ASSESSMENT VARIABILITY OF ANNUAL DAILY MAXIMUM RAINFALL OF JOHOR, MALAYSIA

NUR FAREHAH BINTI ABDULLAH ANASTAS ZORIN

BACHELOR OF ENGINEERING (HONS) IN CIVIL ENGINEERING UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF PROJECT REPORT AND COPYRIGHT

Author's full name
NUR FAREHAH BINTI ABDULLAH ANASTAS ZORIN
Date of birth $: \underline{8 \text { JULY } 1992}$
Title
: ASSESSMENT VARIABILITY OF ANNUAL DAILY MAXIMUM RAINFALL OF JOHOR, MALAYSIA

Academic Session : $\underline{\mathbf{2 0 1 4} / \mathbf{2 0 1 5}}$
I declare that this project report is classified as:

CONFIDENTIAL

RESTRICTED
(Contains confidential information under the Official Secret Act 1972)*
\square

(Contains restricted information as specified by the Organization where research was done)*

I agree that my project report to be published as online open Access (Full text)

I acknowledge that Universiti Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of University Malaysia Pahang
2. The Library of University Malaysia Pahang has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified By:

SIGNATURE

920708-03-5324
(NEW IC NO./PASSPORT NO.)
Date: 3 JULY 2015

SIGNATURE OF SUPERVISOR

DR. MOHAMAD IDRIS BIN ALI

NAME OF SUPERVISOR
Date: 3 JULY 2015

NOTES:* If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

ASSESSMENT VARIABILITY OF ANNUAL DAILY MAXIMUM RAINFALL OF JOHOR, MALAYSIA

NUR FAREHAH BINTI ABDULLAH ANASTAS ZORIN

Thesis submitted in partial fulfilment of the requirements for award of the degree of Bachelor of Civil Engineering (Hons)

Faculty of Civil Engineering \& Earth Resources UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

"I hereby declare that I have checked this project report and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Civil Engineering (Hons)."

Signature	$:$
Name of Supervisor	$:$ DR. MOHAMAD IDRIS BIN ALI
Position	$:$ LECTURER
Date	$:$ 30 JUNE 2015

STUDENT'S DECLARATION

"I hereby declare that the work on this thesis is my own except for quotation and summaries which have been duly acknowledge in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree."

Signature	$:$	
Name	$:$	NUR FAREHAH BINTI ABDULLAH ANASTAS ZORIN
ID Number	$:$	AE11052
Date	$:$	30 JUNE 2015

DEDICATION

My humble efforts are dedicated to my parents

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful,
Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis. My immense gratitude goes to my supervisor, Dr. Mohamad Idris bin Ali for his commitment and tolerance throughout the time it took me to complete this research. His continuous guidance and constant support has made this research possible.

My deep appreciation must go to my parents, Mr. Abdullah Anastas Zorin and Mrs. Norhayati binti Abu Bakar for their unending love and endless support to better and complete my thesis.

I am grateful to many persons especially my friends and colleagues for their assistance and support in completing my work especially those who always to cheer me up during hard times.

Not to forget, many thanks to my fellow teammates under the same supervision of Dr. Idris, Izyan Shahirah Aimi, Nazira Ayuni, and Maizatul Asyikin to make the result of this research possible.

Last but not least, my thanks goes to Dr. Nadrah as the coordinator of final year project whose guidance of this project was deeply appreciated.

Thank you.

Abstract

Floods generally occur in the main settlements in Johor. Flood happened in Johor generally is characterised by the yearly alternation of Southwest and Northeast monsoons. Floods have caused roads and connection between towns cut off. This problem makes it harder for emergency teams to deliver aids quickly. This paper deals with the assessment variability of annual daily maximum rainfall of Johor area. Daily rainfall data were collected from daily satellite image, Tropical Rainfall Measuring Mission (TRMM) for 16 years (1998-2013). Descriptive statistical analysis was conducted for the three types of data i) annual rainfall ii) annual monthly maximum rainfall and iii) annual daily maximum rainfall. Gumbel distribution function was applied to estimate extreme rainfall events' return period and found that annual daily maximum for Kluang, the city with the highest rainfall equal or greater than 535 mm had a return period of 100 years. The outcomes of this paper can be used to know the estimated rainfall depth of maximum rainfall in Johor Bahru and can be used in understanding rainfall patterns in different parts of cities in Johor. On top of that, we can have better planning of infrastructures for mitigation to cater the predicted high rainfall intensity.

Abstract

ABSTRAK

Banjir biasanya berlaku di kawasan penempatan utama di Johor. Banjir berlaku di Johor umumnya adalah semasa peralihan antara monsun Barat Daya dan Timur Laut. Banjir telah menyebabkan jalan raya dan hubungan antara bandar-bandar terputus. Masalah ini menyukarkan pasukan kecemasan untuk menyampaikan bantuan dengan segera ke kawasan-kawasan tersebut. Objektif kajian adalah untuk menilai kepelbagaian curahan hujan maksimum tahunan harian di Johor. Data curahan hujan harian imej satelit Tropical Rainfall Measuring Mission (TRMM) bagi tempoh selama 16 tahun (19982013) dimuat turun dari pangkalan data domain awam. Analisis statistik deskriptif telah dijalankan untuk tiga jenis data i) hujan tahunan ii) hujan tahunan maksimum bulanan dan iii) hujan maksimum harian tahunan. Fungsi taburan Gumbel digunakan untuk menganggarkan tempoh masa peristiwa hujan luar biasa dan mendapati bahawa maksimum harian tahunan bagi Kluang, bandar dengan hujan yang paling tinggi mempunyai tempoh ulangan 100 tahun untuk kedalaman hujan yang sama atau lebih daripada 535 mm . Hasil kajian ini boleh digunakan untuk mengetahui anggaran kedalaman hujan maksimum di Johor dan boleh digunakan untuk memahami corak taburan hujan pada bahagian yang berlainan di bandar-bandar sekitar Johor. Selain itu, perancangan yang lebih baik untuk infrastruktur boleh diaplikasikan untuk tujuan mitigasi bagi menampung keamatan hujan yang tinggi pada masa akan datang.

TABLE OF CONTENTS

Page
TITLE PAGE
SUPERVISOR'S DECLARATION ii
STUDENTS'S DECLARATION iii
DEDICATION iv
ACKNOWLEDGEMENTS v
ABSTRACT vi
ABSTRAK vii
TABLE OF CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES xiv
LIST OF SYMBOLS XV
LIST OF ABBREVIATIONS xvi
CHAPTER 1 INTRODUCTION
1.1 Introduction 1
$1.2 \quad$ Problem Statement 3
1.3 Objectives 4
1.4 Scope of Study 4
1.5 Significance of Study 5
1.6 Thesis Structure 6
CHAPTER 2 LITERATURE REVIEW
2.1 Introduction 7
2.1.1 Flood in Malaysia 8
2.2 Hydrological Cycle 8
2.3 Rainfall Type 11
2.3.1 Convectional Rainfall 11
2.3.2 Orographic Rainfall 12
2.3.3 Cyclonic Rainfall 12
2.4 Spatial and Temporal Rainfall Variability 12
2.4.1 Variability of Rainfall in Malaysia 13
2.5 Climate Change Effects 14
2.5.1 Extreme Precipitation Events due to Climate 15
Change 16
2.5.2 Extreme Rainfall Event in Johor 16
2.5.3 The Effects of Monsoon on Rainfall Variability 19
2.5.4 El-Nina and La Nina Effects on Rainfall Variability 19
2.5.5 El Nino 20
2.5.6 La.Nina
2.6 Return Period 20
2.7 Geographical Information System 20
2.8 Summary 21
CHAPTER 3 METHODOLOGY
$3.0 \quad$ Methodology 22
3.1 Study Area 24
3.2 Data Collecting 25
3.2.1 Satellite Data 25
3.2.2 Rainfall Data 26
3.3 Pre-processing 27
3.3.1 Data Transformation 27
3.3.2 Conversion and Clipping of Dataset 29
3.3.3 Data Extraction 32
3.4 Processing 35
3.4.1 Descriptive Statistics 35
3.4.2 Gumbel Distribution Function 36
3.5 Summary 37

CHAPTER 4 RESULT AND DISCUSSIONS

4.1 Rainfall Characteristics 30
4.2 Extreme Rainfall Events 41
4.3 Return Period of Annual Daily Maximum Rainfall 42
4.4 Summary 50

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion 51
5.2 Recommendations for Future Research 52

REFERENCES 54

APPENDICES

A
Annual Daily Maximum for Johor Bahru, Pontian, and

Annual Daily Maximum for Mersing, Batu Pahat, and60Muar

C
Annual Daily Maximum for Segamat and Kluang
Gumbel Distribution Function Analysis for Johor Bahru62and PontianGumbel distribution function analysis for Mersing and Kota63TinggiGumbel Distribution Function Analysis for Batu Pahat and64MuarGumbel Distribution Function Analysis for Segamat and65KluangAnnual Monthly Maximum Rainfall Analysis for Johor66BahruAnnual Monthly Maximum Rainfall Analysis for Pontian67
Annual Monthly Maximum Rainfall Analysis for Kota 68
TinggiAnnual Monthly Maximum Rainfall Analysis for Mersing69
L Annual Monthly Maximum Rainfall Analysis for Batu 70
Pahat
M Annual Monthly Maximum Rainfall Analysis for Muar 71
72
Annual Monthly Maximum Rainfall Analysis for Segamat
Annual Monthly Maximum Rainfall Analysis for Kluang 73
Annual Maximum Rainfall Analysis for Johor Bahru, 74Pontian, Kota Tinggi, Mersing, Batu Pahat, Muar, Segamat,and Kluang

LIST OF TABLES

Table No. Title Page
$2.1 \quad$ Observed trends and projections for the $21^{\text {st }}$ century of key 10 hydrologic variables
2.2 Monsoon regimes in Malaysia 17
3.1 Population and area of major cities in Johor 24
3.2 Latitude and longitude for major cities in Johor 27
3.3
Coordinates for data clipping 29
4.1 Monthly rainfall for major cities in Johor 38
4.2 Annual rainfall for major cities in Johor 40
4.3 Historical extreme rainfall events of major cities in Johor 41
4.4 Equation of return period for major cities in Johor 49
4.5 Mean and standard deviation for all major cities in Johor 49

LIST OF FIGURES

Figure No. Title Page
$1.1 \quad$ Flood in Segamat 2
1.2 Road cut off due to flooding 3
1.3 Specific study areas in Johor 5
2.1 Hydrologic Cycle 9
2.2 Illustration of convectional, orographic, and cyclonic rain 11
2.3 Heavy rains caused by monsoons 18
3.1 Summarized flow chart for research methodology 23
3.2 Maps of districts in every state in Malaysia 26
3.3 Global mapper platform 28
3.4 Rainfall data exported to GeoTIFF format 28
3.5 GeoTIFF export option 29
3.6 Data exportation in ArcGis 30
3.7 Raster data exportation in ArcGis 30
3.8 Clipping data in ArcGis 31
3.9 Execution of clipping data 31
3.10
Malaysia map in ArcGis 33
3.11
Adding new layer of major cities in Johor on map 33
3.12 Extract values to points in ArcGis 34
3.13
Rainfall depth extracted 34
3.14
Saving attributes of extracted data 35
4.1 Return period graph of Johor Bahru 42
4.2 Return period graph of Pontian 43
4.3 Return period graph of Kota Tinggi 43
4.4 Return period graph of Mersing 44
4.5 Return period graph of Batu Pahat 45
4.6 Return period graph of Muar 46
4.7 Return period graph of Segamat 47
4.8 Return period graph of Kluang 48

LIST OF SYMBOLS

Annual daily maximum rainfall
Mean of observed annual daily maximum rainfall

Standard deviation of observed annual daily maximum rainfall

LIST OF ABBREVIATIONS

TRMM	Tropical Rainfall Measuring Mission
DID	Department of Irrigation and Drainage Malaysia
FRMP	Flood Risk Management Planning
NFRA	National Food Reserve Agency
IPCC	Intergovernmental Panel on Climate Change
MMD	Malaysian Meteorological Department
ENSO	Southern Oscillation phenomenon
GIS	Geographical Information System
RS	Remote sensing

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Malaysia has experienced series of floods since 1920s and one of the severest is the December 2006 and January 2007 floods (Tompkins, Lemos, \& Boyd, 2008). Most floods that occur are as natural result of cyclical monsoons as Malaysia is located in the South East Asia with seasonal monsoons of Southwest and Northeast Monsoons. In December 2006 and January 2007, the Northeast Monsoon had brings heavy rain through series of continuous extreme rainfall that caused destructive floods in the southern region of Peninsular Malaysia particularly to Johor. The storms had occurred in two separate phases in late December 2006 and early January 2007 with a total precipitation in four days exceeding twice of the monthly rainfall in which some places recorded a higher number. Extreme rainfall events are among the most disruptive natural phenomena occurred in Malaysia caused by climate change. In the case of extreme rainfall events, they adversely affect urban populations because the infrastructures are often inadequate to accommodate flooding.

Figure 1.1: Flood in Segamat

Source: abushahid.wordpress.com (2015)

Johor on the other hand has faced a number of severe floods over several past years and its vulnerability to these resulted from the rapid urban development of the Johor. The impacts of river flooding are even more damaging and interrupt economic activities and the livelihoods of people in the area. Severe flooding that generally occur in the main settlements in Johor had occurred in 2006 and 2007. Heavy rain and overflowing rivers have flooded hundreds of towns and villages in Southern Malaysia. The floods took many lives as well as destroyed crops and cut off roads, power lines and rail services. (The Star Archive, 2006).

Figure 1.2: Road cut off due to flooding

Source: media.straitstimes.com (2015)

In certain parts of the city, flooding due to excessive rainfall can be a severe problem as the water is inundated for several days due to drainage congestion and the pumping facilities to remove the stagnant water are insufficient. The roads that were cut off hardens the situation as this makes it difficult to deliver aids quickly to the flood areas The water depths in some areas are very high, which creates large infrastructure problems for the city and can bring damage to existing property and goods.

1.2 PROBLEM STATEMENT

In Johor, many infrastructures like roads and highways were submerged due to flooding even though the design of hydraulic structures has taken into account the extreme rainfall depth. The existing system of drainage and infrastructures were designed based on historical rainfall data, but the capacity of the drainage network will not be sufficient enough with high intensive short duration rainfall which is expected to change due to global climate alteration.

Thus, it is important that any drainage structure to be designed and constructed in Johor should be resilient to the latest extreme rainfall events happened to cater the predicted maximum rainfall intensity.

