FINITE ELEMENT ANALYSIS OF BOX GIRDER BY USING ANSYS SOFTWARE

ZHANG KAI YUAN

Report submitted in partial fulfillment of the requirements

for the award of degree of

B.Eng. (Hons.) Civil Engineering

Faculty of Civil Engineering & Earth Resources

UNIVERSITI MALAYSIA PAHANG

JUNE 2015

ABSTRACT

In this research, a steel box girder was analyzed ANSYS program with the Monte Carlo simulation direct sampling probabilistic method. The objective of this analysis is to modeling the box girder in an ANSYS FEM design, check the frame structure of box girder in force and moments, axial + bending and stress and strain graph and to determine the result based on difference graph. In addition, the structure is checked accordingly both to Eurocode 2 and Eurocode 3. Nowadays box girder is widely used for the construction of the bridge. It is very convenient to place the electric cable or any other necessary equipment which the designer wish to go through it. A significant advantage of box girder is able to support large amounts of weight in the same length compared to the I-beam. The continuing expansion of the road network throughout the world mainly in traffic greatly improved results of extensive city population and urban growth. Span range is more for box girder-bridge as the comparison of the T shaped beam-bridge produces a relatively small number of piers with the valley width and the resulting economic. From the results of simulation, we get to know the real behaviour of the structure under the applied loads. In probabilistic analysis, we get the results of probabilistic density function plot, cumulative distribution function plot and histogram plot by 1000 times of simulation for any input and output.

ABSTRAK

Dalam kajian ini, satu galang kotak keluli dianalisis oleh program ANSYS dengan simulasi Monte Carlo persampelan langsung kaedah kebarangkalian. Objektif kajian ini adalah untuk model galang kotak dalam reka bentuk menggunakan perisian ANSYS FEM, struktur bingkai kotak galang momen, paksi + lentur dan tekanan dan graf tegang serta untuk menentukan keputusan berdasarkan perbezaan graf. Di samping itu, struktur diperiksa dengan sewajarnya kepada kedua-dua Eurocode 2 dan Eurocode 3. Pada masa kini kotak galang digunakan secara meluas dalam pembinaan jambatan. Ia adalah sangat mudah untuk meletakkan kabel elektrik atau apa-apa kelengkapan lain. Kelebihan besar kotak galang mampu menyokong banyak berat badan dalam tempoh yang sama berbanding dengan I-rasuk. Pengembangan berterusan rangkaian jalan raya di seluruh dunia terutamanya dalam trafik bertambah baik hasil daripada penduduk bandar yang luas dan pertumbuhan bandar. Pelbagai span adalah lebih untuk kotak galang jambatan sebagai perbandingan T berbentuk rasuk jambatan menghasilkan sebilangan kecil jeti dengan lebar lembah dan menyebabkan ekonomi. Dari hasil simulasi, kita mengenali tingkah laku sebenar struktur di bawah beban yang dikenakan. Dalam analisis kebarangkalian, kita akan mendapat keputusan kebarangkalian plot fungsi ketumpatan, fungsi taburan kumulatif plot dan histogram plot dengan 1000 kali simulasi bagi apa-apa input dan output.

TABLE OF CONTENTS

	Page
SUPERVISOR'S DECLARATION	ii
STUDENT'S DECLARATION	iii
DECICATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF SYMBOLS	xxi
LIST OF ABBREVIATIONS	xxii

CHAPTER 1 INTRODUCTION

1.1	Background of the Study	1
1.2	Problem Statement	2
1.3	Objective	3
1.4	Scope of Study	3
1.5	Research Outcomes	4
1.6	Research Questions	4
1.7	Work Schedule	4
1.8	Summary of the Chapter	4

