism and countermeasures using vibroacoustic analysis

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Zamri Mohamed

Bachelor of Science in Engineering (Mechanical Engineering and Applied Mechanics), University of Pennsylvania, 2000 Master of Manufacturing Systems Engineering, Universiti Putra Malaysia, 2007

School of Aerospace, Mechanical & Manufacturing Engineering College of Science, Engineering and Health RMIT University August 2014

Table of Contents

Author's Declaration	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	x
List of Tables	x
Nomenclature	X
Abbreviations	х

Abstract

Chapter 1.	. Introduction
1.0	Background
1.1	Research Motivation
1.2	Research Scopes and Objectives
1.3	Outline
1.4	List of Publications
Chapter 2	2. Literature Review
2.0	Tyre Cavity Resonance
2.0.1	Background
2.0.2	Interior Noise and Vibration Effect
2.0.2.1	Noise Transfer

	2.0.2.2	Effect of Deformed Tyre	15
	2.1	Tyre Surface Vibration and Sound Radiation	16
ii	2.2	Tyre Acoustic Cavity Model	
iii	2.2.1	Analytical Model	
iv	2.2.1.1	Undeformed tyre model	
x	2.2.1.2	Deformed tyre model	20
xi	2.2.1.3	Coupled tyre model	23
xii	2.3	Finite Element Model	24
	2.3.1	History	24
XIV	2.3.2	Benefits	25
	2.3.3	Other tyre model application	25
1	2.3.4	Tyre cavity model	26
	2.4	Tyre Cavity Experiment	27
4	2.4.1	Cavity resonance	27
4	2.5	Countermeasures	29
7	2.6	Other experiments	32
8	2.7	Conclusions	
9	Chapter .	3. Preliminary Investigation of Tyre-Wheel-Cavity Re	esonance Using
12	FE Analy	vsis and Experimental Modal Test	35
14	3.0	Introduction	35
14	3.1.	Tyre Cavity FE Model	
14	3.1.1	Geometry	
14	3.1.2	Mesh properties	
14	3.1.3	Results	

	3.2	Wheel (rim) FE Model
	3.3	Tyre FE Model43
	3.3.1	Tyre material properties43
	3.4	Frequency Response Function and Coherence
	3.5	Accelerometer Response
	3.5.1	Undeformed tyre
	3.5.1.1	Rim
	3.5.1.2	Tyre-rim
	3.5.2	Deformed tyre
	3.6	Sound Pressure Response under a Speaker Excitation
	3.7	Conclusion
C	Chapter	4. Structural-Acoustic Analysis of Tyre-Cavity System
C	Chapter 4.0	4. Structural-Acoustic Analysis of Tyre-Cavity System
C	Chapter 4.0 4.1	4. Structural-Acoustic Analysis of Tyre-Cavity System
C	Chapter 4.0 4.1 4.1.1	4. Structural-Acoustic Analysis of Tyre-Cavity System 69 Introduction 69 Tyre-Cavity Resonance Theory 70 Cavity mode shape and natural frequency 70
C	Chapter 4.0 4.1 4.1.1 4.1.2	4. Structural-Acoustic Analysis of Tyre-Cavity System
C	4.0 4.1 4.1.1 4.1.2 4.1.3	4. Structural-Acoustic Analysis of Tyre-Cavity System
C	4.0 4.1 4.1.1 4.1.2 4.1.3	4. Structural-Acoustic Analysis of Tyre-Cavity System
C	4.0 4.1 4.1.1 4.1.2 4.1.3 4.2 4.3	4. Structural-Acoustic Analysis of Tyre-Cavity System
C	4.0 4.1 4.1.1 4.1.2 4.1.3 4.2 4.3 4.3.1	4. Structural-Acoustic Analysis of Tyre-Cavity System 69 Introduction 69 Tyre-Cavity Resonance Theory 70 Cavity mode shape and natural frequency 70 Degenerate cavity modes 75 Cavity mode shape nomalisation factors 75 Structure Natural Frequency and Mode Shape 77 Tyre Cavity Structural-Acoustic Coupling 81 Impedance mobility approach 81
C	 Chapter 4.0 4.1 4.1.1 4.1.2 4.1.3 4.2 4.3 4.3.1 4.4 	4. Structural-Acoustic Analysis of Tyre-Cavity System 69 Introduction 69 Tyre-Cavity Resonance Theory 70 Cavity mode shape and natural frequency 70 Degenerate cavity modes 75 Cavity mode shape nomalisation factors 75 Structure Natural Frequency and Mode Shape 77 Tyre Cavity Structural-Acoustic Coupling 81 Impedance mobility approach 81 Numerical Simulation 85
C	4.0 4.1 4.1.1 4.1.2 4.1.3 4.2 4.3 4.3.1 4.4.3	4. Structural-Acoustic Analysis of Tyre-Cavity System 69 Introduction 69 Tyre-Cavity Resonance Theory 70 Cavity mode shape and natural frequency 70 Degenerate cavity modes 75 Cavity mode shape nomalisation factors 75 Structure Natural Frequency and Mode Shape 77 Tyre Cavity Structural-Acoustic Coupling 81 Impedance mobility approach 81 Numerical Simulation 85 Software validation 86
C	4.0 4.1 4.1.1 4.1.2 4.1.3 4.2 4.3 4.3.1 4.4.1 4.4.1	4. Structural-Acoustic Analysis of Tyre-Cavity System 69 Introduction 69 Tyre-Cavity Resonance Theory 70 Cavity mode shape and natural frequency 70 Degenerate cavity modes 75 Cavity mode shape nomalisation factors 75 Structure Natural Frequency and Mode Shape 77 Tyre Cavity Structural-Acoustic Coupling 81 Impedance mobility approach 81 Numerical Simulation 85 Software validation 86 Tyre-cavity model validation 87