1.3 OBJECTIVES

The main objective of this study was to assess the variability of annual daily maximum rainfall of Johor, Malaysia. And the specific objectives are:
i. To obtain daily satellite-based rainfall data for Johor area.
ii. To analyse annual rainfall, annual monthly maximum, and annual daily maximum rainfall data

1.4 SCOPE OF STUDY

The scope of the work for this research are divided into four parts which are area of study, the study period, the source of data and the data analysis. The study area is Johor which located in the Southern part of Peninsular Malaysia. The specific study areas that being selected are major cities inside Johor state which are Johor Bahru, Pontian, Kota Tinggi, Mersing, Batu Pahat, Muar, Segamat, and Kluang.

Figure 1.3: Specific study areas in Johor

The study period for this research is 16 years (January 1998 - December 2013). The source of data being used in this study is collected from Tropical Rainfall Measuring Mission (TRMM) which is a research satellite to study rainfall for weather and climate research.

On top of that, the methods used for data analysis are descriptive statistics and Gumbel distribution function. Descriptive statistics is used to determine central tendency (mean, median, and mode) and variability (standard deviation) of rainfall data that were collected. Besides, Gumbel distribution function is used to analyse return period of annual daily maximum rainfall.

1.5 SIGNIFICANCE OF STUDY

Based on the statistical analysis that has been carried out on daily rainfall data, the maximum and minimum rainfall for every city can be determined. Thus, it can be used to have better understanding on rainfall patterns in different parts of cities in Johor.

The proposed return period of annual daily maximum rainfall in this study can be used to plan the infrastructures and drainage network. The outcomes of this paper can be used to upgrade the capacities of hydraulic structures in Johor area to cater the predicted high rainfall intensity. On top of that, the forecasted extreme rainfall events can also help in making early preparation for flood and determining future flood risk

1.6 THESIS STRUCTURE

This research comprises of five chapters. The first chapter consists of introduction section. It states the background, problem statement, objectives of study, scope of study and lastly the significant of study. For chapter two, the key terms inpurpose for this research are described and also the literature review that related and suitable for this research. Chapter three explains the research methodology for research data collected and the method of data analysis to be employed. For chapter four, the results obtained from study area and year of study were presented and the analysis from the result was discussed. Finally, chapter five comprises the conclusion from the overall chapter and relates some recommendations for future work on research field.

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

The most destructive natural disaster experienced in Malaysia is flood. Flooding is a natural disaster caused by climatological factors or climatic factors such as temperature, rainfall, evaporation, wind movement and the nature of the earth (Balek, 1977). Throughout Malaysia, including Sabah and Sarawak, there is total of 189 river basins with the main channels flowing directly to the South China Sea and 85 of them are prone to recurrent flooding (89 of the river basins are in Peninsula Malaysia, 78 in Sabah and 22 in Sarawak). The estimated area vulnerable to flood disaster is approximately $29,800 \mathrm{~km}^{2}$ or 9% of the total Malaysia area, and is affecting almost 4.82 million people which is around 22% of the total population of the country (DID, 2009). A flood can be defined as any high water flow that control over the natural or artificial banks in any part of the river system. Therefore, when a river bank is overflowing, it will generally become hazard to the society as the water extends over the flood plain (Ching et al., 2013).

2.1.1 Flood in Malaysia

In Malaysia, floods and flash floods happen especially in the East Coast during the monsoon season. Increased frequency of flooding in the country occur either naturally or due to changes in monsoon corresponding to the increase in the urban areas(Chan 1996; Rose \& Peters, 2001). Flooding is usually caused either by continuous rain by greater amounts than normal or overflow of river water to river banks or from both situations (Balkema et al. 1993; Schulz et al. 1972).Significant flood events that had happened in Malaysia occurred in 2006 and 2007. They had caused millions of lost and damages in four states namely Negeri Sembilan, Melaka, Pahang and Johor. Recurrent flooding that occurred will increase the shallowness of riverbed at downstream areas (Bradley \& Potter, 1992). Municipal buildings that were built on the clay that is impermeable, quickly saturated and less absorb water will cause water to spill over the banks of the river quickly in case of heavy rain (Smith \& Ward, 1998). Bank erosion which affects the thickness of sediment in the river also contributes to flooding (Ward \& Trimble, 2004). When floods occurred, it has terrible impacts on people as it disrupts their daily activities and the impacts can last for a week or a year, climate change is likely to make the situation even more challenging (NFRA, 2011). No matter how hard a government or society tried to minimize or to stop it completely, flooding is a natural event and it's more likely to occur naturally (FRMP 2012).

2.2 HYDROLOGICAL CYCLE

Hydrological cycle can be interpreted as a set of water fluxes (hydrological processes), which transfer water between reservoirs in the geosphere (hydrosphere proper - oceans, seas, lakes, rivers, wetlands, and marshes; cryosphere - ice and snow; lithosphere - groundwater, water in rocks, and Earth crust; and atmosphere - clouds) and biosphere (water contained in living organisms, plants and animals).

Water moves from one reservoir to another by processes like evaporation, condensation, precipitation, deposition, runoff, infiltration, sublimation, transpiration, melting, and groundwater flow. The oceans supply most of the evaporated water found in the atmosphere. Of this evaporated water, only 91% of it is returned to the ocean basins by way of precipitation

Figure 2.1: Hydrologic Cycle.

Adapted from: PhysicalGeography.net

Hydrologic cycle as the key external driver of the water cycle is accelerating due to climate change. Projected increases in global temperatures are associated with changes in the hydrologic cycle, including changes in precipitation patterns (frequency and intensity), increased atmospheric water vapour, as well as changes in groundwater and soil moisture. These changes are often referred to as an intensification and acceleration of the hydrologic cycle.

The next table summarizes the observed trends and projections for the $21^{\text {st }}$ century of key hydrologic variables. The result of hydrologic change and increased variability is shorter periods of more intense rainfall, and longer warmer dryer periods.

Table 2.1: Observed trends and projections for the 21st century of key hydrologic variables

Key Variables	Observed Trends	Projections for 21st Century
Obecipitation	Trend is unclear. General increases in precipitation over land from 30° N to $85^{\circ} \mathrm{N}$. Notable decreases from $10^{\circ} \mathrm{S}$ to $30^{\circ} \mathrm{N}$.	Increase (about 2\% $/{ }^{\circ} \mathrm{C}$) in total precipitation. High latitude areas generally projected to increase. Many low to mid- latitude areas projected to decrease.
Atmospheric water vapour	Increasing in lower atmosphere (lower content	Increasing $1 \% /$ troposphere; about in specific humidity; little change in relative humidity Disproportionate

Adapted from: IPCC, 2007a; National Centre for Atmospheric
Research. Personal Communication.

2.3 RAINFALL TYPE

Precipitation can be classified into three main types according to the air lifting mechanism which are convectional, orographic, and frontal or cyclonic precipitation

Figure 2.2: Illustration of convectional, orographic, and cyclonic rain

Source: www.nirmancare.com (2015)

2.3.1 Convectional rainfall

Convectional rain is caused by the rising of moist air following its contact with surface of the earth. It forms thunder clouds or cumulonimbus s it reaches the condensation level. This types of rain overcast skies and bring heavy downpour that last between one to two hours accompanied by strong winds and sometimes flash floods. Convectively driven storms like tropical cyclones will bring intense precipitation. Wet monsoons usually bring this convective rain which form continuous, heavy rain in the area affected while high intensities convectional rains happened during inter monsoon period.

2.3.2 Orographic Rainfall

Orographic rain falls mainly along the windward side of mountains, notably the Titiwangsa Range that forms the backbone of Peninsular Malaysia. Orographic rain also poured its fair share on the highlands in Sabah and Sarawak of which is spilled by water laden clouds as they rise above the condensation level in the attempt to cross over a mountain.

2.3.3 Cyclonic Rainfall

Cyclonic rainfall, which can pour continuously for days on end, is one of the major causes of floods in Malaysia. Most of it falls during the Northeast monsoon period and covers a wide area along the east coast of Peninsular Malaysia as well as coastal areas in Sarawak. It is caused by the collision between the easterly and the westerly trade winds that results in the ascension of moist air into the atmosphere and condenses into rain.

2.4 SPATIAL AND TEMPORAL RAINFALL VARIABILITY

Understanding the spatial and temporal of rainfall variability is a crucial element in gaining knowledge on water balance dynamics on various scales for water resources planning and management. Peninsular Malaysia lacks of detailed quantitative studies mostly because of the limited number of stations with long records and the problem of missing data (Moten, 1993). Most studies were conducted in the 1980s and 1990s. Nieuwolt (1982) who studied agro climatic study introduced a simple method to quantify rainfall variability over time and related the results to agriculture.

The temporal and spatial characteristics of rainfall have been investigated, but often restricted to small catchments, e.g. an urbanized area (Desa and Niemczynowicz, 1996) and a forested catchment (Noguchi and Nik, 1996). Annual rainfall maps are derived by
the Economic Planning Unit (1999) from the data of monthly long-term records (19501990). These maps are only able to show us the spatial distribution of rainfall in the country instead of variable rainfall patterns over time. Some efforts have also been made during year 2000 to study the formation and occurrence of rainfall and extreme rainfall events in the region. For example, the synoptic scale disturbances over the South China Sea vicinity were investigated by (Chang, Harr, \& Chen, 2005), and the relation between Malaysian rainfall anomalies, sea surface temperature and El Nino-Southern Oscillation were studied by Tangang and Juneng on 2004, 2005 and 2007.

Seasonal periodicity of large-scale atmospheric circulation and the distribution of warm and cold sea currents determine the temporal variation of precipitation on large spatial scale. Trade winds and monsoons play an important role in this variation. For example, the zone of equatorial monsoons is distinguished by wet and dry seasons. In temperate zones, the cyclones that form over the oceans influenced the temporal variation of precipitation. Short-time variation of precipitation is mainly a result of diurnal changes in solar radiance and front passages or cyclonic storms.

2.4.1 Variability of Rainfall in Malaysia

Peninsular Malaysia is located between 1° and 7° north and 99° to 105° east, and comprises an area of 131587 km 2 . It is comprised of highland, floodplain and coastal zones. The Titiwangsa mountain range forms the backbone of the Peninsula, from15 southern Thailand running approximately south-southeast over a distance of 480 km and separating the eastern part from the western part (Suhaila \& Jemain, 2009). The precipitation climate is characterized by two rainy seasons which are the Southwest Monsoon (SWM) from May to September and the Northeast Monsoon (NEM) from November to March (Camerlengo \& Demmler, 1997; Suhaila \& Jemain, 2012; Tangang, 2001).

Significant rainfall also occurs in the transitional periods (usually in April and October) between the monsoon seasons (Suhaila \& Jemain, 2007).

Rainfall pattern of Peninsular Malaysia is highly variable in time and space (Dale, 1959; Ahmad et al, 2013). Thus, Dale(1959) divided Peninsular Malaysia into five rainfall regions with typical patterns of rainfall, which West Coast was divided into four region (North West Malaya, West Malaya, Port Dickson-Muar Coast and South West Malaya), and East Malaysia, Ahmad et al (2013). Johor has the longest coast of Peninsular Malaysia, with 400 km in the east and west coasts of the peninsula. This contributes to different the rainfall patterns from city to city according to their geographical condition. The cities that located near the coastal area will more likely to have more rainfall than others

2.5 CLIMATE CHANGE EFFECTS

Warming of the global climate system is undeniable (Solomon et al., 2007). Global warming is unquestionable and it happened very likely due to the increase in atmospheric greenhouse gas concentrations. This greenhouse effect has changed the climate mostly in global mean precipitation and evaporation but there is no statistically significant linear long-term trend in the time series of global precipitation in the period from 1900 to 2005 (Bengtsson, 2010). Thus, precipitation is the essential driver to control the effect of climate change on streamflow, lake levels and groundwater recharge.

Since water vapour is the dominant greenhouse gas which accounts for around 75% of the total greenhouse effect on Earth, it can contribute to the warming of the climate system by some $24^{\circ} \mathrm{C}$ (Kondratev 1972). As the amount of available water vapour is increasing in a warmer climate, latent-heat-driven weather systems such as tropical cyclones that are driven by organized convection will become more intensive as well.

So in general, the large increase in water vapour in a warmer climate might not only alter the structure of precipitation events but also the statistical distribution of weather systems driven by release of latent heat in most identical way.

2.5.1: Extreme Precipitation Events due to Climate Change

There was an overall increase in global mean land precipitation, until the 1950s, with peaks in 1950s and then in 1970s, a decline from 1970s until the early 1990s and a recovery subsequently. The large increase in extreme precipitation is likely to occur due to this climate change and it will lead to serious consequences. The change in the time distribution of precipitation intensity will reduce the probability of the return period of extreme events. Thus, the patterns of precipitation change will change drastically spatially and temporally over the globe.

Corresponding to rainfall variability, more intense and longer droughts have been observed over wider areas since the 1970s, particularly in the tropics and subtropics. The frequency of heavy precipitation events has increased over most land areas (Solomon et al., 2007). As summarized by Bengtsson, long-term precipitation trends have been tracked in many large regions where data available is sufficient. Precipitation has generally increased over land in most areas of higher latitudes of Northern Hemisphere (north of $30^{\circ} \mathrm{N}$), and in the eastern part of North and South America. Then, it decreased from $30^{\circ} \mathrm{N}$ to $10^{\circ} \mathrm{S}$, mostly after 1977 , as well as in South Africa. The frequency of heavy precipitation and the maximum number of consecutive days without precipitation are projected to increase in the future (Parry, Canziani, Palutikof, van der Linden, \& Hanson, 2007). This would eventually happen for some regions where the mean precipitation is projected to decrease.

2.5.2 Extreme Rainfall Event in Johor

In the period of 19-31 December, 2006 and 12-17 January, 2007; Peninsular Malaysia has suffered by series of flood events with high rainfall recorded generated by Northeast Monsoon that caused severe floods in a few states located in the lower half of the Peninsular. In December 2006 and January 2007 flood events, more than 100,000 victims had been affected in two separate events. It is normal for the lower East Coast area to receive such heavy rains during the monsoon season, but the December 2006 and January 2007 storms brought extremely high rains to most Johor towns and districts especially Kota Tinggi. Kota Tinggi started to receive heavy, widespread rain from the period of five continuous days starting on the 17th to 21 st December 2006. Due to the low lying area of the Kota Tinggi town, the heavy, continuous rainfall had caused the water in the river to rise rapidly and started up to fill up the floodplain area. The inundation period lasted about 13 days and the number of victims in Kota Tinggi was approximately 5,243 people (Atikah S, 2009).

2.5.3 The Effects of Monsoon on Rainfall Variability

The origin of the expression monsoon is Arabic and means "season". This expression has been used by the sea men about several centuries ago to describe the semi-annual reversal in the winds over the Arabian Sea (Chao \& Chen, 2001).

