FINITE ELEMENT ANALYSIS OF BOX GIRDER BY USING ANSYS SOFTWARE

ZHANG KAI YUAN

Report submitted in partial fulfillment of the requirements
for the award of degree of
B.Eng. (Hons.) Civil Engineering

Faculty of Civil Engineering & Earth Resources
UNIVERSITI MALAYSIA PAHANG

JUNE 2015
ABSTRACT

In this research, a steel box girder was analyzed ANSYS program with the Monte Carlo simulation direct sampling probabilistic method. The objective of this analysis is to modeling the box girder in an ANSYS FEM design, check the frame structure of box girder in force and moments, axial + bending and stress and strain graph and to determine the result based on difference graph. In addition, the structure is checked accordingly both to Eurocode 2 and Eurocode 3. Nowadays box girder is widely used for the construction of the bridge. It is very convenient to place the electric cable or any other necessary equipment which the designer wish to go through it. A significant advantage of box girder is able to support large amounts of weight in the same length compared to the I-beam. The continuing expansion of the road network throughout the world mainly in traffic greatly improved results of extensive city population and urban growth. Span range is more for box girder-bridge as the comparison of the T shaped beam-bridge produces a relatively small number of piers with the valley width and the resulting economic. From the results of simulation, we get to know the real behaviour of the structure under the applied loads. In probabilistic analysis, we get the results of probabilistic density function plot, cumulative distribution function plot and histogram plot by 1000 times of simulation for any input and output.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISOR’S DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>STUDENT’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>DECICATION</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of the Study 1
1.2 Problem Statement 2
1.3 Objective 3
1.4 Scope of Study 3
1.5 Research Outcomes 4
1.6 Research Questions 4
1.7 Work Schedule 4
1.8 Summary of the Chapter 4
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 5

2.2 The Characteristics of Box Girder 7
 2.2.1 Historical Development of Box Girder 8
 2.2.2 Evolution of Box Girder 9
 2.2.3 Advantages Associated with Box Girders 10
 2.2.4 Disadvantages of Box Girders 10
 2.2.5 Specifications 11
 2.2.6 Haunches 11

2.3 Prestressed Concrete 12
 2.3.1 Pre-tensioned Concrete 14
 2.3.2 Bonded Post-tensioned Concrete 15
 2.3.2.1 History of Problems with Bonded Post-tensioned Bridges 16
 2.3.3 Unbonded Post-tensioned Concrete 17
 2.3.4 Applications of Prestressed Concrete 18
 2.3.5 The Sustainability of the Prestressed Concrete 19

2.4 Finite Element Analysis 19
 2.4.1 The History of Finite Element Analysis 20
 2.4.2 Finite Element Analysis in Civil Engineering Field 21
 2.4.3 ANSYS+CIVILFEM Software 22
 2.4.3.1 ANSYS+CIVILFEM Graphical Interface Development Tool 23
 2.4.3.2 Graphical Interface Development Tool 23
 2.4.3.2.1 User Interface Design Language (UIDL) 24
 2.4.3.2.2 Tcl/Tk 24
 2.4.3.2.2.1 Tcl Language Introduction 25
CHAPTER 3 METHODOLOGY