2.1	Introdu	ction				5
2.2	The Ch	aracteristi	cs of Box Gird	ler		7
	2.2.1	Historic	al Developmer	nt of Box Girc	ler	8
	2.2.2	Evolutio	on of Box Gird	er		9
	2.2.3	Advanta	ges Associated	d with Box Gi	rders	10
	2.2.4	Disadva	ntages of Box	Girders		10
	2.2.5	Specific	ations			11
	2.2.6	Haunche	es			11
2.3	Prestres	ssed Conci	rete			12
	2.3.1	Pre-tens	ioned Concret	e		14
	2.3.2	Bonded	Post-tensioned	l Concrete		15
		2321	History of	Problems wit	h Bonded Post-tensioned Bri	idaes
		2.3.2.1	instory of	Tioblems wit	n Donaed i ost tensioned Di	16
	2.3.3	Unbond	ed Post-tension	ned Concrete		17
	2.3.4	Applicat	tions of Prestre	essed Concret	e	18
	2.3.5	The Sus	tainability of t	he Prestressec	l Concrete	19
2.4	Finite I	Element A	nalysis			19
	2.4.1	The Hist	tory of Finite I	Element Analy	ysis	20
	2.4.2	Finite E	lement Analys	is in Civil En	gineering Field	21
	2.4.3	ANSYS	+CIVILFEM S	Software		22
		2.4.3.1	ANSYS+C	CIVILFEM C	raphical Interface Develop	ment
	Тос	ol				23
		2.4.3.2	Graphical In	nterface Devel	opment Tool	23
			2.4.3.2.1	User Interfac	e Design Language (UIDL)	24
			2.4.3.2.2	Tcl/Tk		24
				2.4.3.2.2.1	Tcl Language Introduction	25

25	Tk Language Introduction	2.4.3.2.2.2	
in the	The Application of Tcl/Tk in	2.4.3.2.2.3	
26			ANSYS
ction	APDL Language Introduc	2.4.3.2.2.4	
26			
on of	The Integrated Application	2.4.3.2.2.5	
27		Fk and APDL	UIDL, Tcl/Tl

CHAPTER 3 METHODOLOGY

3.1	Introdu	ction		28
3.2	The Fir	nite Elemer	31	
3.3	Design	Considerat	tions	32
3.4	Loadin	g and Bour	ndary Condition	33
3.5	Descrip	otion of the	Non-composite Bridge Box Girder Models	33
	3.5.1	Straight 1	Box Girder Model	34
3.6	Modeli	ng Process		34
	3.6.1	Preproce	ssor	34
		3.6.1.1	Preprocessing	35
		3.6.1.2	Specify Title	35
		3.6.1.3	Define the Viewing Direction	35
		3.6.1.4	Set Code and Units	36
		3.6.1.5	Define Material	36
		3.6.1.6	Define Element Type	37
		3.6.1.7	Define Bridge Section	38
		3.6.1.8	Bridge Layout Design	39
		3.6.1.9	Bridge Solid Modelling	42
		3.6.1.10	Apply Loads	46
	3.6.2	Postproc	essor	52
		3.6.2.1	Define Targets	52

	3.6.2.2	Combinations	53
	3.6.2.3	Review Results	55
3.7	Finite Element Ar	nalysis Result and Code Checking	59
3.8	Probabilistic Anal	lysis Process	73

CHAPTER 4 PROBABILISTIC ANALYSIS RESULTS

4.1	General 8			80
4.2	Probabi	listic Analysis Tools		
	4.2.1	ANSYS	Probability Design System	81
	4.2.2	The Adva	antages and Disadvantages of ANSYS Probability Design	
Sys	tem			82
	4.2.3	The Basi	c Theory of Reliability	82
	4.2.4	The Basi	c Theory and Process Data Stream of the PDS	84
		4.2.4.1	The Basic Theory of PDS	84
		4.2.4.2	Process Data Stream of the PDS	85
4.3	Typical	Probabilit	y Model	86
4.4	The Pro	bability Statistics Method 87		
	4.4.1	The Mon	te Carlo Method	87
		4.4.1.1	The Characteristic of Monte Carlo Method	88
		4.4.1.2	The Characteristic of Direct Sampling	88
		4.4.1.3	The Characteristic of Latin Hypercube Sampling (LHS)	89
	4.4.2	The Char	acteristic of Response Surface Method	89
		4.4.2.1	Central Composite Design Sampling (CCD)	91
		4.4.2.2	Box-Behnken Matrix Sampling	91
4.5	Using A	NSYS for	Reliability Analysis	92
	4.5.1	The Basi	c Produce of Probabilistic Analysis Design	92
4.6	Probabi	listic Anal	ysis Result	93
	4.6.1	Random	Input Variables	94

4.6.2	Statistic Result of The Probabilistic Analysis	103
4.6.3	Histogram Plots of Input Parameters	104
4.6.4	Cumulative Distribution Function Plots	112
4.6.5	Linear Correlation Coefficients	118
4.6.6	Spearman Rank Order Correlation Coefficients	120