Due to seasonal prevailing winds, the variability of rainfall in Peninsular Malaysia can be characterised by three seasons. From November to January, the east coast area will have maximum rainfall while June and July are the driest months of most areas. However, from May to August, the southwest coastal is much affected by early morning "Sumatras". Maximum rainfall occurs on October and November mostly while February is the month with minimum rainfall.

Table 2.2: Monsoon regimes in Malaysia

monsoon	Period	Characteristics
Northeast	November - March	Winds 10-20 knots up to 30 knots during cold surges period affecting east coast area. Heavy rainfall
Inter-monsoon	April - May October - November Southwest	Frequent period of thunderstorm in afternoon and evening hours with heavy rainfall causing flash flood
	Winds below 15 knots affecting west coast area. Drier weather.	

Source: MMD

The rest of Peninsula has two distinct periods of maximum rainfall separated by two periods of minimum rainfall. The primary maximum rainfall usually occurs in October to November while the secondary maximum usually occurs in April to May. Over the northwest region, the primary minimum occurs in January to February with the secondary minimum in June to July. Elsewhere, the primary minimum occurs in June to July with the secondary minimum in February.(Chao \& Chen, 2001)

1
Low pressure area and cyclone vortex from Nov-Jan in Equator

2 High pressure air brings prevailing winds from Russia/China when the condition is favorable

Strong winds occurred
simultaneously in West
Pacific Ocean and South China Sea, both crossing path near the low pressure area in Peninsular Malaysia

4
Cumulonimbus clouds was formed with widespread heavy rainfall and rough seas occur usually in the East Coast

Figure 2.3: Heavy rains caused by monsoons

Source: MMD, 2007

The Northeast monsoon winds are much weaker than the Southwest monsoon winds in the Arabian Sea. The reverse is true in the South China Sea. Turbulence produced by strong winds mixes down the momentum input throughout the entire mixed layer (Niiler and Krauss, 1977). This is precisely what happens with the ocean mixed layer depth, at the western boundary during the North-east monsoon season (Saadon and Camerlengo, 1995). During the South-west monsoon season, cloudless skies cause an increase in both the salinity field and the temperature field patterns. A decrease of the mixed layer depth has also been recorded (Lokman et al., 1986).

2.5.4 El Nina and La Nina Effects on Rainfall Variability

The effects of El Nino and La Nina are stronger over East Malaysia than in Peninsular Malaysia. Nevertheless, El Nino and La Nina years did affect both the monsoons in our country. El Nino influence on monsoon rainfall is weaker in Peninsular Malaysia. There were only slight cases when both east and west coast states in peninsular were affected during the monsoons. In happened back then in 1986, both states in west and coast area were affected during the southwest monsoon and once again in 1982 during northeast monsoon (Cheang, 1993). La Nina had caused extreme precipitation during Northeast monsoon in only 2 out of 10 cases. Most of the remaining cases recorded normal rainfall during La Nina years.

2.5.5 El Nino

The El Nino - Southern Oscillation phenomenon (ENSO) is a well-known mode of climate variability that affects weather ad ecosystems in large parts of the world. It is referred as warm phase of ENSO. It is widely known that major ENSO episodes, like the one which occurred in 1982 and 1983, can lead to major displacement of rainfall regions in the tropics, bringing drought to broad areas and torrential rain to otherwise arid regions. E1 Nino phenomenon is believed associated with below normal rainfall over northern Australia, Indonesia and Philippines (Meehl, 1987; Ropelewski and Halpest, 1987). Since Malaysia is located near this region, there would be a probability that El Nino and Southern Oscillation give some effects on the rainfall of Malaysia. Out of the 12 El Nino years (1951, 1953, 1957, 1963, 1965, 1969, 1972, 1977, 1982, 1986, 1987 and 1991) seven of them did bring about extremely dry years to many stations over the whole country or Peninsular Malaysia or east Malaysia. However, 1951, 1953 and 1957 did not experience extremely dry conditions even though they are included in the El Nino years. The influence of El Nino on the west and east coast states in peninsular Malaysia was more complex. Both east and west were affected by very much below normal Northeast monsoon rainfall.

2.5.6 La Nina

La Nina is referred to cold phase of ENSO. The La Nina years are 1955, 1956, 1960, 1964, 1970, 1971, 1973, 1974, 1975 and 1988. Out of the 10 years, 8 of them recorded extremely wet conditions at many stations (Cheang, 1993). In 1960, 14 out of the 16 stations did not record any extreme condition. Only one recorded extremely dry and one recorded extremely wet year. In 1974 more stations recorded extremely dry than wet years.

In Peninsular Malaysia, the effect of La Nina is again more complex. During the southwest monsoon, there was no consistent trend. As regards to northeast monsoon, only 2 out of 10 La Nina years that the rainfall is above normal rainfalls.

2.6 RETURN PERIOD

Return period is the average time interval (expressed in years) between occurrences of a given or greater magnitude rainfall event. It denotes the recurrence interval of certain rainfall event. It can be expressed as a statistical measure of how frequently a rainfall event of certain magnitude is likely to occur. As for example, rainfall with a 10 -year return period would likely to happen every 10 years. A 100-year return period corresponds to such an extreme event that we expect it to occur only every 100 years (Mélice \& Reason, 2007)

2.7 GEOGRAPHICAL INFORMATION SYSTEM

For this research purpose, Geographical Information System (GIS) technique was used to process all the raw data collected from public domain. Conventional hydrological model that being used to estimate rainfall intensity is very costly and timeconsuming.

Thus, in order to solve the problem, remote sensing is used where this technology can also provide input data information economically and also offer largeland coverage. It is also a viable alternative. For about two decades, satellite or remote sensing (RS) data in the form of multi-spectral air photography, ground based weather radar as well as geostationary and polar orbiting satellite has been available to be used in hydrology field. Remotely sensed data provide relatively consistent spatial and temporal coverage of rainfall information.

Data available from satellite is suitable to enter GIS (Geographical Information System). Thus, various data can be stored as different layer by GIS. A lot of hydrological variables' measurements can be provided by satellite-based data which is generally used in hydrology and environmental model application, either as direct measurements comparable to traditional forms, as surrogates of traditional forms, or as entirely new data set (A.M.Melesse, S.F. Shih, 2002). Satellite-based data is very useful to obtain input data for distributed hydrological model

2.8 SUMMARY

It can be said that flood happened in Malaysia is characterised by the yearly alternation of Southwest and Northeast monsoons besides other climatic changes and urbanization occurred in the affected area. El Nina and La Nina contributes slightly in the extreme rainfall precipitation occurred throughout the country.

CHAPTER 3

METHODOLOGY

3.0 METHODOLOGY

The next figure will visualize the flow chart of methodology implemented for this research. The first step was to collect daily data from TRMM and determined the location of every major city in Johor. Secondly, the daily rainfall data was converted to GIS-ready forms and retrieved using GIS technique. The next step was to process the data by using descriptive statistical analysis for daily, monthly, and annual maximum rainfall. Then, Gumbel distribution function was applied to estimate the return period of extreme rainfall events. Lastly, result was organized in the form of rainfall characteristics, extreme rainfall events, and return period of annual daily maximum rainfall.

Figure 3.1: Summarized flow chart for research methodology

3.1 Study Area

The selected study area comprises of eight major cities in Johor which are Johor Bahru, Pontian, Kota Tinggi, Mersing, Batu Pahat, Muar, Segamat, and Kluang. Johor is the second most populous state with $19,210 \mathrm{~km}^{2}$ and situated in the southern part of Peninsular Malaysia. This contributes to the state's rapid development as an industrial hub. Johor has the second largest population in Malaysia at 3,230,440 as of 2010. Johor has a tropical rainforest climate with monsoon rain from November until February blowing from the South China Sea. The next table shows the population and area of eight major cities in Johor related in this study.

Table 3.1: Population and area of major cities in Johor

Cities	Population (as of 2010)	Area (sq. miles)
Johor Bahru	$1,334,188$	722
Pontian	149,938	350
Kota Tinggi	193,210	$1,346.99$
Mersing	69,028	$1,346.99$
Batu Pahat	401,902	723.00
Muar	239,027	531
Segamat	182,985	$1,090.9$
Kluang	288,364	1101.00

3.2 DATA COLLECTING

3.2.1 Satellite Data

In recent years, satellite-based precipitation estimates have been developed on sub daily time resolution over the globe by combining information from microwave (MW) and infrared (IR) observation (Hong, Hsu, Sorooshian, \& Gao, 2004; Hsu \& Gao, 1997; Huffman et al., 2007; Joyce, Janowiak, Arkin, \& Xie, 2004; Kidd, Kniveton, Todd, \& Bellerby, 2003; Sorooshian et al., 2000). Operational quasi-global satellite rainfall products used in this study is the Tropical Rainfall Measuring Mission (TRMM).

The TRMM data was used to generate daily, monthly and yearly satellite-based rainfall information. They were downloaded from http://disc.sci.gsfc.nasa.gov/site for 16 years period of time (January 1998- December 20013).The TRMM products are available 3-hourly at 0.25830 .258 spatial resolution at $508 \mathrm{~S}-\mathrm{N}$ latitude covering the globe. The real-time product, 3B42RT, uses the TRMM Combined Instrument (TCI; TRMM precipitation radar and TRMM Microwave Imager) dataset to calibrate precipitation estimates derived from available low-Earth-orbiting passive microwave radiometers and then merges all these estimates at 3-h intervals.

3.2.2 RAINFALL DATA

Figure 3.2: Maps of districts in every state in Malaysia

Corresponding maps and location data for representative districts within Peninsular Malaysia were obtained from the Jabatan Ukur dan Pemetaan Malaysia (JUPEM).

Right after the map has been inserted into ArcGis 9 software, coordinates for major cities in Johor were marked on the available map by simply inserting the coordinates (latitude, longitude) of Johor Bahru, Pontian, Kota Tinggi, Batu Pahat, Kluang, Muar, Segamat, and Mersing to get the daily rainfall data for each city. The location for every major cities in Johor, together with Latitude and longitude, are presented in Table 5

Table 3.2: Latitude and longitude for major cities in Johor

No	Cities	Latitude	Longitude
1	Johor Bahru	$102.78^{\circ} \mathrm{E}$	$1.48^{\circ} \mathrm{N}$
2	Batu Pahat	$102.93^{\circ} \mathrm{E}$	$1.85^{\circ} \mathrm{N}$
3	Kluang	$103.32^{\circ} \mathrm{E}$	$2.03^{\circ} \mathrm{N}$
4	Muar	$102.57^{\circ} \mathrm{E}$	$2.05^{\circ} \mathrm{N}$
5	Kota Tinggi	$103.98^{\circ} \mathrm{E}$	$1.74^{\circ} \mathrm{N}$
6	Pontian	$103.40^{\circ} \mathrm{E}$	$1.51^{\circ} \mathrm{N}$
7	Segamat	$102.82^{\circ} \mathrm{E}$	$2.52^{\circ} \mathrm{N}$
8	Mersing	$103.81^{\circ} \mathrm{E}$	$2.42^{\circ} \mathrm{N}$

3.3 PRE - PROCESSING

3.3.1 Data Transformation

Firstly, the data processing required data transformation in order to make sure the interoperability with ArcGis environment. The satellite precipitation products downloaded from public domain do not fit easily into the traditional Geographical Information System (GIS) standards (raster or vector). Another application was used to transform the satellite rain products into accessible Geotiff format. The application used is the Global Mapper v11.00. It transformed the datasets by exporting the raster and elevation data to GeoTiff and selected the 32-bit floating point samples for the elevation file type.

Figure 3.3: Global Mapper platform

Figure 3.4: Rainfall data exported to GeoTIFF format

Figure 3.5: GeoTIFF export option

3.3.2 Conversion and Clipping of Dataset

This dataset was ready to open in the ArcGIS after being transformed to tiff format previously. For the next step, the dataset was opened in ArcGis. All the transformed data were then exported as raster data and TIFF format. The location where the data was saved was separated into different folders according to their respective year and month.

After the data had been exported, the data then extracted to a portion of a raster dataset based on a template extent. The clip output shall include any pixels that intersect the template extent. The clipped area in this study was specified by a rectangular envelope using minimum and maximum x and y -coordinates as in the table below

Table 3.3: Coordinates for data clipping

	X-coordinates	Y-coordinates
Minimum	99.500000	1.000000
Maximum	104.000000	7.000000

Figure 3.6: Data exportation in ArcGis

Figure 3.7: Raster data exportation in ArcGis

Figure 3.8: Clipping data in ArcGis

Figure 3.9: Execution of clipping data

3.3.3 Data Extraction

The next step involved the extraction of rainfall data according to the places mapped on the available peninsular map. Before the data can be extracted, there were a few steps need to be accomplished first. The map of peninsular Malaysia was opened in ArcCatalog and new shapefile for major cities in Johor was created. It was then marked on the map according to the longitude and latitude for each city.

The map of peninsular Malaysia was added as a new layer as well as the shapefile for major cities in Johor. Next, the previous clipped data was added to the layers. Then, a spatial analyst tool was used to extract values to point. The input point features defined the location from which you want to extract the raster cell values and in this study it was the cities in Johor. The input raster dataset whose values will be extracted was selected from the clipped data added to the layer earlier on.The output point feature dataset then would contain the extracted raster values.

By opening the attributes of the extract for the new extracted data added on the layer, the rainfall depth for every city that has been marked on map would be generated. The extracted data was saved in the form of text file so that it can be opened later in Microsoft Excel.

Figure 3.10: Malaysia map in ArcGis

Figure 3.11: Adding new layer of major cities in Johor on map

Figure 3.12: Extract values to points in ArcGis

Figure 3.13: Rainfall depth extracted

Figure 3.14: Saving attributes of extracted data

3.4 PROCESSING

3.4.1 Descriptive Statistics

After all the data has been extracted to text file, the data was opened in excel to be organized in the form of tables and graphs. Descriptive statistics was conducted for the three types of data i) annual rainfall ii) annual daily maximum rainfall and iii) annual monthly maximum rainfall. It was applied to the rainfall data to examine its central tendency and variability. The statistical moments used in this study are given as:

First moment (mean):

$$
\bar{y}=\frac{\sum y_{i}}{n}
$$

Second moment (variance):
$s^{2}=\frac{\sum\left(y_{i}-\bar{y}\right)}{n-1}$

3.4.2 Gumbel Distribution Function

The famous statistician Emil Julius Gumbel (1941) was probably, the first person who dealt extreme values of hydro-logical data in organized way for conducting flood frequency analysis. Traditionally three extreme value distributions: Fréchet, Weibull and Gumbel are commonly used for analysing return periods of annual daily maximum rainfall.