3.1 Introduction
3.2 The Finite Element Program: ANSYS
3.3 Design Considerations
3.4 Loading and Boundary Condition
3.5 Description of the Non-composite Bridge Box Girder Models
 3.5.1 Straight Box Girder Model
3.6 Modeling Process
 3.6.1 Preprocessor
 3.6.1.1 Preprocessing
 3.6.1.2 Specify Title
 3.6.1.3 Define the Viewing Direction
 3.6.1.4 Set Code and Units
 3.6.1.5 Define Material
 3.6.1.6 Define Element Type
 3.6.1.7 Define Bridge Section
 3.6.1.8 Bridge Layout Design
 3.6.1.9 Bridge Solid Modelling
 3.6.1.10 Apply Loads
 3.6.2 Postprocessor
 3.6.2.1 Define Targets
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.2.2</td>
<td>Combinations</td>
<td>53</td>
</tr>
<tr>
<td>3.6.2.3</td>
<td>Review Results</td>
<td>55</td>
</tr>
<tr>
<td>3.7</td>
<td>Finite Element Analysis Result and Code Checking</td>
<td>59</td>
</tr>
<tr>
<td>3.8</td>
<td>Probabilistic Analysis Process</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 4 PROBABILISTIC ANALYSIS RESULTS</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Probabilistic Analysis Tools</td>
<td>81</td>
</tr>
<tr>
<td>4.2.1</td>
<td>ANSYS Probability Design System</td>
<td>81</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The Advantages and Disadvantages of ANSYS Probability Design System</td>
<td>82</td>
</tr>
<tr>
<td>4.2.3</td>
<td>The Basic Theory of Reliability</td>
<td>82</td>
</tr>
<tr>
<td>4.2.4</td>
<td>The Basic Theory and Process Data Stream of the PDS</td>
<td>84</td>
</tr>
<tr>
<td>4.2.4.1</td>
<td>The Basic Theory of PDS</td>
<td>84</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>Process Data Stream of the PDS</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>Typical Probability Model</td>
<td>86</td>
</tr>
<tr>
<td>4.4</td>
<td>The Probability Statistics Method</td>
<td>87</td>
</tr>
<tr>
<td>4.4.1</td>
<td>The Monte Carlo Method</td>
<td>87</td>
</tr>
<tr>
<td>4.4.1.1</td>
<td>The Characteristic of Monte Carlo Method</td>
<td>88</td>
</tr>
<tr>
<td>4.4.1.2</td>
<td>The Characteristic of Direct Sampling</td>
<td>88</td>
</tr>
<tr>
<td>4.4.1.3</td>
<td>The Characteristic of Latin Hypercube Sampling (LHS)</td>
<td>89</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The Characteristic of Response Surface Method</td>
<td>89</td>
</tr>
<tr>
<td>4.4.2.1</td>
<td>Central Composite Design Sampling (CCD)</td>
<td>91</td>
</tr>
<tr>
<td>4.4.2.2</td>
<td>Box-Behnken Matrix Sampling</td>
<td>91</td>
</tr>
<tr>
<td>4.5</td>
<td>Using ANSYS for Reliability Analysis</td>
<td>92</td>
</tr>
<tr>
<td>4.5.1</td>
<td>The Basic Produce of Probabilistic Analysis Design</td>
<td>92</td>
</tr>
<tr>
<td>4.6</td>
<td>Probabilistic Analysis Result</td>
<td>93</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Random Input Variables</td>
<td>94</td>
</tr>
</tbody>
</table>
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

5.1 General
5.2 Conclusion
5.3 Recommendation

REFERENCES

APPENDIX

<table>
<thead>
<tr>
<th>A1</th>
<th>Eurocode 3 Checking of Box Girder</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>Stiffness Matrix of Box Girder</td>