	4.4.4	Force transferred to the hub
	4.4.5	Effect of air pressure
	4.5	Deformed and Rolling Tyre
	4.5.1	Numerical plot
	4.6	Experiments using Physical Model102
	4.6.1	Coupled case102
	4.6.2	No coupling case107
	4.7	Conclusion110
C	hapter :	5. Noise Mitigation Using Acoustic Absorbent Materials111
	5.0	Introduction
	5.1	Sound Absorption Coefficient
	5.1.1	Impedance tube experiment113
	5.1.2	Estimation using empirical model115
	5.2	Numerical Simulation
	5.3	Experiment using Trim119
	5.3.1	Experimental modal test120
	5.3.1.1	Roving impact120
	5.3.1.2	Shaker excitation121
	5.4	Single Layer Trim Parameter126
	5.4.1	Effect of trim thickness and flow resistivity126
	5.4.2	New empirical model for flow resistivity
	5.5	Multilayer Trim Parameter
	5.5.1	Multilayer configuration design133
	5.6	Conclusion141
		vii

Chapter	6. Statistical Energy Analysis of Tyre-Cavity System	
6.0	Introduction	143
6.1	Procedures	145
6.2	SEA Parameters	147
6.2.1	Modal Density	147
6.2.2	Internal loss factor	151
6.2.3	Coupling loss factor	152
6.2.4	Radiation efficiency	153
6.2.5	Power input	158
6.3	Calibration to Box-Plate System	159
6.3.1	AutoSEA background	159
6.3.2	SEA of box-plate system	160
6.4	Tyre-Cavity SEA Model Verification	163
6.5	SEA Coupling Indication	171
6.6	Application of Trim	172
6.7	Conclusion	175
Chapter	7. Monte Carlo and Hybrid SEA-Deterministic Analysis	177
7.0	Introduction	177
7.1	Monte Carlo Analysis	178
7.2	Hybrid SEA-Deterministic Analysis Method	
7.2.1	Theory	
7.2.2	Coupling criteria	
7.2.3	Analytical simulation	
7.3	Trim Effect	187

7.4	Experiment on Physical Model	
7.5	Conclusion	
Chapter	r 8. Conclusions and Recommendations	
8.0	Research Contribution	
8.1	Further Work	196
Referen	ces	

List of Figures

Figure 1.1: Cabin sound pressure level at different engine speeds (Tandogan	
and Guney, 2010)	4
Figure 1.2: Tyre-road noise and engine noise at different vehicle speed	
(Lelong, 1999)	5
Figure 1.3: Speed and frequency ranges for the tyre-road noise generation	
mechanisms (Kuijpers and Blokland, 2002)	6
Figure 2.1: TCR dominating modes (Yamauchi and Akiyoshi, 2002)	15
Figure 2.2: Frequency response function for deformed and undeformed tyre	
(195/65/R15) (Yamauchi and Akiyoshi, 2002)	16
Figure 2.3: Tyre acoustical mode in wave number-frequency plot (Jessop	
and Bolton, 2011)	18
Figure 2.4: (a) Undeformed tyre model (b) Deformed tyre model	
(Thompson, 1995)	20
Figure 2.5: Resonant frequency dependency to tyre rotation speed (Feng et	
al., 2009)	22
Figure 2.6: (a) Coupled tyre cavity modal model (b) Axisymmetric tyre	
geometry (Gunda, Gau and Dohrmann, 2000)	23
Figure 2.7: TCR dominating modes (Sakata, Morimura and Ide, 1990)	27
Figure 2.8: Trial wheels with close and open end attachment (Yamauchi and	
Akiyoshi, 2002)	3(
Figure 2.9: Effect of oval wheel (Yamauchi and Akiyoshi, 2002)	30
Figure 3.1: Tyre cavity cross section (actual shape)	36
Figure 3.2: Tyre cavity cross section (simple rectangular shape)	36
Figure 3.3: Tyre cut out	31
Figure 3.4: TCR mode shapes (undeformed tyre)	39
Figure 3.5: Effect of mesh type on the degenerate modes	39
Figure 3.6: TCR mode shapes (deformed tyre)	40
Figure 3.7: Rim FE model construction	4
Figure 3.8: Various steel rim mode shapes	4
Figure 3.9: Rim mode shapes and their frequencies	42