Nadarajah and Choi (2007) and Carvalho et al. (2003) expressed the cumulative distribution function of the Generalized Extreme Value (GEV) distribution as:

$$
\begin{equation*}
\mathrm{F}(\mathrm{x})=\exp \left\{-\left(1+\xi \cdot \frac{\mathrm{x}-\mu}{\sigma}\right)^{-\frac{1}{\xi}}\right\} \tag{3.1}
\end{equation*}
$$

For $1+\xi(\mathrm{x}-\mu) / \sigma>0$, where ξ, μ, and σ are referred as shape, location and scale parameters respectively. The Eq. (1) is referred as Gumbel distribution for the cases of $\xi \rightarrow 0$. The GEV distribution can be expressed as Eq. (2). The probability and return periods of annual daily maximum rainfall were estimated using Eqs. (3) and (4) respectively.

$$
\begin{equation*}
\mathrm{F}(\mathrm{x})=\exp \left[-\exp \left\{-\left(\frac{x-\mu}{\sigma}\right)\right\}\right] \tag{3.2}
\end{equation*}
$$

$\mathrm{P}(\mathrm{x})=1-\mathrm{F}(\mathrm{x})$

$$
\begin{equation*}
\mathrm{N}=\frac{1}{P(x)} \tag{3.4}
\end{equation*}
$$

$\mathrm{x} \quad$ annual daily maximum rainfall
$\mu \quad$ mean of observed annual daily maximum rainfall
$\sigma \quad$ standard deviation of observed annual daily maximum rainfall
$\mathrm{F}(\mathrm{x}) \quad$ cumulative probability distribution
$\mathrm{P}(\mathrm{x}) \quad$ probability distribution
$\mathrm{N} \quad$ return periods of annual daily maximum rainfall

3.5 SUMMARY

This chapter explained the methodology to conduct this research. It started off with data collecting and then pre-processing, processing and the result is later discussed in the next chapter.

CHAPTER 4

RESULT AND DISCUSSION

4.1 RAINFALL CHARACTERISTICS

Table 4.1: Monthly rainfall for major cities in Johor

Cities	Monthly rainfall (mm)	
	Maximum	Minimum
Johor Bahru	874.23992	25.35092
	(December)	(January)
Pontian	823.25245	25.36777
	(December)	(February)
Kota Tinggi	840.75315	22.67447
	(December)	(February)
Mersing	774.92299	10.30848
	(January)	(February)
Batu Pahat	534.82471	36.08092
	(December)	(February)
Muar	488.21803	33.77532
	(December)	(July)
Segamat	641.65745	12.6418
	(December)	(February)
Kluang	745.11556	46.60511
	(December)	(February)

It can be seen that most of cities experienced highest rainfall intensity on December. The highest amount of rainfall was recorded in Johor Bahru with 874.24 mm followed by Kota Tinggi, 840.75 mm and Pontian, 823.25 mm .

Johor Bahru serves as its capital state in highly urbanized setting. It is also known as port of entry and an international business hub. Pluvial flooding which usually occur in town and modern cities can be said to be a contributing factor to high rainfall intensity on monthly basis. Flooding in urban areas is majorly caused by intense and prolonged rainfall which overwhelms the capacity of the drainage system. This is due to the high proportion of paved surfaces, which limits water infiltration and increase the speed of water as well as the amount surface run off to the ground surface.

The same situation also affects Kota Tinggi as urbanization in this area is growing rapidly focusing in housing development and agricultural activities. The close distance of Kota Tinggi to Johor Bahru which is approximately $42-\mathrm{km}$ north-east of Johor Bahru also contributes to its rapid development as a part of Johor Bahru corridor and affects the rainfall events happened in the area.

On the other hand, it can be said that geographical position contributes to higher intensity of rainfall in some places. Based on geographical location of these three cities, they are all located near coastal area. The coastal areas are closer to water and closer to the sea. Thus, it can be said that the climate will be wetter. So, it contributes to more rainfall monthly compared to the other places in Johor

The minimum rainfall on the other hand was recorded in Mersing with 10.31 mm , followed by Segamat, 12.65 mm and Kota Tinggi, 22.67 mm .

All three cities recorded minimum rainfall on February. This may be due to the fact that even though North-east monsoon occurs from November till March, it generally brings heavy rain around November to January. It usually stops at the end of January. Thus, the inland areas which are sheltered by mountain ranges are relatively free from North-east monsoon during this period. Due to this, it contributes to the lowest rainfall downpour in most part of Johor.

Table 4.2: Annual rainfall for major cities in Johor

Cities	Annual rainfall (mm)	
	Maximum	Minimum
Johor Bahru	$\begin{aligned} & 221.2035 \\ & (\mathbf{2 0 0 6}, \mathbf{2 0 0 7}) \end{aligned}$	$\begin{gathered} 49.66177 \\ (\mathbf{2 0 0 9}) \end{gathered}$
Pontian	$\begin{gathered} 231.4471 \\ (\mathbf{2 0 0 1 , 2 0 0 7}) \end{gathered}$	$\begin{gathered} 45.36311 \\ (\mathbf{2 0 1 1}) \\ \hline \end{gathered}$
Kota Tinggi	$\begin{gathered} 211.4133 \\ (\mathbf{2 0 0 6}) \\ \hline \end{gathered}$	$\begin{gathered} 74.63789 \\ \mathbf{(2 0 0 0)} \\ \hline \end{gathered}$
Mersing	$\begin{gathered} 265.1129 \\ (\mathbf{2 0 0 6}) \\ \hline \end{gathered}$	$\begin{gathered} 59.51974 \\ (\mathbf{2 0 0 9}) \\ \hline \end{gathered}$
Batu Pahat	$\begin{gathered} 184.5667 \\ (\mathbf{2 0 0 4}) \\ \hline \end{gathered}$	$\begin{gathered} 62.27600 \\ (\mathbf{1 9 9 9}) \\ \hline \end{gathered}$
Muar	$\begin{gathered} 153.9978 \\ (\mathbf{2 0 0 4}) \\ \hline \end{gathered}$	$\begin{gathered} 49.66177 \\ \mathbf{(2 0 1 1)} \\ \hline \end{gathered}$
Segamat	$\begin{gathered} 265.1129 \\ (\mathbf{2 0 0 1}) \\ \hline \end{gathered}$	$\begin{gathered} 62.27600 \\ \mathbf{(2 0 0 6}) \\ \hline \end{gathered}$
Kluang	$\begin{gathered} 347.8475 \\ \mathbf{(2 0 0 6}) \\ \hline \end{gathered}$	$\begin{gathered} 65.15989 \\ \mathbf{(2 0 0 9)} \\ \hline \end{gathered}$

On the contrary, the highest amount of rainfall annually brought different result in places compared to monthly rainfall. It can be seen that Kluang recorded the highest amount of rainfall with 347.85 mm followed by Segamat and Mersing with 265.11 mm respectively. All three cases recorded highest amount of rainfall in 2006.

2006 and 2007 flood events are among the worst in century. Geographical characteristics and inadequate drainage facilities are the factors that trigger this heavy rain. Kluang situated just slightly outside Titiwangsa range which make it opens to both North-east and South-west monsoons over the year. Thus, it can be said that maximum annual rainfall would likely to occur here. Segamat which is located in lowland area was affected by continuous rainfall that happened during 2006.

Water from Segamat river spilled over to the right and left banks of the river and submerged some areas there. Mersing located on east part of Johor. It opens to Northeast monsoon which brings heavy rainfall to the east coast of Peninsular Malaysia. Minimum rainfall recorded was recorded on Pontian in 2011, followed by Muar which also happened to be in 2011 and Johor Bahru on 2009.

4.2 EXTREME RAINFALL EVENTS

Table 4.3: Historical extreme rainfall events of major cities in Johor

Cities	Dates	Daily rainfall (mm)
Johor Bahru	December 19,2006 January 12,2007	221.20
Pontian	January 12, 20072	231.45
Kota Tinggi	December 19,2006	211.41
Mersing	December 19,2006	265.11
Batu Pahat	March 9,2004	184.57
Muar	October 27,2004	154.00
Segamat	January 18, 2001	265.11
Kluang	December 19, 2006	347.85

4.3 RETURN PERIOD OF ANNUAL DAILY MAXIMUM RAINFALL

The daily rainfall equal or greater than 221 mm has return period of 9 years for Johor Bahru. While, daily rainfall equal or greater than 303 mm will have return period of 25 years, 353 mm for 50 years of return period and 402 mm for 100 years of return period.

Figure 4.1: Return period graph of Johor Bahru

The daily rainfall equal or greater than 231 mm has return period of 7 years for Pontian. While, daily rainfall equal or greater than 360 mm will have return period of 25 years, 412 mm for 50 years of return period and 473 mm for 100 years of return period.

Figure 4.2: Return period graph of Pontian

The daily rainfall equal or greater than 202 mm has return period of 9 years for Kota Tinggi. While, daily rainfall equal or greater than 260 mm will have return period of 25 years, 297 mm for 50 years of return period and 333 mm for 100 years of return period.

Figure 4.3: Return period graph of Kota Tinggi

The daily rainfall equal or greater than 265 mm has return period of 8 years for Mersing. While, daily rainfall equal or greater than 379 mm will have return period of 25 years, 439 mm for 50 years of return period and 498 mm for 100 years of return period.

Figure 4.4: Return period graph of Mersing

The daily rainfall equal or greater than 185 mm has return period of 8 years for Batu Pahat. While, daily rainfall equal or greater than 264 mm will have return period of 25 years, 305 mm for 50 years of return period and 346 mm for 100 years of return period.

Figure 4.5: Return period graph of Batu Pahat

The daily rainfall equal or greater than 154 mm has return period of 8 years for Muar. While, daily rainfall equal or greater than 213 mm will have return period of 25 years, 246 mm for 50 years of return period and 279 mm for 100 years of return period.

Figure 4.6: Return period graph of Muar

The daily rainfall equal or greater than 265 mm has return period of 16 years for Segamat.While, daily rainfall equal or greater than 311 mm will have return period of 25 years, 363 mm for 50 years of return period and 415 mm for 100 years of return period.

Figure 4.7: Return period graph of Segamat

The daily rainfall equal or greater than 348 mm has return period of 18 years for Kluang. While, daily rainfall equal or greater than 398 mm will have return period of 25 years, 467 mm for 50 years of return period and 535 mm for 100 years of return period.

Figure 4.8: Return period graph of Kluang

All the return period for all areas is summarized in the form of table on the next page. The gradient, m and y -intercept, c are provided in the table as well as the estimated rainfall depth for return period of 25,50 and 100 years.

Table 4.4: Equation of return period for major cities in Johor

cities	equation		m		c	R2	N	
							100	
Johor Bahru	$71.248 \ln (\mathrm{x})+73.98$	71.248	73.98	0.9928	303.34	352.73	402.11	
pontian	$88.005 \ln (\mathrm{x})+67.224$	88.005	67.22	0.9962	350.5	411.5	472.5	
Kota Tinggi	$52.414 \ln (\mathrm{x})+92.13$	52.414	92.13	0.9919	260.55	296.86	333.16	
Mersing	$85.652 \ln (\mathrm{x})+103.76$	85.652	103.76	0.9837	379.46	438.83	498.2	
Batu Pahat	$58.862 \ln (\mathrm{x})+74.541$	58.862	74.54	0.9935	264.01	304.81	345.61	
Muar	$47.558 \ln (\mathrm{x})+59.76$	47.558	59.76	0.9934	212.84	245.81	278.77	
Segamat	$75.579 \ln (\mathrm{x})+67.283$	75.579	67.28	0.9959	310.56	362.95	415.34	
Kluang	$99.038 \ln (\mathrm{x})+79.14$	99.038	79.14	0.9934	397.93	466.58	535.23	

Besides that, return period can also be calculated by inserting the known mean and standard deviation of major cities in Johor.

Table 4.5: Mean and standard deviation for all major cities in Johor

Cities	Mean	Std.deviation
Johor Bahru	116.3704	49.86982
Pontian	119.8029	60.75221
Kota Tinggi	123.2674	37.45545
Mersing	156.0576	52.6296
Batu Pahat	110.4826	36.90276
Muar	88.18795	32.77969
Segamat	115.0536	55.91696
Kluang	138.9674	71.9062

Putting those values in equation (3.2); we developed equation (4.1) for the estimation of return period. Take Johor Bahru for example, the extreme rainfall events as

$$
\begin{equation*}
N=\left[1-\exp \left[-\exp \left\{-\left(\frac{x-116.37}{49.87}\right)\right\}\right]\right]^{-1} \tag{4.1}
\end{equation*}
$$

4.4 SUMMARY

It can be concluded that the highest amount of rainfall was recorded in Johor Bahru for annual monthly maximum rainfall. Whereas, Kluang recorded the highest amount of rainfall for annual maximum rainfall. Most of the cities experienced highest amount of rainfall in year 2006 and 2007. Lastly, the return period of annual daily maximum rainfall was calculated for each city using Gumbel distribution function

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

The highest numbers of very wet days and extremely wet days occur during the North-east season for every major city in Johor. As for annual daily maximum, it can be seen that Kluang recorded the highest rainfall. But the result is different for annual monthly maximum rainfall. Johor Bahru recorded the highest rainfall for the monthly maximum downpour. This may be due to Kluang's geographical factor that situated just outside Titiwangsa range and opens to both monsoon seasons over the year. Both places share almost identical characteristics in terms extreme rainfall intensity. These findings can be related to the location of these both places. They are heavily populated areas with intensive urbanization. The increase in the frequency of flash floods in these two areas in recent years may be partly due to climate change and this contributes to high intensity of rainfall monthly and annually.

The annual pattern of extreme rainfall in Johor is highly influenced by the North-east monsoon. It can be clearly seen through the historical extreme rainfall events in major cities in Johor. Highest rainfall recorded during North-east monsoon for major part of the cities.

The highest amount of rainfall recorded during December 2006 and January 2007 where Malaysia had been stroked down by the most destructive flood events during 19-31 December, 2006 and 12-17 January, 2007 period

The statistical analysis was carried out based on daily rainfall data. Data collected was organized to get its central tendency and variability It was then compared to get daily maximum, monthly maximum as well as annual maximum Any drainage structure to be designed and constructed in Johor should be resilient to extreme rainfall event. The existing system was designed based on historical rainfall data, but the capacity of the drainage network will not be sufficient enough with high intensive short duration as the variability rainfall is expected to alter due to global climate change. The proposed return periods of annual daily maximum rainfall of this study can be used for upgrading the capacities of hydraulic structures for Johor. This outcome can be used in many ways; it can help to understand future flash flooding risk. This paper also describes the overall rainfall pattern of Johor. The research outcome can be made as guideline in the planning of infrastructures to be built in the future.