</tr>
<tr>
<td>B1</td>
<td>Log Filr of the Box Girder</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Materials</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Random Input Variables Specifications</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>The Probability Model on PDS Characterization</td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Statistical Result of Random Input Variables</td>
<td>104</td>
</tr>
<tr>
<td>4.3</td>
<td>Linear Correlation Coefficients between Input Variables</td>
<td>119</td>
</tr>
<tr>
<td>4.4</td>
<td>Spearman Rank Order Correlation Coefficients Between Input Variables</td>
<td>120</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Classification of the Box Girder</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Flow Chart for the Entire Research Process</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Cross Section Dimensions (in.) of the Box Girder</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Activate CivilFem</td>
<td>35</td>
</tr>
<tr>
<td>3.4 Change Title</td>
<td>35</td>
</tr>
<tr>
<td>3.5 Viewing Direction</td>
<td>35</td>
</tr>
<tr>
<td>3.6 CivilFEM Setup</td>
<td>36</td>
</tr>
<tr>
<td>3.7 Choose New Material-Concrete</td>
<td>37</td>
</tr>
<tr>
<td>3.8 Material Browser</td>
<td>37</td>
</tr>
<tr>
<td>3.9 Choose Beam Element Type</td>
<td>38</td>
</tr>
<tr>
<td>3.10 Active Bridge and Civil Non Linearities Module</td>
<td>38</td>
</tr>
<tr>
<td>3.11 Active Bridge and Civil Non Linearities Module</td>
<td>38</td>
</tr>
<tr>
<td>3.12 Choose Bridge Sections</td>
<td>38</td>
</tr>
<tr>
<td>3.13 Choose Box Cross Section</td>
<td>39</td>
</tr>
<tr>
<td>3.14 Define Box Cross Section</td>
<td>39</td>
</tr>
<tr>
<td>3.15 Choose Initial Point</td>
<td>39</td>
</tr>
<tr>
<td>3.16 Define Initial Point and Vector</td>
<td>40</td>
</tr>
<tr>
<td>3.17 Choose Define Plan View</td>
<td>40</td>
</tr>
<tr>
<td>3.18 Define Plan View Stretch Modify</td>
<td>40</td>
</tr>
<tr>
<td>3.19 Define Plan View Stretch Modify</td>
<td>40</td>
</tr>
<tr>
<td>3.20 Choose Define Elevation View</td>
<td>41</td>
</tr>
<tr>
<td>3.21 Define Elevation Stretch Modify</td>
<td>41</td>
</tr>
</tbody>
</table>
3.22 Define Elevation Stretch Modify
3.23 Choose Plot Sketch
3.24 Plot Bridge Sketch Modify
3.25 Choose Generate Section
3.26 Define Section in Model Modify
3.27 Define Section in Model Modify
3.28 Define Section in Model Modify
3.29 Define Section in Model Modify
3.30 Define Section in Model Modify
3.31 Choose Generate Model
3.32 Generate ANSYS Model Modify
3.33 ANSYS Bridge Model
3.34 Appling Displacement on Nodes
3.35 Choose Nodes to Appling Displacement
3.36 Appling No Displacement on Choosed Nodes
3.37 Appling Force or Moment on Nodes
3.38 Choose Nodes to Appling Loads
3.39 Define Applied Loads on the Choosed Nodes
3.40 Choose Global
3.41 Apply Gravitational Acceleration
3.42 Choose Current LS
3.43 The Confirm Window
3.44 The Result Window
3.45 Choose Global
3.46 Apply 0 Gravitational Acceleration
3.47 Read File