Figure 3.10: Radial, lateral and circumferential samples location
Figure 3.11: Radial, lateral and circumferential cut-outs from sample tyre 45
Figure 3.12: Tyre tread and sidewall tensile test
Figure 3.13: Tyre tread and sidewall pre-conditioning, a) radial b) lateral 46
Figure 3.14: Tyre FE model
Figure 3.15: Various tyre mode shapes
Figure 3.16: Comparison mode shapes and natural frequencies for lower
radial mode numbers between full FE tyre model and treadband
FE model 49
Figure 3.17: Steel rim FRF and coherence from impact test
Figure 3.18: Alloy rim FRF from impact test. 53
Figure 3.19: Tyre-cavity-rim impact test setup (free-free)
Figure 3.20: Tyre-cavity-rim impact test setup (fixed)
Figure 3.21: Tyre-cavity-rim FRF and coherence from impact test (steel rim)
30 psi
Figure 3.22: Tyre-cavity-rim FRF and coherence from impact test (alloy
rim) deflated 55
Figure 3.23: Tyre-cavity-rim diagram indicating the impact location and
direction (undeformed)
Figure 3.24: Tyre-cavity-rim FRF (80 impact locations - accelerometer at
wheel hub centre)
Figure 3.25: Tyre-cavity-rim FRF (80 impact locations - accelerometer on
tyre tread)
Figure 3.26: Mode shape at 226 Hz from MEScope
Figure 3.27: Tyre-cavity-rim modal test setup (fixed, deformed tyre - 20 cm
deformation)
Figure 3.28: Tyre-cavity-rim diagram of impact location and direction
(deformed with 20 cm deformation)
Figure 3.29: Frequency response and coherence for 15 points of tyre
assembly using test setup from Figure 3.30, x-direction
Figure 3.30: Frequency response for 15 points of tyre assembly, y-direction 60
Figure 3.31: Frequency response for 8 points of alloy rim fixed on stand on
steel bed6