5.2 Recommendations for future research

To further this research, there are some action plans that can be taken in order to get better results. Some recommendations that can be implemented to further research are:

1. 16 years of data was collected for this research (1998-2013). Generally, 30 years of data is considered essential to estimate the desired flood based upon the available flow data of catchment. The results of the frequency analysis depend upon the length of data. Frequency analysis should not be adopted if the length of records is less than 10 years. Thus, it would be more practical and the result would be more reliable if longer years are used to estimate the variability of rainfall.
2. Data collected for this research was downloaded from TRMM satellite. The result of data should be compared with rain-gauge station in order to get more precise result and compare both data to calibrate the data.
3. Instead of using only one method to get return period, one can also use different approach of probability distributions to get return period of extreme rainfall events like using lognormal, Weibull function or Log-Person type III to compare the results.

REFERENCES

Adler, R.F., Bolvin, D. T., Gu, G. Stocker, E. F., Huffman, G. J., Nelkin, E. J. and Wolff, D. B.2007. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology. 8 (1): 38-55

Adler, R.F., Bolvin, D.T., Gu, G. and Huffman, G. J. 2009. Improving the global precipitation record: GPCP Version 2.1. Geophysical Research Letters. 36(17): 4033-4046

Ahammed, F., Argue, J. and Hewa, G.2014. Variability of annual daily maximum rainfall of Dhaka, Bangladesh. Atmospheric Research.137: 176-182

Alam, M. and Rabbani, M. 2007. Vulnerabilities and responses to climate changes. Environment and Urbanization. 19(1): 81-97
Arkin, P. A., Janowiak, J. E., Joyce, R. J. and Xie, P. 2004. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. Journal of Hydrometeorology. 5 (3): 487-503

Balek, J. 1977. Developments in Water Science. Hydrology and Water Resources in Tropical Africa. . 8. USA : Elsevier

Balkema, A.A., Brookefield . and Rotterdam \& 1993. Hydrology and Water Management of Deltaic Areas. Center for Civil Engineering Research and Codes, Netherland.

Bee, C. H., Gasim, M. B., Mokhtar, M., Rahim, S. A., Surif, S. and Toriman, M. E. H. 2010. Analisis banjir Disember 2006: Tumpuan di kawasan bandar Segamat, Johor. Sains Malaysiana. 39(3): 353-361.

Bellerby, T. J., Kidd, C., Kniveton, D. R. and Todd, M. C. 2003. Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms. Journal of Hydrometeorology. 4(6): 1088-1104

Bengtsson, L.2010. The global atmospheric water cycle. Environmental Research Letters.

Boyd, E., Lemos, M. C. and Tompkins.2008. A less disastrous disaster: Managing response to climate-driven hazards in the Cayman Islands and NE Brazil. Global Environmental Change. 18(4) : 736-745
Bradley, A. A., \& Potter, K. W.1992. Flood frequency analysis of simulated flows. Water Resources Research. 28 (9) : 2375-2385

Braithwaite, D., Gao, X., Gupta, H. V., Hsu, K. L., Imam, B. and Sorooshian, S.2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall.

Bulletin of the American Meteorological Society. 81(9): 2035-2046.
Camerlengo, A. L. and Demmler, M. I. 1997. Wind-driven circulation of Peninsular Malaysia's Eastern continental shelf. Scientia Marina, 2(61):203-211.
Canziani, O. F., Chen, Z., Manning, M., Martino, D., Parry, M. L., Qin, D. and Solomon, S.2007. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 2007: Summary for Policymakers, pp. 7-22

Canziani, O. F., Hanson, C. E. Palutikof, J. P., Parry, M. L. and van der Linden, P. J. 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Journal of Environment Quality, 37: 2407.

Chan, N.W. 1996. Vulnerable of urban areas to floods. The Star, 26 Jan: 4-6.
Chang, C.P., Chen, H.J. and Harr, P. A. 2005. Monthly Weather Review. Synoptic Disturbances over the Equatorial South China Sea and Western Maritime Continent during Boreal Winter. 133 (3): 489-503
Chao, W. C. and Chen, B. 2001. The Origin of Monsoons. Journal of the Atmospheric Sciences. 58(22): 3497-3507.
Cheang, B. K. 1993. Interannual variability of monsoons in Malaysia and its relationship with ENSO. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 102(1): 219-239.
Dale, W.L.1959. Rainfall of Malaysia, Part I. Journal of Tropical Geography. 13
Deni, S.M., Jemain, A.A., Suhaila, J. and Wan Zin, W.Z. 2010. Spatial trends of dry spells over Peninsular Malaysia during monsoon seasons. Theoretical and Applied Climatology. 99 (3-4): 357-371

Department of Irrigation and Drainage Malaysia.2009. Flood management manual. 1

Desa, M. N. and Niemczynowicz, J. 1996.Temporal and spatial characteristics in Kuala Lumpur, Malaysia, Atmospheric Research. 42: 263-277

Flood Risk Management Planning in Scotland: Arrangement for 2012 - 2016. February 2012.

Gao, X., Hong, Y., Hsu, K.L. and Sorooshian, S. 2004. Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. Journal of Applied Meteorology. 43(12): 1834-1853.

Hanaish, I.S.A., Ibrahim, K.B. and Jemain, A.A.B. 2012. Reproduction of the variance scaling structure for Rainfall in Peninsular Malaysia using Barlett Lewis Model.

Journal of Applied Mathematical Sciences. 6(105-108): 5305-5313
Hsu, K., \& Gao, X. 1997. Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology. 36(9): 11761190.

Huey, T.T. and Ibrahim, A.L. 2012. Proceedings of the $33_{r d}$ Asian Conference on Remote Sensing, pp. 7

Jemain, A. A. and Suhaila, J.2007. Fitting daily rainfall amount in Malaysia using the normal transform distribution. Journal of Applied Sciences. 7(14):1880-1886.

Jemain, A. A. and Suhaila, J.2009. Investigating the impacts of adjoining wet days on the distribution of daily rainfall amounts in Peninsular Malaysia. Journal of Hydrology. 368(1-4): 17-25.

Jemain, A. A. and Suhaila, J.2012. Spatial analysis of daily rainfall intensity and concentration index in Peninsular Malaysia. Theoretical and Applied Climatology. 108(1-2): 235-245.

Jemain, A., Ibrahim, K., Deni, S. 2010. The best probability models for dry and wet spells in Peninsular Malaysia during monsoon seasons. 30 (8): 1194-1205

Koelzer, V.A., Mahmood, K. and Schulz, E.F. 1972. Floods and Droughts. Water Resources Publications, United States.

Kuala Lumpur. 1999. Economic Planning Unit, Prime Minister's Department. Masterplan for the Development of Water Resources in Peninsular Malaysia 2000-2050.

Lev S. Kuchment.2004. The Hydrological Cycle and Human Impact on it, in Water Resources Management. Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Oxford: UK.

Malaysian Drainage and Irrigation Department. Rainfall of Malaysia, Part I. Journal of Tropical Geography. 13:1959-1965.

Meehl, G.A.1987. The annual cycle and interannual variability in the tropical pacific and Indian Ocean regions. Monthly Weather Review. 27-50

Mélice, J. L. and Reason, C. J. C. 2007. Return period of extreme rainfall at George, South Africa. South African Journal of Science. 103(11-12): 499-501.

Moten, S. 1993. Multiple time scales in rainfall variability, Proceedings of the Indian Academy Of Science. 102: 249-263

Musiake, K. and Oki, T.1994. Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. Journal of Applied Meteorology. 33(12): 1445-1463.

Nieuwolt, S. 1982. Tropical rainfall variability - The agroclimatic impact. Agroclimatic Environment. 7:135-148.

Nik, A. R. and Noguchi, S.1996. Rainfall characteristics of tropical rain forest and temperate forest: comparison between Bukit Tarek in Peninsular Malaysia and Hitachi Ohta in Japan, J. Journal of Forest Research. 9: 206-220

Peters, N. E. and Rose, S. 2001. Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): A comparative hydrological approach. Hydrological Processes. 15(8): 1441-1457.

Ropolewski, C.F and Halpert, M.S. 1987. Global and Regional scale precipitation patterns associated with the the El Nino/Southern Oscillation. Monthly Weather Review. 115:1606-1626

Tangang, F. T.2001. Low frequency and quasi-biennial oscillations in the Malaysian precipitation anomaly. International Journal of Climatology. 21(10): 11991210.

Trimble, S. W. and Ward, A. D.2004. Environmental hydrology. Journal of Hydrology. 94 (5): 475

APPENDIX A

Annual Daily Maximum for Johor Bahru, Pontian, and Kota Tinggi

JOHOR BAHRU		
year	date	depth
1998	15-Oct	78.094245
1999	1-Jan	74.637893
2000	23-Nov	93.59613
2001	17-Jan	147.182037
2002	26-Jan	97.930412
2003	1-Feb	122.805023
2004	9-Mar	184.566696
2005	3-Jan	112.175132
2006	19-Dec	221.203506
2007	12-Jan	221.203506
2008	12-Nov	97.930412
2009	1-Mar	49.661773
2010	24-Jun	107.210395
2011	26-Sep	74.637893
2012	15-Apr	85.494575
2013	8-Feb	93.59613
total		1861.925758
max		221.203506
min		49.661773
mean		116.3703599
std.dev		49.86982379

PONTIAN		
year	date	depth
1998	12-Oct	102.4654
1999	1-Jan	81.710693
2000	5-Jan	81.710693
2001	28-Dec	231.447067
2002	18-Nov	107.210395
2003	1-Feb	102.4654
2004	9-Mar	211.413314
2005	5-Oct	71.33451
2006	19-Dec	211.413314
2007	12-Jan	231.447067
2008	8-Jan	93.59613
2009	17-Mar	107.210395
2010	3-Mar	81.710693
2011	22-Oct	45.363109
2012	14-Dec	81.710693
2013	8-Feb	74.637893
total		1916.846766
max		231.447067
min		45.363109
mean		119.8029229
std.dev		60.75221243

KOTA TINGGI		
year	date	depth
1998	30-Dec	122.805023
1999	1-Jan	97.930412
2000	1-May	74.637893
2001	17-Jan	202.056427
2002	25-Jan	153.997787
2003	6-Jan	107.210395
2004	9-Mar	140.667938
2005	19-Aug	89.453681
2006	19-Dec	211.413314
2007	5-Dec	140.667938
2008	12-Nov	122.805023
2009	13-Mar	102.4654
2010	24-Jun	97.930412
2011	8-Oct	102.4654
2012	24-Apr	93.59613
2013	20-Jan	112.175132
	otal	1972.278305
	max	211.413314
	min	74.637893
	mean	123.2673941
	d.dev	37.45545154

APPENDIX B

Annual daily maximum for Mersing, Batu Pahat, and Muar

BATU PAHAT			
year	date	depth	
1998	13-May	93.59613	
1999	1-Jan	62.275997	
2000	5-Jan	78.094245	
2001	18-Jan	140.667938	
2002	26-Jan	65.159889	
2003	3-Jan	153.997787	
2004	9-Mar	184.566696	
2005	15-Jul	81.710693	
2006	19-Dec	140.667938	
2007	11-Jan	161.12915	
2008	5-Dec	81.710693	
2009	17-Mar	140.667938	
2010	24-Jun	112.175132	
2011	23-Apr	89.453681	
2012	14-Jul	74.637893	
2013	3-Dec	107.210395	
total		1767.722195	
max		184.566696	
min		62.275997	
mean	110.4826372		
mtd.dev	36.90276118		

MUAR		
year	date	depth
1998	13-May	85.494575
1999	16-Jul	78.094245
2000	17-Jan	85.494575
2001	18-Jan	147.182037
2002	28-Apr	74.637893
2003	1-Feb	65.159889
2004	27-Oct	153.997787
2005	31-Oct	68.177337
2006	19-Dec	147.182037
2007	12-Jan	107.210395
2008	27-Jan	68.177337
2009	17-Mar	78.094245
2010	24-Oct	51.961528
2011	17-May	49.661773
2012	25-Apr	56.885471
2013	2-Dec	93.59613
total		1411.007254
max		153.997787
min		49.661773
mean		88.18795338
std.dev		32.77968638

APPENDIX C

Annual daily maximum for Segamat and Kluang

SEGAMAT		
year	date	depth
1998	30-Jan	74.637893
1999	1-Jan	78.094245
2000	23-Dec	134.442153
2001	18-Jan	265.112915
2002	$24-\mathrm{Nov}$	62.275997
2003	19-Jan	78.094245
2004	30-Jan	97.930412
2005	5-Dec	117.369766
2006	19-Dec	168.590774
2007	10-Dec	122.805023
2008	18-Dec	71.33451
2009	17-Mar	93.59613
2010	8-Jun	68.177337
2011	11-Dec	93.59613
2012	25-Dec	93.59613
2013	2-Dec	221.203506
total		1840.857166
max		265.112915
min		62.275997
mean		115.0535729
std.dev		55.91696009

year	date	depth
1998	22-Feb	85.494575
1999	1-Jan	122.805023
2000	22-Dec	89.453681
2001	18-Jan	253.379226
2002	25-Jan	140.667938
2003	1-Feb	102.4654
2004	9-Mar	134.442153
2005	21-Nov	102.4654
2006	19-Dec	347.847503
2007	12-Nov	221.203506
2008	8-Dec	112.175132
2009	17-Mar	65.159889
2010	20-Jun	107.210395
2011	5-Apr	97.930412
2012	6-Mar	93.59613
2013	2-Dec	147.182037
total		2223.4784
max		347.847503
min		65.159889
mean		138.9674
std.dev		71.90619951