CHAPTER 5 CONCLUSIONS AND RECOMMEDNATIONS

5.1	General	121
5.2	Conclusion	121
5.3	Recommendation	122

REFERENCES 124

APPENDIX

A1	Eurocode 3 Checking of Box Girder	125
A2	Stiffness Matrix of Box Girder	130
B1	Log Filr of the Box Girder	133

LIST OF TABLES

Table No.Particular			
3.1	Materials	34	
3.2	Random Input Variables Specifications	74	
4.1	The Probability Model on PDS Characterization	87	
4.2	Statistical Result of Random Input Variables	104	
4.3	Linear Correlation Coefficients between Input Variables	119	
4.4	Spearman Rank Order Correlation Coefficients Between Input Variables	120	

LIST OF FIGURES

Figur	Page	
2.1	Classification of the Box Girder	8
3.1	Flow Chart for the Entire Research Process	30
3.2	Cross Section Dimensions (in.) of the Box Girder	33
3.3	Activate CivilFem	35
3.4	Change Title	35
3.5	Viewing Direction	35
3.6	CivilFEM Setup	36
3.7	Choose New Material-Concrete	37
3.8	Material Browser	37
3.9	Choose Beam Element Type	38
3.10	Active Bridge and Civil Non Linearities Module	38
3.11	Active Bridge and Civil Non Linearities Module	38
3.12	Choose Bridge Sections	38
3.13	Choose Box Cross Section	39
3.14	Define Box Cross Section	39
3.15	Choose Initial Point	39
3.16	Define Initial Point and Vector	40
3.17	Choose Define Plan View	40
3.18	Define Plan View Stretch Modify	40
3.19	Define Plan View Stretch Modify	40
3.20	Choose Define Elevation View	41
3.21	Define Elevation Stretch Modify	41

3.22	Define Elevation Stretch Modify	41
3.23	Choose Plot Sketch	42
3.24	Plot Bridge Sketch Modify	42
3.25	Choose Generate Section	42
3.26	Define Section in Model Modify	43
3.27	Define Section in Model Modify	43
3.28	Define Section in Model Modify	44
3.29	Define Section in Model Modify	44
3.30	Define Section in Model Modify	45
3.31	Choose Generate Model	45
3.32	Generate ANSYS Model Modify	46
3.33	ANSYS Bridge Model	46
3.34	Appling Displacement on Nodes	47
3.35	Choose Nodes to Appling Displacement	47
3.36	Appling No Displacement on Choosed Nodes	47
3.37	Appling Force or Moment on Nodes	48
3.38	Choose Nodes to Appling Loads	48
3.39	Define Applied Loads on the Choosed Nodes	48
3.40	Choose Global	49
3.41	Apply Gravitational Acceleration	49
3.42	Choose Current LS	49
3.43	The Confirm Window	50
3.44	The Result Window	50
3.45	Choose Global	50
3.46	Apply 0 Gravitational Acceleration	51

3.47	Read File	51
3.48	Surface Load Solution Done	51
3.49	Choose Define One Target	52
3.50	Define One Target	52
3.51	Choose Combine and Initiate	53
3.52	Self Weight Combination	53
3.53	Surface Load Combination	54
3.54	Drag & Drop It over the Combination Tree To Combination 2	54
3.55	Final Combination	55
3.56	Choose Combine for Targets	55
3.57	Confirm Of the Combination	56
3.58	The Result of the Combination	56
3.59	Choose Set Data to Read	56
3.60	Modify the Combined Method	57
3.61	Choose By Description	57
3.62	Read Combination Results by Target Description	57
3.63	Choose Force and Moments	58
3.64	Graph Force and Moment Results	58
3.65	The Graph Results of Force and Moment	58
3.66	The Bottom View of the Graph Results of Force and Moment	59
3.67	EC2 Code Checking on 2D Axial + Bend	59
3.68	Choose Plot Results	60
3.69	Graph Concrete Results Modify	60
3.70	The 2D Axial + Bend Results (Element Ok)	60
3.71	EC2 Code Checking on 3D Axial + Bend	61