simulation (deformation height 25 mm)	Figure 3.32: Sound pressure prediction inside tyre cavity by VAOne	
Figure 3.33: Setup for sound pressure measurement under a speaker 64 Figure 3.34: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker 64 excitation at 'a' for microphone position 2 () and microphone position 1 () with tyre deformed (0-500 Hz)	simulation (deformation height 25 mm)	62
excitation 64 Figure 3.34: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker excitation at 'a' for microphone position 2 () and microphone position 1 () with tyre deformed (0-500 Hz)	Figure 3.33: Setup for sound pressure measurement under a speaker	
Figure 3.34: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker excitation at 'a' for microphone position 2 () and microphone position 1 () with tyre deformed (0-500 Hz)	excitation	64
excitation at 'a' for microphone position 2 () and microphone position 1 () with tyre deformed (0-500 Hz)	Figure 3.34: Sound pressure autospectrum (ref= $20x10^{-6}$ Pa) under a speaker	
microphone position 1 () with tyre deformed (0-500 6 Figure 3.35: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker excitation at 'a' for microphone position 2 () and microphone position 1 () with tyre deformed (150-300 6 Figure 3.36: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker excitation at 'b' for microphone position 2 () and microphone position 1 () with tyre deformed (0-500 6 Figure 3.37: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker excitation at 'b' for microphone position 2 () and microphone position 1 () with tyre deformed (150-300 6 Figure 3.37: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker excitation at 'b' for microphone position 2 () and microphone position 1 () with tyre deformed (150-300 6 Figure 3.38: Sound pressure FRF under an impact hammer excitation for the vertical mode () and fore-aft mode () with tyre deformed. 6 Figure 4.1: Simplified tyre geometry	excitation at 'a' for microphone position 2 () and	
Hz)	microphone position 1 () with tyre deformed (0-500	
 Figure 3.35: Sound pressure autospectrum (ref=20x10⁻⁶ Pa) under a speaker excitation at 'a' for microphone position 2 () and microphone position 1 () with tyre deformed (150-300 Hz)	Hz)	64
excitation at 'a' for microphone position 2 () and microphone position 1 () with tyre deformed (150-300 Hz)	Figure 3.35: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker	
microphone position 1 () with tyre deformed (150-300 6 Figure 3.36: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker excitation at 'b' for microphone position 2 () and microphone position 1 () with tyre deformed (0-500 6 Figure 3.37: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker excitation at 'b' for microphone position 2 () and microphone position 1 () with tyre deformed (150-300 6 Figure 3.38: Sound pressure FRF under an impact hammer excitation for the vertical mode () and fore-aft mode () with tyre deformed. 6 Figure 4.1: Simplified tyre geometry. 6 Figure 4.3: (a) FE model point excitation (b) sound excitation. 7 Figure 4.3: (a) FE model point excitation (b) sound excitation. 7 Figure 4.4: Experimental (solid line) and analytical (dash line) results (sound pressure and flexible wall velocity) for a plate-cavity model from Kim and Brennan (1999) and VAOne FE model results (dotted line) for the plate-cavity model 7 Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling) 7 Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for 7	excitation at 'a' for microphone position 2 () and	
Hz)	microphone position 1 () with tyre deformed (150-300	
 Figure 3.36: Sound pressure autospectrum (ref=20x10⁻⁶ Pa) under a speaker excitation at 'b' for microphone position 2 () and microphone position 1 () with tyre deformed (0-500 Hz)	Hz)	65
 excitation at 'b' for microphone position 2 () and microphone position 1 () with tyre deformed (0-500 Hz)	Figure 3.36: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker	
 microphone position 1 () with tyre deformed (0-500 Hz)	excitation at 'b' for microphone position 2 () and	
Hz)	microphone position 1 () with tyre deformed (0-500	
 Figure 3.37: Sound pressure autospectrum (ref=20x10⁻⁶ Pa) under a speaker excitation at 'b' for microphone position 2 () and microphone position 1 () with tyre deformed (150-300 Hz) Figure 3.38: Sound pressure FRF under an impact hammer excitation for the vertical mode () and fore-aft mode () with tyre deformed Figure 4.1: Simplified tyre geometry Figure 4.2: Circular cylinder shell Figure 4.3: (a) FE model point excitation (b) sound excitation Figure 4.4: Experimental (solid line) and analytical (dash line) results (sound pressure and flexible wall velocity) for a plate-cavity model from Kim and Brennan (1999) and VAOne FE model results (dotted line) for the plate-cavity model Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling) 	Hz)	65
 excitation at 'b' for microphone position 2 () and microphone position 1 () with tyre deformed (150-300 Hz)	Figure 3.37: Sound pressure autospectrum (ref=20x10 ⁻⁶ Pa) under a speaker	
 microphone position 1 () with tyre deformed (150-300 Hz)	excitation at 'b' for microphone position 2 () and	
 Hz)	microphone position 1 () with tyre deformed (150-300	
 Figure 3.38: Sound pressure FRF under an impact hammer excitation for the vertical mode () and fore-aft mode () with tyre deformed Figure 4.1: Simplified tyre geometry Figure 4.2: Circular cylinder shell Figure 4.3: (a) FE model point excitation (b) sound excitation Figure 4.4: Experimental (solid line) and analytical (dash line) results (sound pressure and flexible wall velocity) for a plate-cavity model from Kim and Brennan (1999) and VAOne FE model results (dotted line) for the plate-cavity model Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling) Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for 	Hz)	65
 vertical mode () and fore-aft mode () with tyre deformed	Figure 3.38: Sound pressure FRF under an impact hammer excitation for the	
deformedFigure 4.1: Simplified tyre geometryFigure 4.2: Circular cylinder shellFigure 4.3: (a) FE model point excitation (b) sound excitationFigure 4.4: Experimental (solid line) and analytical (dash line) results (sound pressure and flexible wall velocity) for a plate-cavity model from Kim and Brennan (1999) and VAOne FE model results (dotted line) for the plate-cavity modelFigure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling)Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for	vertical mode () and fore-aft mode () with tyre	
 Figure 4.1: Simplified tyre geometry Figure 4.2: Circular cylinder shell Figure 4.3: (a) FE model point excitation (b) sound excitation Figure 4.4: Experimental (solid line) and analytical (dash line) results (sound pressure and flexible wall velocity) for a plate-cavity model from Kim and Brennan (1999) and VAOne FE model results (dotted line) for the plate-cavity model Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling) Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for 	deformed	66
 Figure 4.2: Circular cylinder shell Figure 4.3: (a) FE model point excitation (b) sound excitation Figure 4.4: Experimental (solid line) and analytical (dash line) results (sound pressure and flexible wall velocity) for a plate-cavity model from Kim and Brennan (1999) and VAOne FE model results (dotted line) for the plate-cavity model Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling) Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for 	Figure 4.1: Simplified tyre geometry	70
 Figure 4.3: (a) FE model point excitation (b) sound excitation Figure 4.4: Experimental (solid line) and analytical (dash line) results (sound pressure and flexible wall velocity) for a plate-cavity model from Kim and Brennan (1999) and VAOne FE model results (dotted line) for the plate-cavity model Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling) Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for 	Figure 4.2: Circular cylinder shell	76
 Figure 4.4: Experimental (solid line) and analytical (dash line) results (sound pressure and flexible wall velocity) for a plate-cavity model from Kim and Brennan (1999) and VAOne FE model results (dotted line) for the plate-cavity model Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling) Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for 	Figure 4.3: (a) FE model point excitation (b) sound excitation	84
 (sound pressure and flexible wall velocity) for a plate-cavity model from Kim and Brennan (1999) and VAOne FE model results (dotted line) for the plate-cavity model Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling) Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for 	Figure 4.4: Experimental (solid line) and analytical (dash line) results	
model from Kim and Brennan (1999) and VAOne FE model results (dotted line) for the plate-cavity model Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling) Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for	(sound pressure and flexible wall velocity) for a plate-cavity	
results (dotted line) for the plate-cavity model Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling) Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for	model from Kim and Brennan (1999) and VAOne FE model	
Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for the point force excited tyre-cavity model (strong coupling) Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for	results (dotted line) for the plate-cavity model	85
the point force excited tyre-cavity model (strong coupling) Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for	Figure 4.5: Predicted sound pressure results of analytical and VAOne FE for	
Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for	the point force excited tyre-cavity model (strong coupling)	87
	Figure 4.6: Predicted tread velocity results of analytical and VAOne FE for	