APPENDIX D

Gumbel distribution function analysis for Johor Bahru and Pontian

JOHOR BAHRU							PONTIAN						
date	year	depth	x	$F(x)$	$\mathrm{P}(\mathrm{x})$	N	date	year	depth	x	$F(x)$	$\mathrm{P}(\mathrm{x})$	N
15-Oct	1998	78.094245	-0.76752056	0.115970681	0.884029	1.131184	12-Oct	1998	102.4654	-0.28538093	0.264406214	0.735594	1.359446
1-Jan	1999	74.637893	-0.83682804	0.099357463	0.900643	1.110318	1-Jan	1999	81.710693	-0.62700976	0.153815038	0.846185	1.181775
23-Nov	2000	93.59613	-0.45667356	0.206219651	0.79378	1.259794	5-Jan	2000	81.710693	-0.62700976	0.153815038	0.846185	1.181775
17-Jan	2001	147.182037	0.617842109	0.583269161	0.416731	2.39963	28-Dec	2001	231.447067	1.837696763	0.852839728	0.14716	6.795312
26-Jan	2002	97.930412	-0.36976164	0.235183416	0.764817	1.307503	18-Nov	2002	107.210395	-0.20727686	0.292198138	0.707802	1.412825
1-Feb	2003	122.805023	0.129029193	0.415219366	0.584781	1.710043	1-Feb	2003	102.4654	-0.28538093	0.264406214	0.735594	1.359446
9-Mar	2004	184.566696	1.367487008	0.775113095	0.224887	4.44668	9-Mar	2004	211.413314	1.507935061	0.801422813	0.198577	5.035825
3-Jan	2005	112.175132	-0.08412358	0.336969349	0.663031	1.508226	5-Oct	2005	71.33451	-0.7978049	0.108537341	0.891463	1.121752
19-Dec	2006	221.203506	2.102135884	0.884975645	0.115024	8.693811	19-Dec	2006	211.413314	1.507935061	0.801422813	0.198577	5.035825
12-Jan	2007	221.203506	2.102135884	0.884975645	0.115024	8.693811	12-Jan	2007	231.447067	1.837696763	0.852839728	0.14716	6.795312
12-Nov	2008	97.930412	-0.36976164	0.235183416	0.764817	1.307503	8-Jan	2008	93.59613	-0.43137183	0.214516671	0.785483	1.273101
1-Mar	2009	49.661773	-1.33765435	0.022146056	0.977854	1.022648	17-Mar	2009	107.210395	-0.20727686	0.292198138	0.707802	1.412825
24-Jun	2010	107.210395	-0.18367751	0.300704194	0.699296	1.43001	3-Mar	2010	81.710693	-0.62700976	0.153815038	0.846185	1.181775
26-Sep	2011	74.637893	-0.83682804	0.099357463	0.900643	1.110318	22-Oct	2011	45.363109	-1.22530211	0.033200357	0.9668	1.03434
15-Apr	2012	85.494575	-0.61912761	0.156092415	0.843908	1.184964	14-Dec	2012	81.710693	-0.62700976	0.153815038	0.846185	1.181775
8-Feb	2013	93.59613	-0.45667356	0.206219651	0.79378	1.259794	8-Feb	2013	74.637893	-0.74343021	0.122072841	0.877927	1.139047
	total	1861.925758						total	1916.846766				
	max	221.203506						max	231.447067				
	mean	116.3703599						mean	119.8029229				
	std.dev	49.86982379						std.dev	60.75221243				

APPENDIX E

Gumbel distribution function analysis for Mersing and Kota Tinggi

MERSING							KOTA TINGGI						
date	year	depth	x	$\mathrm{F}(\mathrm{x})$	$\mathrm{P}(\mathrm{x})$	N	date	year	depth	x	F(x)	$\mathrm{P}(\mathrm{x})$	N
10-May	1998	122.805023	-0.63182202	0.152432297	0.847568	1.179847	30-Dec	1998	122.805023	-0.01234456	0.363338247	0.636662	1.570693
1-Jan	1999	231.447067	1.43245453	0.787633616	0.212366	4.708843	1-Jan	1999	97.930412	-0.67645646	0.13989046	0.86011	1.162643
23-Dec	2000	140.667938	-0.29241386	0.261935411	0.738065	1.354895	1-May	2000	74.637893	-1.29832906	0.025651054	0.974349	1.026326
18-Jan	2001	202.056427	0.874011346	0.658840139	0.34116	2.931177	17-Jan	2001	202.056427	2.103539797	0.88512737	0.114873	8.705294
25-Jan	2002	93.59613	-1.18681188	0.03775572	0.962244	1.039237	$25-\mathrm{Jan}$	2002	153.997787	0.820451808	0.643886566	0.356113	2.808094
9-Dec	2003	202.056427	0.874011346	0.658840139	0.34116	2.931177	6-Jan	2003	107.210395	-0.42869591	0.215400948	0.784599	1.274536
9-Mar	2004	147.182037	-0.16864132	0.306145289	0.693855	1.441224	9-Mar	2004	140.667938	0.464566391	0.533440613	0.466559	2.14335
8 -Jan	2005	128.491912	-0.52376706	0.184819446	0.815181	1.226722	19-Aug	2005	89.453681	-0.90277147	0.084887427	0.915113	1.092762
19-Dec	2006	265.112915	2.072129723	0.881687736	0.118312	8.452209	19-Dec	2006	211.413314	2.353353552	0.909327583	0.090672	11.02871
13-Jan	2007	193.113662	0.704092415	0.609840871	0.390159	2.563057	5-Dec	2007	140.667938	0.464566391	0.533440613	0.466559	2.14335
8-Jan	2008	147.182037	-0.16864132	0.306145289	0.693855	1.441224	12-Nov	2008	122.805023	-0.01234456	0.363338247	0.636662	1.570693
15-Mar	2009	59.519737	-1.83428772	0.00190996	0.99809	1.001914	13-Mar	2009	102.4654	-0.55537961	0.175064226	0.824936	1.212216
20-Mar	2010	161.12915	0.096363808	0.403276209	0.596724	1.675817	24-Jun	2010	97.930412	-0.67645646	0.13989046	0.86011	1.162643
11-Jan	2011	85.494575	-1.34074722	0.021886216	0.978114	1.022376	8-Oct	2011	102.4654	-0.55537961	0.175064226	0.824936	1.212216
25-Dec	2012	140.667938	-0.29241386	0.261935411	0.738065	1.354895	24-Apr	2012	93.59613	-0.79217478	0.109898997	0.890101	1.123468
4-Dec	2013	176.39801	0.38648307	0.506899648	0.4931	2.027985	20-Jan	2013	112.175132	-0.29614546	0.26062681	0.739373	1.352497
	total	2496.920985						total	1972.278305				
	max	265.112915						max	211.413314				
	mean	156.0575616						mean	123.2673941				
	std.dev	52.62959757						std.dev	37.45545154				

APPENDIX F

Gumbel distribution function analysis for Batu Pahat and Muar

BATU PAHAT						
date	year	depth	x	F(x)	$\mathrm{P}(\mathrm{x})$	N
13-May	1998	93.59613	-0.45759468	0.20591983	0.79408	1.259319
1-Jan	1999	62.275997	-1.30631526	0.02490859	0.975091	1.025545
5-Jan	2000	78.094245	-0.87766853	0.090239745	0.90976	1.099191
18-Jan	2001	140.667938	0.817968625	0.643182193	0.356818	2.802551
26-Jan	2002	65.159889	-1.22816686	0.032877601	0.967122	1.033995
3-Jan	2003	153.997787	1.179184116	0.735261144	0.264739	3.777307
9-Mar	2004	184.566696	2.007547849	0.874312305	0.125688	7.956228
15-Jul	2005	81.710693	-0.77966914	0.11295671	0.887043	1.127341
19-Dec	2006	140.667938	0.817968625	0.643182193	0.356818	2.802551
11-Jan	2007	161.12915	1.372431525	0.776087628	0.223912	4.466033
5-Dec	2008	81.710693	-0.77966914	0.11295671	0.887043	1.127341
17-Mar	2009	140.667938	0.817968625	0.643182193	0.356818	2.802551
24-Jun	2010	112.175132	0.045863636	0.384745884	0.615254	1.625345
23-Apr	2011	89.453681	-0.56984777	0.170674356	0.829326	1.205799
14-Jul	2012	74.637893	-0.9713296	0.071257572	0.928742	1.076725
3-Dec	2013	107.210395	-0.08867201	0.335302489	0.664698	1.504444
	total	1767.722195				
	max	184.566696				
	mean	110.4826372				
	std.dev	36.90276118				

MUAR						
date	year	depth	x	F(x)	$\mathrm{P}(\mathrm{x})$	N
13-May	1998	85.494575	-0.08216608	0.337686915	0.662313	1.50986
16 -Jul	1999	78.094245	-0.30792572	0.256506849	0.743493	1.345002
17-Jan	2000	85.494575	-0.08216608	0.337686915	0.662313	1.50986
18-Jan	2001	147.182037	1.799714705	0.847600338	0.1524	6.561694
28-Apr	2002	74.637893	-0.4133676	0.220490493	0.77951	1.282858
1-Feb	2003	65.159889	-0.70251021	0.132812888	0.867187	1.153154
27-0ct	2004	153.997787	2.007640734	0.874323213	0.125677	7.956919
31-Oct	2005	68.177337	-0.61045783	0.158615189	0.841385	1.188517
19-Dec	2006	147.182037	1.799714705	0.847600338	0.1524	6.561694
12-Jan	2007	107.210395	0.580311886	0.571366871	0.428633	2.332997
27-Jan	2008	68.177337	-0.61045783	0.158615189	0.841385	1.188517
17-Mar	2009	78.094245	-0.30792572	0.256506849	0.743493	1.345002
24-Oct	2010	51.961528	-1.10514863	0.048817167	0.951183	1.051323
17-May	2011	49.661773	-1.17530656	0.039197756	0.960802	1.040797
25-Apr	2012	56.885471	-0.95493538	0.074384874	0.925615	1.080363
2-Dec	2013	93.59613	0.164985612	0.428310918	0.571689	1.749203
	total	1411.007254				
	max	153.997787				
	mean	88.18795338				
	std.dev	32.77968638				

APPENDIX G

Gumbel distribution function analysis for Segamat and Kluang

SEGAMAT							KLUANG						
date	year	depth	x	$\mathrm{F}(\mathrm{x})$	$\mathrm{P}(\mathrm{x})$	N	date	year	depth	x	F(x)	$\mathrm{P}(\mathrm{x})$	N
30-Jan	1998	74.637893	-0.64926019	0.14747093	0.852529	1.172981	22-Feb	1998	85.494575	-0.69776558	0.13408811	0.865912	1.154852
1-Jan	1999	78.094245	-0.588077	0.165212514	0.834787	1.19791	1-Jan	1999	122.805023	-0.19163597	0.297830866	0.702169	1.424158
23-Dec	2000	74.637893	-0.64926019	0.14747093	0.852529	1.172981	22-Dec	2000	56.885471	-1.08585833	0.051716361	0.948284	1.054537
18-Jan	2001	265.112915	2.722465084	0.936399977	0.0636	15.72326	18-Jan	2001	253.379226	1.579649905	0.813794647	0.186205	5.370415
24-Nov	2002	62.275997	-0.86808634	0.09233357	0.907666	1.101726	25-Jan	2002	140.667938	0.050680873	0.386516014	0.613484	1.630034
19-Jan	2003	78.094245	-0.588077	0.165212514	0.834787	1.19791	1-Feb	2003	102.4654	-0.46755025	0.202689626	0.79731	1.254217
30-Jan	2004	97.930412	-0.23694379	0.281571216	0.718429	1.391926	9-Mar	2004	134.442153	-0.03377413	0.355457014	0.644543	1.551487
5-Dec	2005	117.369766	0.107165168	0.407229945	0.59277	1.686995	21-Nov	2005	102.4654	-0.46755025	0.202689626	0.79731	1.254217
19-Dec	2006	168.590774	1.013862358	0.695715165	0.304285	3.286394	19-Dec	2006	347.847503	2.861145952	0.944402175	0.055598	17.98632
10-Dec	2007	122.805023	0.203378274	0.442210386	0.55779	1.792791	12-Nov	2007	221.203506	1.143174727	0.72701709	0.272983	3.663233
18-Dec	2008	71.33451	-0.70773557	0.131415576	0.868584	1.151299	8 -Dec	2008	112.175132	-0.33583426	0.246817246	0.753183	1.327699
17-Mar	2009	93.59613	-0.3136678	0.254504931	0.745495	1.34139	17-Mar	2009	65.159889	-0.97361288	0.070828609	0.929171	1.076228
8-Jun	2010	68.177337	-0.76362279	0.116946724	0.883053	1.132435	20-Jun	2010	107.210395	-0.40318269	0.223894509	0.776105	1.288485
11-Dec	2011	93.59613	-0.3136678	0.254504931	0.745495	1.34139	5-Apr	2011	97.930412	-0.52906899	0.183168035	0.816832	1.224242
25-Dec	2012	93.59613	-0.3136678	0.254504931	0.745495	1.34139	6-Mar	2012	93.59613	-0.58786508	0.165275558	0.834724	1.198
2-Dec	2013	221.203506	1.945195381	0.866789356	0.133211	7.506908	2-Dec	2013	147.182037	0.139046961	0.418873145	0.581127	1.720795
	total	1781.052906						total	2190.91019				
	max	265.112915						max	347.847503				
	mean	111.3158066						mean	136.9318869				
	std.dev	56.49185705						std.dev	73.71718174				

APPENDIX H

Annual monthly maximum rainfall analysis for Johor Bahru

JOHOR BAHRU																
month/year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
january	242.0058	295.6137	374.364	459.6951	236.3947	228.557	329.0083	189.6584	463.1458	575.1183	253.1151	174.4056	25.35092	119.0505	152.2737	213.264
february	88.14951	64.47587	193.3251	65.5475	128.522	262.5394	89.39768	33.03383	132.4381	156.0444	125.5278	163.3816	45.57721	33.89126	97.64344	456.5677
march	86.72752	384.9528	365.4607	232.3495	164.3162	172.3663	422.4018	123.946	104.2934	173.4262	409.1135	213.0633	267.2727	270.0201	298.0301	167.248
april	173.5177	163.5563	286.2367	235.7661	265.9668	286.8825	169.6801	187.0169	303.1541	331.0537	241.6471	176.7542	211.5566	231.5574	303.9688	248.5146
may	304.6331	179.1338	141.3706	176.3942	235.479	122.2809	101.8674	318.8883	218.1397	231.2399	118.3508	163.4116	166.0827	134.2711	286.4419	243.6913
june	176.728	105.7543	134.0661	135.7085	100.9643	204.2071	92.92539	109.1761	224.9235	196.9941	117.033	163.4016	245.7638	186.4022	89.671	143.7259
july	193.156	168.5008	147.1599	102.4683	258.8188	133.927	243.6283	189.0024	127.1196	144.4116	140.7688	172.4046	299.0381	85.77171	126.0923	168.6978
august	228.6163	201.6317	175.7931	129.3513	162.846	175.1807	167.6967	180.6617	118.7531	189.7972	134.5243	177.263	281.9906	161.8073	101.8348	204.3001
september	145.4887	121.243	147.8925	189.0483	162.4124	240.6802	214.9561	286.3064	247.6396	181.41	173.8387	182.8475	184.2361	197.0708	124.0545	263.964
October	223.5594	251.0143	140.4288	224.3357	135.4408	345.1335	212.2432	317.9019	153.0725	190.3564	183.1362	163.4016	154.2337	249.2809	159.3839	267.0771
november	110.3907	231.1664	281.1997	171.8513	342.6981	226.2476	424.778	281.1251	323.7809	255.8362	275.4273	161.4716	272.847	395.0176	277.6316	350.9739
december	363.5307	245.3639	311.5371	355.8033	307.7493	219.9995	150.517	189.2223	874.2399	439.2265	191.9198	161.4816	144.1032	395.0276	296.5157	300.3203
max	363.5307	384.9528	374.364	459.6951	342.6981	345.1335	424.778	318.8883	874.2399	575.1183	409.1135	213.0633	299.0381	395.0276	303.9688	456.5677
min	86.72752	64.47587	134.0661	65.5475	100.9643	122.2809	89.39768	33.03383	104.2934	144.4116	117.033	161.4716	25.35092	33.89126	89.671	143.7259
mean	194.7086	201.0339	224.9029	206.5266	208.4674	218.1668	218.2583	200.4949	274.225	255.4095	197.0335	172.774	191.5044	204.9307	192.7951	252.3621
variance	6510.418	7098.208	7856.676	11025.59	5388.216	3660.466	12720.56	7071.659	42896.19	15720.76	6816.131	197.5267	7390.974	11439.06	7504.493	7004.158
std.deviation	80.68716	84.25086	88.63789	105.0028	73.40447	60.50178	112.7855	84.09315	207.114	125.3825	82.55986	14.05442	85.97078	106.9535	86.62848	83.69085