3.72	Choose Plot Results	61
3.73	Select ELEM_OK	61
3.74	The 3D Axial + Bend Results (Element Ok)	62
3.75	EC2 Code Checking on Shear & Torsion	62
3.76	Choose Plot Results	62
3.77	Choose Shear Y & Torsion	63
3.78	The Shear & Torsion Results (Element Ok)	63
3.79	EC2 Code Checking on Cracking	63
3.80	Choose Plot Results	64
3.81	Select ELEM_OK	64
3.82	The Cracking Results (Element Ok)	64
3.83	Choose Tension to Bending + Axial + Shear	65
3.84	Choose Plot Results	65
3.85	Select ELEM_OK	65
3.86	EC3 Code Checking (Element Checking OK)	66
3.87	Choose Forces and Moments	66
3.88	Choose Axial Force X	66
3.89	Axial Force on X Direction	67
3.90	Choose Shear Force on Y Direction	67
3.91	Shear Force on Y Direction	67
3.92	Choose Shear Force on Z Direction	68
3.93	Shear Force on Z Direction	68
3.94	Choose Torsion Moment on Z Direction	68
3.95	Torsion Moment on Z Direction	68
3.96	Choose Bending Moment on Y Direction	69

3.97	Bending Moment on Y Direction	69
3.98	Choose Bending Moment Z	69
3.99	Bending Moment on Z Direction	70
3.100	Choose Stress and Strain	70
3.101	Graph Stress and Strain Results	70
3.102	Stress and Strain Result	71
3.103	Choose Forces and Moments	71
3.104	List Forces and Moments	71
3.105	List Forces and Moments	72
3.106	List Stress and Strain Results	72
3.107	List Stress and Strain Results	72
3.108	List Stress and Strain Results 1	73
3.109	List Stress and Strain Results 2	73
3.110	Choose on Assign	74
3.111	Choose the Assign File	74
3.112	Choose Random Input	74
3.113	Random Input Browser	75
3.114	Choose Random Output	75
3.115	Random Output Browser	75
3.116	Choose Monte Carlo Sims	76
3.117	Choose Direct Sampling	76
3.118	Put 1000 as the Number of Simulations	76
3.119	Choose Run Serial	76
3.120	Define the Folder's Name	77
3.121	Define the Folder's Name	77

3.122	2 Confirm to Start the Simulation	77
3.123	B The ~CFCLEAR Browser	77
3.124	Choose Report Options	78
3.125	5 Define the Options of the Report	78
3.126	6 Choose Generate Report	78
3.127	Specific the Report's name	78
3.128	B The Report	79
4.1	Working State Express Function	83
4.2	Structural Working State	83
4.3	Calculation of Structure Reliability by Definition	83
4.4	Calculation of Reliability by Statistics	83
4.5	Flow Chart of Process Data Stream	85
4.6	Equation of Failure Probability	88
4.7	Equation That Present the Response Surface Method	90
4.8	Central Composite Design Sampling (CCD)	91
4.9	Box-Behnken Matrix Sampling	91
4.10	PDF & CDF of Input Random Variable L	95
4.11	PDF & CDF of Input Random Variable LINK_D	96
4.12	PDF & CDF of Input Random Variable SITRRUP_D	97
4.13	PDF & CDF of Input Random Variable TEMP	98
4.14	PDF & CDF of Input Random Variable POSSON	99
4.15	PDF & CDF of Input Random Variable DENS	100
4.16	PDF & CDF of Input Random Variable ELASTIC	101
4.17	PDF & CDF of Input Random Variable FORCE_1	102
4.18	PDF & CDF of Input Random Variable FORCE_2	103

4.19	Histogram Plot of Input Variable L	105
4.20	Histogram Plot of Input Variable LINK_D	107
4.21	Histogram Plot of Input Variable SITRRUP_D	107
4.22	Histogram Plot of Input Variable TEMP	108
4.23	Histogram Plot of Input Variable POISSON	109
4.24	Histogram Plot of Input Variable DENS	109
4.25	Histogram Plot of Input Variable ELASTIC	110
4.26	Histogram Plot of Input Variable FORCE_1	110
4.27	Histogram Plot of Input Variable FORCE_2	111
4.28	CDF Result of Input Variable L	113
4.29	CDF Result of Input Variable LINK_D	113
4.30	CDF Result of Input Variable SITRRUP_D	114
4.31	CDF Result of Input Variable TEMP	115
4.32	CDF Result of Input Variable POISSON	115
4.33	CDF Result of Input Variable DENS	116
4.34	CDF Result of Input Variable ELASTIC	117
4.35	CDF Result of Input Variable FORCE_1	117
4.36	CDF Result of Input Variable FORCE_2	118