the point force excited tyre-cavity model (strong coupling), ref=1
m/s
Figure 4.7: Fredicted sound pressure results of analytical and VAOne FE for
the sound-excited tyre-cavity (strong coupling) model
Figure 4.8: Predicted tread velocity results of analytical and VAOne FE for
the sound-excited tyre-cavity (strong coupling) model, ref=1 m/s.
m/s
Figure 4.9: Comparison of predicted SPL under the cases of strong and weak
coupling for the point force excited tyre-cavity model
Figure 4.10: Comparison of predicted tyre tread velocity under the cases of
strong and weak coupling for the point force excited tyre-cavity
model, ref=1 m/s
Figure 4.11: Comparison of predicted SPL under the cases of strong and
weak coupling for the sound-excited tyre-cavity model
Figure 4.12: Comparison of predicted tyre tread velocity under the cases of
strong and weak coupling for the sound-excited tyre-cavity
model, ref=1 m/s
Figure 4.13: Contour plot at 214 Hz and 255 Hz
Figure 4.14: Force acting on the hub
Figure 4.15: Tread natural frequency simulation for 'in vacuo' and 'inflated'
cases using ANSYS
Figure 4.16: Predicted SPL of the inflated and deflated tyre (point
excitation)
Figure 4.17: Spectrum of pressure measurement from the cavity microphone
(Feng. 2011)
Figure 4.18: Type acoustic pressure amplitude curve for the deformed type
using the IMCM method
Figure 4.19: Tyre acoustic pressure amplitude curve for the deformed tyre
using the IMCM method (From the assumed deformation height
from Eang (2011)
Figure 4 20: Dhugiaal model
Figure 4.20. Fillysical model
Figure 4.21: Impact test set-up
Figure 4.22: FRF amplitude and coherence curves of the physical model

(with cylin	der shell / tyre tread removed) under the impact
excitation	for z-direction () and y-direction ()
Figure 4.23: Sound aut	ospectrum at $r = (R_o + R_i)/2$, $z = W/2$, $\theta = 0$ for 0-500 Hz
Figure 4.24: Sound pre	ssure FRF amplitude curve at $r=(R_o+R_i)/2$, $z=W/2$,
$\theta=0$ for 0-	-500 Hz
Figure 4.25: Sound pre	ssure FRF coherence
Figure 4.26: Sound pre	ssure autospectrum at $r=(R_o+R_i)/2$, $z=W/2$, $\theta=0$ for
0-1000 Hz	2
Figure 4.27: Predicted	and measured PSD or autospectrum of the cavity
sound pres	sure with tyre damping 3% (point force excitation
case)	
Figure 4.28: Aluminum	physical mode (half of the size from acrylic model)
and its VA	One model
Figure 4.29: Aluminiur	n sheet sample size for the tensile test
Figure 4.30: Stress-stra	in curve from the aluminum sheet tensile test
Figure 4.31: Sound pre	ssure autospectrum at $r=(R_o+R_i)/2$, $z=W/2$, $\theta=0$,
speaker at	$r=(R_o+R_i)/2, z=W, \theta=\pi/2$ from measurement ()
and VAOn	e ()
Figure 5.1: Impedance	tube setup
Figure 5.2: Trim sample	es measured
Figure 5.3: Sound abso	orption coefficients measured for 6 types of trim
Figure 5.4: Compariso	n of measured and predicted sound absorption
coefficients	s in the frequency range of 0-500 Hz (Trim 1)
Figure 5.5: Calculated	sound pressure at the toroid cavity point of
$r=(R_o+R_i)/2$	$e, z = W/2, \theta = 0 (0-500 \text{ Hz})$
Figure 5.6: Calculated	sound pressure at the toroid cavity point of
$r = (R_o + R_i)/2$	2, $z = W/2$, $\theta = 0$ (200-270 Hz)
Figure 5.7: Calculated	sound pressure at the toroid cavity point of
$r=(R_o+R_i)/2$	2, $z=W/2$, $\theta=0$, with tread damping=3% and cavity
with Trim 1	(0-500 Hz)
Figure 5.8: Installation	n of the trim onto the rim and tyre
Figure 5.9: Tyre-cavity	y-rim FRF from impact test (with Trim 1)