APPENDIX I

Annual monthly maximum rainfall analysis for Pontian

PONTIAN																
month/year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
january	218.32	322.4464	285.7146	490.0643	216.337	233.6161	327.2812	162.0002	429.0338	611.0434	293.8089	339.7176	55.20952	131.899	155.0778	175.8813
february	82.64342	78.87115	193.8841	78.62653	102.7042	227.1831	71.04084	47.27677	115.2137	174.5292	131.9531	301.5369	68.80781	25.36777	136.3326	385.2304
march	103.9671	436.6159	327.8443	209.1507	194.3644	170.9628	396.339	164.6442	120.3827	202.3971	426.0026	323.5429	304.0138	252.0973	244.481	169.7631
april	159.0684	195.1347	342.7642	276.1824	315.6054	289.7226	169.2422	169.1628	319.4322	376.5428	227.0611	310.4379	285.0826	193.8005	331.032	220.3056
may	329.5117	177.7873	172.1354	175.2961	255.3493	149.6893	106.3005	303.8922	201.1558	250.4324	171.0295	303.553	215.428	158.2249	274.1887	233.4469
june	158.0538	98.94897	147.0852	160.517	107.7278	240.6502	86.83296	116.7368	221.5495	215.2345	300.617	301.5569	201.6522	199.3949	94.1067	143.5204
july	198.4614	139.016	154.9992	104.2245	246.5677	141.9746	259.6565	185.3733	126.769	151.6122	253.6179	344.1979	261.7659	63.9562	139.1687	147.8278
august	251.7254	170.1724	204.9579	138.752	183.334	208.7316	168.902	213.4037	122.7051	209.0249	236.3702	316.9144	261.3972	137.099	202.839	222.2057
september	134.0357	125.9199	142.8427	166.4856	209.7622	234.5945	248.3733	300.399	228.4967	194.45	249.6074	291.3032	206.0849	230.0804	154.4155	213.3603
october	206.1764	297.7724	191.2778	195.3652	168.4396	329.9766	235.9191	348.6201	239.9735	212.5127	247.9323	301.5569	194.6983	291.8999	195.6853	286.9637
november	103.7499	206.0874	281.0061	173.9082	361.6095	213.1915	382.0778	307.1984	339.8318	266.0062	246.879	277.2524	270.4189	354.8337	311.6473	314.7435
december	327.2618	185.216	313.376	338.375	278.1471	190.8	125.0268	191.434	823.2525	437.9741	234.0383	273.8547	163.0298	354.8437	307.0068	310.8255
max	329.5117	436.6159	342.7642	490.0643	361.6095	329.9766	396.339	348.6201	823.2525	611.0434	426.0026	344.1979	304.0138	354.8437	331.032	385.2304
min	82.64342	78.87115	142.8427	78.62653	102.7042	141.9746	71.04084	47.27677	115.2137	151.6122	131.9531	273.8547	55.20952	25.36777	94.1067	143.5204
mean	189.4146	202.8324	229.824	208.9123	219.9957	219.2577	214.7493	209.1785	273.983	275.1466	251.5764	307.1187	207.2991	199.4581	212.1651	235.3395
variance	6226.753	9683.013	5151.812	11655.81	5472.647	2690.673	11519.28	7317.594	36397.99	16615.71	4716.15	430.7202	5817.535	9949.468	5823.468	5162.104
std.deviation	78.90978	98.4023	71.77612	107.9621	73.97734	51.8717	107.3279	85.54294	190.7826	128.902	68.67423	20.7538	76.27277	99.74702	76.31165	71.84778

APPENDIX J

Annual monthly maximum rainfall analysis for Kota Tinggi

KOTA TINGGI																
month/year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
january	205.6829	344.3235	323.0777	475.5408	205.2975	355.6226	400.6846	196.6791	403.4044	642.4673	323.562	306.8623	54.05652	154.8345	93.23566	292.1452
february	29.31159	50.53843	130.0676	69.29076	85.79699	205.0229	123.4653	33.92867	116.0531	171.5079	207.4032	303.975	29.28858	22.67447	124.1935	417.4262
march	64.22378	353.1655	215.0098	310.9673	105.4512	107.7919	409.9193	132.9359	129.4882	192.5739	395.4072	309.6491	223.4143	319.3076	302.7614	120.1116
april	195.4317	146.1201	173.7442	241.6794	231.796	255.581	153.0124	178.333	323.2295	299.0544	236.0014	303.995	265.2867	182.2641	307.1235	261.1977
may	238.9911	177.7478	189.5013	186.4235	253.1562	104.7237	161.9284	355.854	224.5766	244.3382	131.3228	306.0836	245.5513	224.1335	268.6832	237.9925
june	221.1993	102.7552	149.1884	138.0438	116.08	225.7097	110.7267	138.1954	234.3565	208.7966	108.1975	303.995	264.3522	169.931	113.3359	138.806
july	203.2248	167.5537	142.1941	110.9667	241.2781	162.0446	279.4991	198.4247	144.9364	200.1635	213.0697	307.9313	302.4243	94.93123	149.4243	163.5157
august	229.4691	189.5966	184.9249	153.8477	133.8636	201.5056	187.1434	189.5763	153.5436	211.7677	227.7344	309.829	191.1639	150.2821	183.4403	238.4302
september	152.1124	94.90828	145.3186	165.2982	173.9517	250.0399	234.6677	383.5894	205.9896	123.0842	231.1481	310.3225	193.1484	186.5259	175.3543	240.0646
october	190.8276	254.8606	167.328	272.6746	156.5381	325.8055	223.0301	323.1193	134.2042	209.4101	265.4847	303.995	189.4642	335.0805	156.2141	228.8853
november	110.071	200.4291	260.5081	198.6961	334.0327	284.0021	417.5352	358.247	295.3413	274.97	274.2928	307.9213	300.3819	303.3395	300.8164	307.3689
december	435.2018	215.8208	326.8666	453.7355	267.7315	301.7849	177.1	207.316	840.7531	441.8957	256.4409	307.9313	211.7662	303.3495	313.2989	365.5333
max	435.2018	353.1655	326.8666	475.5408	334.0327	355.6226	417.5352	383.5894	840.7531	642.4673	395.4072	310.3225	302.4243	335.0805	313.2989	417.4262
min	29.31159	50.53843	130.0676	69.29076	85.79699	104.7237	110.7267	33.92867	116.0531	123.0842	108.1975	303.975	29.28858	22.67447	93.23566	120.1116
mean	189.6456	191.485	200.6441	231.4304	192.0811	231.6362	239.8927	224.6832	267.1564	268.3358	239.1721	306.8742	205.8582	203.8878	207.3234	250.9564
variance	9580.777	7839.821	4251.919	15012.77	5277.849	5896.164	11565.96	10618.93	37121.02	18561.59	5369.731	5.462631	6833.209	8553.175	6593.533	7008.208
std.deviation	97.88145	88.54276	65.20674	122.5266	72.64881	76.78648	107.5451	103.0482	192.6682	136.2409	73.27845	2.337227	82.66323	92.48338	81.20057	83.71504

APPENDIX K

Annual monthly maximum rainfall analysis for Mersing

MERSING																
month/year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
anuary	115.534	624.7799	397.6733	542.9534	202.6584	498.8982	106.0451	199.21	280.5461	774.923	365.5284	244.8873	80.1691	195.6851	146.8876	394.7278
february	19.0599	60.5193	143.058	331.3337	96.88038	238.22	67.8758	10.30848	194.8561	61.5833	249.9593	206.3674	20.43489	20.04061	215.94	434.5818
march	71.30756	256.0091	200.3458	187.7545	120.094	112.0464	339.2891	54.83689	67.40621	159.9802	313.8391	207.6568	233.9536	266.9502	222.1101	83.77818
april	78.96055	186.6459	158.8336	154.8027	134.8029	163.8548	126.9623	175.3421	188.0514	167.3369	125.3351	206.3874	144.5167	94.78993	236.9728	203.5428
may	213.1339	154.2076	138.676	184.0087	209.7059	140.2892	99.55594	213.0122	173.3133	197.2631	167.7905	206.3974	174.6278	141.7819	195.321	173.6406
june	120.5155	133.1131	196.7519	104.2086	72.72547	114.5363	120.8897	163.6802	207.5351	174.3699	157.1189	206.3874	198.8199	181.5486	107.0325	86.51974
july	180.818	117.3178	83.89829	133.8518	250.5947	145.8267	223.4546	153.4077	170.0758	253.7017	197.7169	210.3237	253.6357	107.3858	106.1317	170.3252
august	176.3831	98.66296	220.7456	118.8498	112.4515	170.1969	100.8043	217.7377	168.4648	224.0896	184.8721	206.3974	165.2087	114.5797	111.7507	174.9104
september	68.96458	118.5889	116.005	117.0966	206.2863	249.1687	141.8719	221.9783	124.8173	168.261	171.7719	212.7816	165.742	147.863	214.1602	206.3515
october	199.1678	240.8063	153.5801	288.0382	114.4275	317.0833	371.7621	191.668	108.1104	141.3036	160.4956	211.3135	190.5569	314.721	216.4006	237.6397
november	126.1729	178.9706	309.426	267.3725	248.7133	345.9492	279.3684	425.9321	246.8796	283.1216	113.1238	202.4612	291.0383	340.2453	248.467	244.6988
december	376.419	295.2297	416.9317	438.4472	349.1417	447.889	335.1347	311.2899	611.7917	610.2974	423.9816	211.764	364.388	342.0686	461.0001	743.5255
max	376.419	624.7799	416.9317	542.9534	349.1417	498.8982	371.7621	425.9321	611.7917	774.923	423.9816	244.8873	364.388	342.0686	461.0001	743.5255
min	19.0599	60.5193	83.89829	104.2086	72.72547	112.0464	67.8758	10.30848	67.40621	61.5833	113.1238	202.4612	20.43489	20.04061	106.1317	83.77818
mean	145.5364	205.4043	211.3271	239.0598	176.5402	245.3299	192.7512	194.867	211.8207	268.0193	219.2944	211.0938	190.2576	188.9716	206.8479	262.8535
variance	8054.313	20361.49	10699.74	17930.24	6097.331	15729.51	11214.08	10442.07	17590.53	40056.58	8928.787	111.9185	7583.489	10152.6	8380.984	31084.88
std.deviation	89.74583	142.6937	103.4395	133.9038	78.08541	125.4174	105.8965	102.1864	132.6293	200.1414	94.49226	10.57915	87.08323	100.7601	91.54771	176.3091

APPENDIX L

Annual monthly maximum rainfall analysis for Batu Pahat

BATU PAHAT																
month/year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
january	175.5611	309.8053	247.361	347.8696	153.8279	247.6203	185.1501	104.2348	205.3716	467.2977	174.4248	280.4927	78.71048	63.68983	155.3063	130.1935
february	65.52262	68.36132	155.5141	41.64869	56.32271	186.3655	57.45456	54.63203	130.141	156.7713	103.1494	260.4363	104.3296	36.08092	198.5618	304.7834
march	121.1582	264.7403	254.8325	141.2837	106.9345	179.787	339.4197	119.3164	124.4471	189.5228	313.7279	278.801	172.0699	154.3146	197.2123	134.7865
april	137.5856	193.4937	330.9977	286.0098	325.186	301.2752	204.6896	189.9172	235.3172	335.5766	173.7377	260.4563	146.9973	178.7598	185.9912	186.6057
may	317.2791	164.7398	110.6513	218.4857	251.942	171.9495	88.41408	217.887	159.9831	198.9461	151.9514	260.4663	130.8917	163.1926	198.9021	135.1272
june	151.2662	121.097	186.1888	167.6927	91.48779	170.7528	78.04514	114.0185	204.2768	171.0202	99.13887	260.4563	276.8804	175.5854	72.56369	80.04991
july	204.0382	176.261	154.265	84.11161	295.3313	128.0179	168.374	230.4085	192.2489	186.4275	210.5547	265.3924	198.1404	56.40788	146.7255	106.8638
august	262.2058	178.674	225.6103	168.9205	174.8417	139.4364	165.0669	239.6657	141.5407	197.1444	174.2673	278.4163	177.8506	119.5154	137.9371	137.3423
september	173.4603	181.6158	174.5085	174.9378	201.4329	178.1996	176.1318	229.522	164.8963	182.7297	153.6497	309.7586	188.3661	211.7714	147.0268	212.0305
october	151.393	300.1517	188.6281	407.2993	109.5951	233.6694	271.7968	246.5493	176.3285	232.2382	151.9984	260.4563	137.4011	270.9279	211.2804	196.8476
november	131.8739	244.8572	273.3785	157.5222	321.6637	177.3421	277.9789	259.7501	320.7474	239.9648	113.4955	261.1743	222.2293	263.76	282.1979	228.5735
december	223.1792	149.8293	370.1964	190.0442	272.0433	189.7991	87.6822	166.6432	534.8247	372.2688	241.1194	255.5403	146.6653	263.77	237.7531	296.5853
max	317.2791	309.8053	370.1964	407.2993	325.186	301.2752	339.4197	259.7501	534.8247	467.2977	313.7279	309.7586	276.8804	270.9279	282.1979	304.7834
min	65.52262	68.36132	110.6513	41.64869	56.32271	128.0179	57.45456	54.63203	124.4471	156.7713	99.13887	255.5403	78.71048	36.08092	72.56369	80.04991
mean	176.2103	196.1355	222.6777	198.8188	196.7174	192.0179	175.017	181.0454	215.8436	244.159	171.7679	269.3206	165.0444	163.148	180.9549	179.1491
variance	4188.523	4735.44	5355.802	9921.268	8278.309	2089.349	7206.263	4211.246	11869.15	8504.329	3414.571	216.4496	2613.658	6169.999	2658.116	4713.689
std.deviation	64.7188	68.81453	73.18334	99.60556	90.98521	45.7094	84.88971	64.89411	108.9456	92.21892	58.43433	14.71223	51.12395	78.54934	51.55692	68.65631