LIST OF SYMBOLS

tw	Web thickness
tf	Flange thickness
hw	Height of web
i	Height
b	Width
d	Depth
A	Area of section
Ι	Moment of inertia
W_{pl}	Plastic modulus
i	Radius of gyration
Ν	Axial load
V	Shear force
Μ	Moment
α	Imperfection factor
уМО	Partial actor for resistance of cross-sections whatever the class is
yM1	Partial factor for resistance of members to instability assessed by member checks
λ	Slenderness value
Ø	Value to determine the reduction factor
X	Reduction factor
L_{cr}	Buckling Length
K _{zy}	Interaction factor

LIST OF ABBREVIATIONS

2D	Two Dimensional
3D	Three Dimensional
CIVIFEM	Civil Finite Element Method
ChckAxis	Check Axis
LS	Load Step
DOF	Degree of Freedom
GAUS	Gaussian (Normal) Distribution
TGAU	The Truncated Gauss Distribution
DENS	Density
ELASTIC	Elastic Modulus
POISON	Poison Ratio
LOAD	Point Load
PDF	Probabilistic Density Function
CDF	Cumulative Distribution Function
MAXIMUMDEFLECTION /MAX_DEFLECTION	Maximum Deflection

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Finite element analysis is to replace the complicated problems with relatively simple problems and then solving. It will solve the field as many as by little interconnection finite element subdomains, for each unit there is a suitable approximate solution, and then solve the domain always satisfy condition, so as to get the solution of the problem. This solution is not the exact solution, but approximate solution, because the actual problem is replaced by a simple question. Since most practical problems difficult to get the accurate solution, and the finite element calculation not only high precision, but also can adapt to various kinds of complicated shapes, and therefore become an effective means of engineering analysis (Corley, 2004).

ANSYS software is the combination of filed form of financial structure, fluid mechanics, electric, magnetic, acoustic analysis. It's concentrated in one of the large general-purpose finite element analysis software (Liang, 2003). It is developed by the world's largest ANSYS finite element analysis software company from United States. It can interface with most CAD software, sharing and exchange of data. For specific areas of physics, ANSYS software allows users to delve deeper to solve a wider range of issues to deal with more complex situations, like the field of construction, exploration, geology, water conservancy, transportation, electric power, mapping, land, environment, forestry, metallurgy etc.

The box girder refer to the cross-sectional like a box in the form of beam. When the bridge span is huge, perform box girder is the best, it's closed thin-walled section of its torsional stiffness beneficial for the bridge and curved bridge of cantilever construction. It has a large area of the roof and floor, can effectively resist the positive and negative moment reinforcement and satisfy the need. It has the good dynamic characteristics and small shrinkage deformation value (Hanson, 2009).

In this research, Finite Element Methods (FEM) models were used to stimulate the characteristic behavior of the steel, concrete and reinforcement steel structure using ANSYS+CIVILFEM 12.0 program. CivilFEM is the ANSYS civil engineering special software package based on the structure of civil engineering for a variety of numerical simulation of design and checking (Watson, 2007).

CivilFEM ANSYS powerful analysis ability and CivilFEM provides for civil engineering special functions and modules together, in order to meet the special needs of the civil engineering industry, provides a powerful tool for the design of a variety of high-end civil engineering analysis (Weng, 2008).

1.2 Problem Statement

In the modern century of bridge construction field, box girder is a significant component of many form of bridge, so, the box girder structures must be designed well with appropriate calculation to make sure it can support the load and it is safe for using in a long period of time (Mansur, 2008). Even though there are several methods which can be used to analysis the behavior of box girder structure, in order to make the procedure easier and specific, finite element method (FEM) is used through ANSYS software.

In the bridge construction process, in order to meet the alignment, driving comfort, people's aesthetic and other requirements, often perform the bridge in a variety

of curve form and special-shaped bridge structure. But, in modern days, those requirements is not that easily to accomplish. In order to validate it feasibility and reliability, this study test the box girder by load though ANSYS+CIVILFEM software (Salam, 2007).