Figure 5.10: Shaker excitation set up (deformed tyre) 1	22
Figure 5.11: Acceleration frequency response function amplitude curves at	
the hub with and without trim at the tyre pressure of 19 psi for	
the case of the undeformed tyre, a) Vertical direction	
b) Fore-aft direction1	22
Figure 5.12: Acceleration frequency response function amplitude curves at	
the hub with and without trim at the tyre pressure of 30 psi for	
the case of the undeformed tyre, a) Vertical direction	
b)Fore-aft direction 1	23
Figure 5.13: Acceleration frequency response function amplitude curves at	
the hub for the case of the deformed tyre without trim at tyre	
pressure of 19 psi () and 30 psi (), a) Fore-aft	
direction b) Vertical direction 1	24
Figure 5.14: Acceleration frequency response function amplitude at the hub	
for deformed case without trim () and with trim () at	
30 psi tyre pressure, a) Vertical direction b) Fore-aft	
direction1	25
Figure 5.15: Acceleration frequency response function amplitude curves at	
the hub for the case of the deformed tyre without trim at tyre	
pressure of 19 psi () and 30 psi (), a) Fore-aft	
direction b) Vertical direction 1	26
Figure 5.16: Absorption coefficients of Trim 1 versus various thickness 1	27
Figure 5.17: Absorption coefficients of 20 cm polyfelt oversus various flow	
resistivity1	27
Figure 5.18 (a): Absorption coefficients for polyfelt trim with various	
thickness while density at 50 kg/m ³ 1	28
Figure 5.18 (b): Absorption coefficients for polyfelt trim with thickness=2	
cm and various densities1	29
Figure 5.19: Example of a multi-layer trim arrangement with perforated	
plate 1	31
Figure 5.20: Analogy of multi-layer impedance to electrical impedance	
approach according to Figure 5.19 1	32
Figure 5.21: Calculated sound absorption coefficient for the case with Trim	

Figure 5.22: Calculated sound absorption coefficient of Trim 1 and Trim 2
for the case with and without 1 cm air gap
Figure 5.23: Multilayer configuration with perforated plate, trim and air
gap
Figure 5.24: Calculated sound absorption coefficient for (Trim 1 + Trim 2 + .
1 cm Air gap) with perforated plate (hole radius = 10 mm, hole
pitch = 20 mm, plate thickness 0.1 to 1 mm by 0.1 mm
increment)
Figure 5.25: Calculated sound absorption coefficient for (Trim 1 + Trim 2 +
1 cm Air gap) with perforated plate (plate thickness=0.1 mm,
hole radius=10 mm, hole pitch 20 to 50 mm by 5 mm
increment)
Figure 5.26: Calculated sound absorption coefficient for (Trim 1 + Trim 2 +
1 cm Air gap) with perforated plate (plate thickness=0.1 mm,
hole pitch=60 mm, hole radius 5 to 30 mm by 5 mm
increment)
Figure 5.27: Calculated sound absorption coefficient for (Trim 1 + Trim 2 +
Air gap) with air gap varied from 10 to 100 mm by 10 mm
increment
Figure 5.28: The sound pressure PSD amplitude peak values (mean of 16
points inside the tyre cavity) at 214 and 255 Hz versus Trim 1
thickness
Figure 5.29: The sound pressure PSD amplitude peak values (mean of 16
points inside the tyre cavity) at 214 and 255 Hz versus the
Trim1 mass density where Trim 1 thickness was held constant
at 20 mm
Figure 5.30: The sound pressure PSD amplitude peak values (mean of 16
points inside the tyre cavity) at 214 and 255 Hz versus the air
gap where Trim 1 thickness was held constant at 20 mm
Figure 6.1: Nominally identical beverage cans subjected to acoustic
excitation (Fahy, 2000)
Figure 6.2: SEA model for two subsystems, modified from (Norton and

Karczub, 2003)
Figure 6.3: Cylinder shell breathing mode
Figure 6.4: Modal densities of a thin-walled circular shell (Fahy and
Gardonio, 2007)
Figure 6.5: Cylinder shell segment
Figure 6.6: Radiation efficiencies of uniformly vibrating cylinders (Fahy
and Gardonio, 2007)
Figure 6.7: Modal-average radiation efficiency of thin-walled, large
diameter, circular cylindrical shells based on acoustical modes
only (Szechenyi, 1971)
Figure 6.8: Comparison of measured and theoretical estimates of radiation
efficiency of circular cylindrical shells (Fahy and Gardonio,
2007)
Figure 6.9: Non-dimensional wave number for cylinders (Szechenyi,
1971)
Figure 6.10: Plate-cavity AutoSEA model
Figure 6.11: Calculated modal density to flat plate and comparison to
AutoSEA
Figure 6.12: Calculated power input to flat plate and comparison to the
AutoSEA result
Figure 6.13: Calculated plate and cavity coupling loss factors using
analytical method and their comparison with those from the
AutoSEA model
Figure 6.14: Calculated mean energies of plate and cavity using analytical
method and their comparison with those from the AutoSEA
model
Figure 6.15: Shell and cavity dimension for the SEA model
Figure 6.16: AutoSEA model of tyre-cavity
Figure 6.17: Calculated modal densities of cylinder shell and annular cavity
using analytical method and their comparison with the AutoSEA
model results
Figure 6.18: Calculated power input to cylinder shell using analytical
method and its comparison with the AutoSEA model result

.