APPENDIX M

Annual monthly maximum rainfall analysis for Muar

MUAR																
month/year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
january	133.3451	233.0799	272.8241	284.1331	104.0764	191.1255	157.6188	81.79741	190.1308	369.8342	158.4229	175.1745	69.10098	56.88231	174.1753	164.3871
february	49.03451	75.90344	156.7498	77.42095	46.3227	197.6901	44.64643	52.29324	147.4055	121.6004	102.2933	162.9843	138.2606	40.10713	164.1351	227.1025
march	106.8928	218.2478	239.6942	115.041	108.3129	190.828	278.6936	127.1995	120.7061	161.6578	300.838	166.5998	151.5019	173.2069	117.0765	106.5051
april	80.86464	141.213	206.8917	296.5695	313.4237	276.9592	207.043	175.6539	208.1754	274.7717	186.2458	163.0043	190.7898	158.7041	183.9889	197.7369
may	302.41	161.9176	109.0452	218.5058	185.8791	171.9495	106.1663	174.5158	165.1691	183.8449	96.69944	163.0143	119.9546	165.2651	155.6842	122.8845
june	124.047	112.9147	168.4035	120.7347	81.28975	108.1918	69.08001	82.40002	143.6063	158.7595	145.5321	167.5031	232.1377	150.2165	46.77971	54.39468
july	178.5842	177.1927	131.5759	60.96444	305.2857	150.4591	115.9839	197.7052	159.6953	167.1788	151.808	168.4081	171.7482	33.77532	118.7213	108.0396
august	270.2155	172.6076	227.2222	173.5602	176.9454	100.425	125.1222	280.5786	141.0791	185.4828	118.5059	164.8811	172.2917	104.3557	110.2222	61.99152
september	157.0682	171.5926	152.3309	161.2529	161.6576	142.7415	157.5677	146.8692	135.4544	161.2455	118.052	165.1181	136.8638	156.6838	141.6905	127.3569
october	143.0939	258.2998	139.8834	298.2868	108.5958	205.8735	282.3518	216.0298	178.9259	247.4531	146.013	163.0043	137.3357	249.8842	221.2594	168.3442
november	149.4713	232.8923	179.3977	183.5244	272.6224	172.4502	242.2759	267.8123	271.5645	186.7267	133.6983	159.5967	230.9906	223.2864	286.4376	271.8846
december	223.4916	150.2121	344.1299	161.9539	196.9524	167.9828	100.1679	171.7976	488.218	387.4107	227.7845	182.7947	173.2557	223.2964	222.5974	300.2239
max	302.41	258.2998	344.1299	298.2868	313.4237	276.9592	282.3518	280.5786	488.218	387.4107	300.838	182.7947	232.1377	249.8842	286.4376	300.2239
min	49.03451	75.90344	109.0452	60.96444	46.3227	100.425	44.64643	52.29324	120.7061	121.6004	96.69944	159.5967	69.10098	33.77532	46.77971	54.39468
mean	159.8766	175.5061	194.0124	179.329	171.7803	173.0564	157.2265	164.5544	195.8442	217.1638	157.1578	166.8403	160.3526	144.6387	161.8974	159.2376
variance	5050.743	2596.246	4178.757	6088.015	7129.133	2005.132	5763.709	4671.349	9275.137	6734.861	3083.894	37.09718	1926.241	4800.516	3633.734	5579.376
std.deviation	71.06858	50.95337	64.64331	78.02573	84.4342	44.7787	75.9191	68.34727	96.30751	82.0662	55.53282	6.090746	43.88896	69.28576	60.28046	74.69522

APPENDIX N

Annual monthly maximum rainfall analysis for Segamat

SEGAMAT																
month/year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
january	205.3095	305.4779	243.1918	376.1426	99.08137	351.061	233.1913	116.0663	258.3886	422.8961	218.0796	285.4453	115.5685	80.96258	184.8326	227.0097
february	50.82663	89.6333	173.6576	174.0082	73.94601	187.7774	67.49705	50.83481	223.6338	85.20476	155.6013	212.4607	96.03658	12.64718	173.1777	409.987
march	50.18869	222.9342	206.73	165.238	117.7727	167.0158	260.8298	114.2485	101.3351	153.1938	308.4788	213.4054	104.4293	286.9969	198.1911	27.7014
april	79.97997	153.3055	162.7831	221.3026	189.101	249.5437	203.1262	151.963	215.6972	191.1926	195.2035	215.2111	170.164	135.3949	202.541	148.9909
may	232.612	178.744	133.4189	195.4781	179.9446	171.9495	137.2274	178.5531	199.6771	222.0035	96.31006	216.9895	228.3387	172.2912	183.6187	165.9029
june	102.066	127.0674	137.8581	98.06848	99.10947	102.2274	87.35951	100.3007	141.8555	170.0781	114.3851	212.4807	202.1522	140.7603	53.94151	61.23566
july	181.534	161.2042	123.6016	67.0003	271.6117	157.5543	154.2856	146.4575	181.8056	186.3586	140.0118	240.5739	136.2951	41.4327	112.1539	121.4165
august	269.0725	165.7724	232.0171	149.3403	174.4541	130.372	122.4493	179.3795	144.8678	212.0176	160.1942	212.4907	152.913	114.6415	185.8779	136.8905
september	135.9338	111.4552	149.386	144.3906	159.3488	129.9024	188.4479	177.5196	120.1801	155.0084	167.8757	201.5709	165.9015	188.779	122.8968	189.14
october	193.506	240.8411	166.3312	290.1428	115.6298	219.8751	341.269	222.7967	168.5495	257.4705	208.5163	212.4807	124.1419	262.7723	241.7571	181.954
november	164.8638	176.8407	162.2494	242.4713	238.4115	197.8794	208.6818	339.5436	247.7494	184.8343	119.5005	221.651	265.3331	241.864	247.7643	175.4142
december	313.0999	238.3543	391.0737	265.7315	286.3549	251.6247	193.5701	297.169	591.6764	641.6575	202.5318	208.2345	284.7121	242.9231	303.7994	514.4687
max	313.0999	305.4779	391.0737	376.1426	286.3549	351.061	341.269	339.5436	591.6764	641.6575	308.4788	285.4453	284.7121	286.9969	303.7994	514.4687
min	50.18869	89.6333	123.6016	67.0003	73.94601	102.2274	67.49705	50.83481	101.3351	85.20476	96.31006	201.5709	96.03658	12.64718	53.94151	61.23566
mean	164.9161	180.9692	190.1915	199.1096	167.0638	193.0652	183.1612	172.9027	216.2847	240.1596	173.8907	221.0829	170.4988	160.1221	184.2127	205.0094
variance	6524.827	3469.158	4968.455	6780.238	4500.184	4242.38	5325.458	6148.003	15047.41	20675.32	3063.677	456.2395	3580.177	7191.532	4019.205	15238.91
std.deviation	80.7764	58.89956	70.48727	82.3422	67.08341	65.13356	72.97573	78.4092	122.6679	143.7892	55.35049	21.35976	59.83458	84.8029	63.3972	123.446

APPENDIX 0

Annual monthly maximum rainfall analysis for Kluang

KLUANG																
month/year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
january	257.8937	427.5674	346.8163	509.8405	206.8698	353.2434	299.9235	195.6996	331.1264	736.1472	339.8303	388.9679	189.531	151.5805	240.8549	264.6948
february	114.6853	89.2862	151.9018	117.3481	98.49441	257.8858	91.58085	60.59899	178.4978	112.0457	202.218	316.1154	63.78426	46.60511	223.0241	303.1197
march	118.9999	270.7964	217.9881	156.5297	105.1598	137.0182	343.3308	128.8711	111.432	158.8851	378.3033	316.1454	274.1855	281.8987	239.6061	137.1013
april	132.4147	232.9629	305.0316	249.3207	254.0233	203.4779	228.1226	208.1306	267.7055	249.8943	258.3881	319.7209	240.3157	249.3296	272.6361	262.0951
may	234.0298	166.1776	174.4364	195.8587	210.8824	171.9495	103.438	198.4297	213.2137	237.6841	143.0415	332.1505	224.0486	178.7958	232.2724	237.683
june	143.0584	136.9854	218.9936	114.6617	134.878	147.8158	78.07461	165.2419	213.5625	213.6075	229.0699	316.1354	243.0365	192.8459	100.3486	101.171
july	191.0011	128.3776	109.9829	116.1441	208.3866	198.6834	257.7148	192.605	159.3569	232.1418	279.3827	361.4985	261.2671	85.59411	139.5058	149.1262
august	218.4547	170.4604	237.1998	138.8088	159.9478	148.8997	108.1663	191.1987	177.5109	213.0244	193.0952	316.1454	214.9069	151.1924	163.6411	210.6535
september	112.3653	133.0419	165.9673	188.4837	210.8625	242.1504	223.3352	246.9775	161.5303	141.5006	252.7166	317.5958	234.9667	260.9737	203.8253	186.4123
october	209.647	278.5081	202.1529	282.9888	160.2427	341.4952	361.9322	276.2313	220.4953	188.4814	342.1181	316.1354	164.5317	333.6599	213.0657	250.1371
november	144.3964	196.9728	242.8617	250.6874	303.3928	309.0443	322.8767	362.3632	303.3491	276.3194	246.0663	271.2856	292.4184	324.4831	334.0759	298.508
december	389.4592	257.8935	456.897	323.65	308.7271	277.386	236.9355	337.927	745.1156	590.034	362.4743	302.3632	314.3998	324.4931	341.8067	465.9526
max	389.4592	427.5674	456.897	509.8405	308.7271	353.2434	361.9322	362.3632	745.1156	736.1472	378.3033	388.9679	314.3998	333.6599	341.8067	465.9526
min	112.3653	89.2862	109.9829	114.6617	98.49441	137.0182	78.07461	60.59899	111.432	112.0457	143.0415	271.2856	63.78426	46.60511	100.3486	101.171
mean	188.8671	207.4192	235.8524	220.3602	196.8223	232.4208	221.2859	213.6895	256.908	279.1471	268.892	322.8549	226.4494	215.121	225.3886	238.8879
variance	5987.762	7883.958	8274.673	12094.54	4365.558	5333.299	9735.073	6422.851	25289.22	32376.04	4978.381	774.4341	3992.821	8401.709	4627.765	8458.808
std.deviation	77.38063	88.79166	90.96523	109.9752	66.07237	73.02944	98.66647	80.14269	159.0259	179.9334	70.55764	27.82866	63.18877	91.66084	68.02768	91.97178

APPENDIX P

Annual maximum rainfall analysis for Johor Bahru, Pontian, Kota Tinggi, Mersing, Batu Pahat, Muar, Segamat, and Kluang

year	depth (mm)								
	JOHOR BAHRU	PONTIAN	KOTA TINGGI	MERSING	BATUPAHAT	MUAR	SEGAMAT	KLUANG	
1998	2336.50328	2272.975101	2275.747076	1746.436621	6362.230602	1918.518847	1978.992641	2266.405556	
1999	2412.406914	2433.988396	2297.819527	2464.85112	6826.967956	2106.073445	2171.630123	2489.030039	
2000	2698.834305	2757.887458	2407.729279	2535.925191	7742.753945	2328.148506	2282.298433	2830.229327	
2001	235.766053	2506.947581	2777.164462	2868.717739	12138.04871	2151.947686	2389.314859	2644.322309	
2002	2501.608266	2639.948204	2304.973683	2118.482143	10574.87278	2061.36389	2004.766115	2361.867093	
2003	204.207138	2631.092878	2779.63451	2943.958762	4099.827152	2076.676267	2316.782623	2789.049626	
2004	2619.100008	2576.992127	2878.712195	2313.013827	9091.644533	1886.71761	2197.934869	2655.431156	
2005	2405.939178	2510.141511	2696.198584	2338.40357	6411.117738	1974.652585	2074.832308	2564.274397	
2006	3290.700175	3287.796133	3205.876487	2541.847875	14639.1119	2350.130429	2595.416073	3082.89609	
2007	190.356418	3301.759421	3220.029522	3216.231164	11153.29689	2605.966196	2881.915642	3349.765508	
2008	2364.402414	3018.917286	2870.064783	2631.53315	5295.380778	1885.893333	2086.688524	3226.704348	
2009	2073.28758	3685.424591	3682.490395	2533.125244	3202.730008	2002.083475	2652.994476	302.36321	
2010	2298.052678	2487.588925	2470.298553	2283.091437	4612.718197	1924.231323	2045.985962	2717.392264	
2011	2459.168697	2393.497176	2446.653771	2267.659768	8165.085865	1735.663962	1921.465638	2581.451745	
2012	2313.541746	2545.981426	2487.881199	2482.17443	4628.219002	1942.768252	2210.552071	2704.662774	
2013	3028.344826	2824.074209	3011.477216	3154.242011	6671.091776	1910.851576	2460.112853	2866.654632	
mean	$\mathbf{2 0 8 9 . 5 1 3 7 3}$	$\mathbf{2 7 4 2 . 1 8 8 2 7 6}$	$\mathbf{2 7 3 8 . 2 9 6 9 5 3}$	$\mathbf{2 5 2 7 . 4 8 0 8 7 8}$	$\mathbf{7 6 0 0 . 9 4 3 6 1 5}$	$\mathbf{2 0 5 3 . 8 5 5 4 6 1}$	$\mathbf{2 2 6 6 . 9 8 0 2 0 1}$	$\mathbf{2 5 8 9 . 5 3 1 2 5 5}$	
variance	$\mathbf{8 4 2 0 5 3 . 2 6 5 6}$	$\mathbf{1 3 4 3 1 4 . 9 2 6 2}$	$\mathbf{1 4 0 2 0 5 . 8 9 9 1}$	$\mathbf{1 3 5 0 3 1 . 5 0 9 9}$	$\mathbf{9 5 7 7 7 0 1 . 2 7 5}$	$\mathbf{4 4 6 8 8 . 8 9 1 2 6}$	$\mathbf{6 8 5 2 4 . 0 2 6 0 9}$	$\mathbf{4 2 7 3 1 4 . 1 3 3 5}$	
std.dev	$\mathbf{9 4 5 . 8 7 6 0 9 9}$	$\mathbf{3 7 7 . 7 6 9 2 5 3 7}$	$\mathbf{3 8 5 . 9 6 4 7 2 3 5}$	$\mathbf{3 6 7 . 4 6 6 3 3 8 5}$	$\mathbf{3 0 9 4 . 7 8 6 1 4 4}$	$\mathbf{2 1 1 . 3 9 7 4 7 2 2}$	$\mathbf{2 6 1 . 7 7 0 9 4 2}$	$\mathbf{6 5 3 . 6 9 2 6 9 0 4}$	