1.3 Objective

The purpose of this study is to investigate the structural characteristic and behavior of box girder by using finite element software ANSYS.

(i) To modeling the box girder in an ANSYS FEM design.

(ii) To verify box girder pass all the code checking.

(iii) To check the frame structure of box girder in force and moments, axial + bending and stress and strain graph.

(iv) To determine the result based on difference graph.

1.4 Scope of Study

This research is mainly concentrate on generating a 3-Dimension model though the ANSYS+CIVILFEM software. Those focused on the analysis the box girder using the EUROCODE 2 and applying the parameter to generate the results in ANSYS. For the purpose of accomplish the research objectives, there are few researches scope is necessary to be followed. Such as study the parameters of box girder in EURCODE and characteristic of the structure (Warzak, 2001).

This research will applying different size and type of box girder, generating different result by applying different loading on box girder. The result of this research will be comparing for come out the best result due to complete the research study. Explore ANSYS+CIVILFEM software though tutorial to get more and more familiar with operating the software (Warzak, 2001).

1.5 Research Outcomes

Obtain the bending moment diagram, shear force diagram, deformed shape diagram and reinforcement factor diagram though ANSYS software.

1.6 Research Questions

(i) What is the moment characteristic behavior of box girder during subjected loading?

(ii) What is the critical status of box girder at subjected loading? What does it effected the bridge when it applied into actual construction site?

1.7 Work Schedule

1.8 Summary of the Chapter

In this chapter, mainly briefly discusses about reinforced concrete, research topic, research problems. Simply introduces how to do research of this study.

CHAPTER 2

LITERATURE REVIEWS

2.1 Introduction

Box girder is a type of building structure beam, are often made of steel, although in the past the iron is commonly used for construction land. The beam of this type, the integrity of the beam using one or more closed cell structure, rather than an I-shaped steel and H steel has an open end. Bridge construction often requires the use of box girder, the other structures, such as buildings (Jiang, 2012). This type of beam generally can keep more weight than I-shaped beam, it will have more resistance to torsional damage or distortion.

The bridge sometimes have a larger scale, design and construction of box beam. Bridge curved or bent particularly benefit from this design because of the anti-torsion ability of box girder. Concrete can be poured into the appropriate shape, usually in the bridge deck, add the torsional rigidity of the whole structure. Characteristics of box girder design can have only one cell, or the box, and the multi cell system of other design features include many box (Liu, 2003). Box shape other than rectangular or tapered structure in order to meet the specific design, each box can accommodate. This is sometimes referred to as the design of honeycomb beam.

Bridge construction has made the importance of world level today. Bridge box girder in any road network use the key element is more and more popular, in bridge

engineering because of its good stability, applicable, economic, aesthetic, structural efficiency. The structural behavior of box girder is complex, it is difficult to analyze the actual situation, through the conventional method. One or two simply supported box girder bridges in this study by prestressed concrete analysis is moving load according to India road Congress (IRC: 6) recommendations, prestressed code (IS: 1343) according to the IRC: 18 specifications. Analysis of box girder-bridge by SAP 2000 and 14 wizard with a parabolic prestressed with full section. Various span / depth ratio that get the ingredients of the depth, stress and deflection criteria are met standards (Chen, 2007).

The continuing expansion of the road network throughout the world mainly in traffic greatly improved results of extensive city population and urban growth. Many of the changes and development of various bridges leads to this expansion. The bridge type is related to provide maximum efficiency, materials and construction techniques used, for a particular span, and application. To reduce the dead load, unnecessary material, which is not utilized to its full capacity, is removed out of section, this results in the shape of box girder or cellular structures, depending upon whether the shear deformations can be neglected or not (Lucy, M., 2009). Span range is more for box girder-bridge as the comparison of the T shaped beam-bridge produces a relatively small number of piers with the valley width and the resulting economic.

Box girder is connected by a common flange at the top and bottom two web. Closed cell, forming a greater torsion stiffness and strength than an open part is to select the common causes of the box beam structure of this feature (Lucy, M., 2009).

Box girder is rarely used in buildings (box column is sometimes used, but these axial load not loaded in bending). They can be used in special circumstances, such as when the beam load for eccentric shaft (Lucy, M., 2009).

From the point of view of box girder bearing universal application, their indifference whether it is positive or negative moment and their torsional stiffness; from the point of view of economy (Qiang, 2002).