Figure 6.19: Calculated radiation efficiency (0-500 Hz) using analytical	
method and its comparison with the AutoSEA model result	166
Figure 6.20: Radiation efficiency (0-10000 Hz), from the AutoSEA model	16 7
Figure 6.21: Coupling loss factor calculated using the radiation efficiency	
from the AutoSEA model and the actual coupling loss factors	
from the AutoSEA model	168
Figure 6.22: Analytically calculated mean energies using radiation	
efficiency from the AutoSEA model and the simulated mean	
energy from the AutoSEAmodel	168
Figure 6.23: Analytically calculated coupling loss factor of tyre tread and	
cavity using radiation efficiency and the simulated coupling	
loss factors from the AutoSEA model	169
Figure 6.24: Analytically calculated mean energies of the tyre tread and	
cavity using radiation efficiency and the simulated mean	
energy from the AutoSEA model	169
Figure 6.25: Coupling loss factors of tyre tread and cavity for 2-sided tread	
radiation	170
Figure 6.26: Mean energies of tyre tread and cavity for 2-sided tread	
radiation	170
Figure 6.27: Cavity internal loss factor and coupling loss factor	171
Figure 6.28: Coupling quotient from Equation (6.34)	172
Figure 6.29: Tyre cavity damping loss factor from Trim 1 inclusion	173
Figure 6.30: Mean energies of the tyre tread and cavity	174
Figure 6.31: Mean energies of the tyre tread with and without Trim1 (50-300	
Hz)	174
Figure 7.1: Tabulation of tyre cavity SPL, 10% standard deviation of tread	
thickness	1 79
Figure 7.2: Tyre cavity SPL (dB) for values above average (blue) and below	
average (red), 10% standard deviation of tread thickness	180
Figure 7.3: Tyre cavity SPL (dB) for values above average (blue) and below	
average (red), 1% standard deviation of tread thickness	180
Figure 7.4: Mean energies from hybrid deterministic-SEA, F = 1 N (rms)	184
Figure 7.5: Mean energies from hybrid deterministic-SEA, $F = 10 N$ (rms)	185

Figure 7.6: Mean energies from hybrid deterministic-SEA, $F = 10 N$ (rms),	
200-260 Hz	186
Figure 7.7: Mean energies of the tyre tread and cavity calculated from	
hybrid deterministic-SEA method when various thickness of	
Trim 1 is applied onto the tyre tread inner surface, $F = 10 N$	
(rms)	188
Figure 7.8: Mean energies of the tyre tread and cavity calculated from	
hybrid deterministic-SEA method when various thickness of	
Trim 1 is applied onto the tyre tread inner surface, $F = 10 N$	
(rms)	188
Figure 7.9: Physical model	189
Figure 7.10: Calibration of force transducer and its autospectrum	190
Figure 7.11: Position setup of microphones in the physical model	191
Figure 7.12: Mean cavity energy from the measurement, calculated and	
AutoSEA simulation	191

List of Tables

Table 3-1:]	First 10 TCR frequencies (undeformed tyre)	38
Table 3-2:	First 10 TCR frequencies (deformed tyre)	40
Table 3-3:]	First 10 steel rim resonance frequencies	41
Table 3-4:	Tyre material properties	46
Table 3-5:	Some tyre material properties in literatures	47
Table 3-6:	First 18 tyre resonance frequencies	48
Table 4-1:	Roots of the characteristics equation from Equation (4.4)	72
Table 4-2:	First three TCR frequencies	74
Table 4-3:	Normalised mode shape coefficients	75
Table 4-4:	Tread natural frequencies for 180-250 Hz	79
Table 4-5:	Normalised plate mode shape coefficients	79
Table 4-6:	Material properties of the FE model	84
Table 4-7:	Geometric mode shape coupling coefficients using FE model tyre-	
	cavity natural frequencies	86
Table 5-1:	Taguchi method analysis of the effect of the trim thickness, trim	
	mass density and air gap on the PSD amplitude peak value at 214	
	Hz	13
Table 5-1:	Taguchi method analysis of the effect of the trim thickness, trim	
-	mass density and air gap on the PSD amplitude peak value at 255	
	Hz	14

Nomenclature

J _m	Bessel function of the first kind, order m
Y _m	Bessel function of the second kind, order m
f_i	<i>i</i> th modal frequency
f_{ν}	the vertical mode of the tyre cavity frequency
f_{H}	the fore-aft mode of the tyre cavity frequency
f _{im}	tyre tread / cylinder shell natural frequency
i	the order of cavity resonance mode
l	torus length
m,n,l	mode order integer
A _{mn}	coefficient for Bessel function of the first kind
B _{mn}	coefficient for Bessel function of the second kind
f	frequency in Hertz
t	time in second
A_r, A_θ, A_z	coefficients of cylinder shell mode shapes
R _m	tyre cavity mid-radius
R	cylinder shell mid-radius
R _i	the inner radius of the tyre cavity
R _o	the outer radius of the tyre cavity
h	cylinder shell thickness
ν	Poisson's ratio
Ω_{f}	cylinder shell natural frequency
ρ_s	cylinder shell density

ø	cylinder shell mode shape function
Φ.	phase angle
a	the acoustic modal amplitude vector (Nx1)
b	the structural modal amplitude matrix (Mx1)
φ	transpose of acoustic mode shape vector
$a_n(\omega)$	$n^{\rm th}$ complex amplitudes of acoustic mode shape
C _{mn}	element of a coupling coefficient matrix (MxN)
$ ho_o$	air density
$\alpha_n(\omega)$	cavity resonance terms
T ₆₀	60 dB reverberation time
\mathbf{Z}_{a}	acoustic impedance matrix (NxN);
q	generalized modal acoustic source strength vector (1xN)
α	sound absorption coefficient
E_1	Mean vibrational energy of subsystem 1
η_1	modal densities of subsystem 1 (tyre)
$\eta_{_{12}}$	coupling loss factor from subsystem 1 to 2
Π_1	power input to subsystem 1
Ī	Identity matrix (MxN)
<i>M</i> ₁	mass of subsystem 1
$\left\langle \overline{p_{2}}^{2} ight angle$	time and space-averaged pressure square of subsystem 2 or cavity
V	volume of the enclosure or cavity
Р	total edge length or circumference
<i>k</i> ₁	structural wave number in the axial direction
n ₁	modal density of type 1
П	sound power
	xxii

$\left\langle \overline{v_{l}^{2}}\right\rangle$	time and space-averaged mean-square vibration velocity of the structure
f _R	'plane stress' ring frequency in Hertz
f,	'plane strain' ring frequency in Hertz
F _o	magnitude of point force
n"	normalised modal density
f_0	centre frequency of a frequency band
\mathbf{D}_d	dynamic matrix of the tyre cavity
\mathbf{F}_k	vector of forces arising from subsystem k
<>	spatial average
χ	roots of the Bessel's characteristic equation
øl	upper limit of frequency band
H(f)	frequency response function
X(f)	input of the system in frequency domain
H2(f)	estimator of the frequency response functions
$S_{xx}(f)$	auto spectral density in the frequency domain of $X(t)$
$\gamma(\omega)^2$	coherence function
X(t)	input of the system in time domain
η,	loss factor due to structural damping loss
σ_{m}	air flow resistivity
h _m	polyfelt trim thickness
η,	loss factor due to structural boundary damping
k	wave number
ω	circular frequency in radian/second
С	speed of sound at 343 m/s

р	sound pressure
arphi	acoustic mode shape function
r, θ, z	cylindrical coordinate for tyre cavity and cylinder shell
u,v,w	cylinder shell displacement directions
w,	radial cylinder shell deformation
u _z	axial cylinder shell deformation
W	toroid @ tyre cavity width
v _e	circumferential cylinder shell deformation
L	cylinder shell @ tyre tread width
E	Young's modulus
B _{ml}	normalised cylinder shell mode shape coefficient
U_{mnl}	normalisation factor
V _{nul}	normalised mode shape coefficient
N_{θ}, N_{z}	limit number of cylinder shell mode shape terms
Ι	unit matrix (MxN)
φ ^τ	transpose of structural mode shape vector
b _m (ω)	n^{th} complex amplitudes of structural mode shape
g m	generalised modal force
<i>q</i> _n	generalised acoustic strength
$\beta_m(\omega)$	structural resonance terms
η	damping loss factor
Y _s	structural mobility matrix (MxM)
g	generalised modal force vector (1xM)
E ₂	Mean sound pressure wave energy of subsytem 2
η_2	modal density of subsystem 2 or cavity
1	

$\eta_{_{21}}$	coupling loss factor from subsystem 2 to 1
S	cylinder shell or tyre tread surface area
S,	circumferential length of the cylinder shell
M ₂	mass of subsystem 2
$\left\langle \overline{v_{l}^{2}}\right\rangle$	time and space-averaged velocity square of subsystem 1
A	total surface area
k ₂	structural wave number in the circumferential direction
n ₁₁	modal density of type 2
σ	radiation efficiency
W ·	axial width of tyre cavity
\mathbf{f}_{c}	critical frequency in Hertz
P _{in}	input power
L	axial width of tyre tread or cylinder shell
ω,	'plane strain' ring frequency in radian
ω_{R}	'plane stress' ring frequency in radian
F	vector of external forces applied directly to the cavity
$\mathbf{D}_{dir}^{(k)}$	direct field dynamic stiffness matrix for subsystem k
$\mathbf{F}_{rev}^{(k)}$	reverberant field force vector
ω2	lower limit of frequency band
Y(f)	ouput of the system in frequency domain
H1(f)	estimator of the frequency response functions
$S_{xy}(f)$	cross spectral density in the frequency domain of $X(t)$ and $Y(t)$
$S_{yy}(f)$	auto spectral density in the frequency domain of $Y(t)$
$S_{yx}(f)$	cross spectral density in the frequency domain of $Y(t)$ and $X(t)$
Y(t)	ouput of the system in time domain

$\eta_{_{rad}}$	loss factor due to acoustic radiation damping
$ ho_m$	polyfelt trim density
κ, γ, d	air flow resistivity constants
Superscript	·
*	complex conjugate
Т	transpose
٤	first derivative
-	time average

Abbreviations

SEA	statistical energy analysis
FE	finite element
@	also known as
EMA	experimental modal analysis
rms	root mean square