3.48 Surface Load Solution Done

3.49 Choose Define One Target

3.50 Define One Target

3.51 Choose Combine and Initiate

3.52 Self Weight Combination

3.53 Surface Load Combination

3.54 Drag & Drop It over the Combination Tree To Combination 2

3.55 Final Combination

3.56 Choose Combine for Targets

3.57 Confirm Of the Combination

3.58 The Result of the Combination

3.59 Choose Set Data to Read

3.60 Modify the Combined Method

3.61 Choose By Description

3.62 Read Combination Results by Target Description

3.63 Choose Force and Moments

3.64 Graph Force and Moment Results

3.65 The Graph Results of Force and Moment

3.66 The Bottom View of the Graph Results of Force and Moment

3.67 EC2 Code Checking on 2D Axial + Bend

3.68 Choose Plot Results

3.69 Graph Concrete Results Modify

3.70 The 2D Axial + Bend Results (Element Ok)

3.71 EC2 Code Checking on 3D Axial + Bend
3.72 Choose Plot Results
3.73 Select ELEM_OK
3.74 The 3D Axial + Bend Results (Element Ok)
3.75 EC2 Code Checking on Shear & Torsion
3.76 Choose Plot Results
3.77 Choose Shear Y & Torsion
3.78 The Shear & Torsion Results (Element Ok)
3.79 EC2 Code Checking on Cracking
3.80 Choose Plot Results
3.81 Select ELEM_OK
3.82 The Cracking Results (Element Ok)
3.83 Choose Tension to Bending + Axial + Shear
3.84 Choose Plot Results
3.85 Select ELEM_OK
3.86 EC3 Code Checking (Element Checking OK)
3.87 Choose Forces and Moments
3.88 Choose Axial Force X
3.89 Axial Force on X Direction
3.90 Choose Shear Force on Y Direction
3.91 Shear Force on Y Direction
3.92 Choose Shear Force on Z Direction
3.93 Shear Force on Z Direction
3.94 Choose Torsion Moment on Z Direction
3.95 Torsion Moment on Z Direction
3.96 Choose Bending Moment on Y Direction
3.97 Bending Moment on Y Direction 69
3.98 Choose Bending Moment Z 69
3.99 Bending Moment on Z Direction 70
3.100 Choose Stress and Strain 70
3.101 Graph Stress and Strain Results 70
3.102 Stress and Strain Result 71
3.103 Choose Forces and Moments 71
3.104 List Forces and Moments 71
3.105 List Forces and Moments 72
3.106 List Stress and Strain Results 72
3.107 List Stress and Strain Results 72
3.108 List Stress and Strain Results 1 73
3.109 List Stress and Strain Results 2 73
3.110 Choose on Assign 74
3.111 Choose the Assign File 74
3.112 Choose Random Input 74
3.113 Random Input Browser 75
3.114 Choose Random Output 75
3.115 Random Output Browser 75
3.116 Choose Monte Carlo Sims 76
3.117 Choose Direct Sampling 76
3.118 Put 1000 as the Number of Simulations 76
3.119 Choose Run Serial 76
3.120 Define the Folder’s Name 77
3.121 Define the Folder’s Name 77
3.122 Confirm to Start the Simulation 77
3.123 The ~CFCLEAR Browser 77
3.124 Choose Report Options 78
3.125 Define the Options of the Report 78
3.126 Choose Generate Report 78
3.127 Specify the Report’s name 78
3.128 The Report 79
4.1 Working State Express Function 83
4.2 Structural Working State 83
4.3 Calculation of Structure Reliability by Definition 83
4.4 Calculation of Reliability by Statistics 83
4.5 Flow Chart of Process Data Stream 85
4.6 Equation of Failure Probability 88
4.7 Equation That Present the Response Surface Method 90
4.8 Central Composite Design Sampling (CCD) 91
4.9 Box-Behnken Matrix Sampling 91
4.10 PDF & CDF of Input Random Variable L 95
4.11 PDF & CDF of Input Random Variable LINK_D 96
4.12 PDF & CDF of Input Random Variable SITRRUP_D 97
4.13 PDF & CDF of Input Random Variable TEMP 98
4.14 PDF & CDF of Input Random Variable POSSON 99
4.15 PDF & CDF of Input Random Variable DENS 100
4.16 PDF & CDF of Input Random Variable ELASTIC 101
4.17 PDF & CDF of Input Random Variable FORCE_1 102
4.18 PDF & CDF of Input Random Variable FORCE_2 103
4.19 Histogram Plot of Input Variable L
4.20 Histogram Plot of Input Variable LINK_D
4.21 Histogram Plot of Input Variable SITRRUP_D
4.22 Histogram Plot of Input Variable TEMP
4.23 Histogram Plot of Input Variable POISSON
4.24 Histogram Plot of Input Variable DENS
4.25 Histogram Plot of Input Variable ELASTIC
4.26 Histogram Plot of Input Variable FORCE_1
4.27 Histogram Plot of Input Variable FORCE_2
4.28 CDF Result of Input Variable L
4.29 CDF Result of Input Variable LINK_D
4.30 CDF Result of Input Variable SITRRUP_D
4.31 CDF Result of Input Variable TEMP
4.32 CDF Result of Input Variable POISSON
4.33 CDF Result of Input Variable DENS
4.34 CDF Result of Input Variable ELASTIC
4.35 CDF Result of Input Variable FORCE_1
4.36 CDF Result of Input Variable FORCE_2
LIST OF SYMBOLS

tw Web thickness
t_f Flange thickness
hw Height of web
i Height
b Width
d Depth
A Area of section
I Moment of inertia
W_{pl} Plastic modulus
i Radius of gyration
N Axial load
V Shear force
M Moment
α Imperfection factor
$\gamma M0$ Partial actor for resistance of cross-sections whatever the class is
$\gamma M1$ Partial factor for resistance of members to instability assessed by member checks
λ Slenderness value
Φ Value to determine the reduction factor
X Reduction factor
L_{cr} Buckling Length
K_{xy} Interaction factor
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two Dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimensional</td>
</tr>
<tr>
<td>CIVIFEM</td>
<td>Civil Finite Element Method</td>
</tr>
<tr>
<td>ChckAxis</td>
<td>Check Axis</td>
</tr>
<tr>
<td>LS</td>
<td>Load Step</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>GAUS</td>
<td>Gaussian (Normal) Distribution</td>
</tr>
<tr>
<td>TGAU</td>
<td>The Truncated Gauss Distribution</td>
</tr>
<tr>
<td>DENS</td>
<td>Density</td>
</tr>
<tr>
<td>ELASTIC</td>
<td>Elastic Modulus</td>
</tr>
<tr>
<td>POISON</td>
<td>Poison Ratio</td>
</tr>
<tr>
<td>LOAD</td>
<td>Point Load</td>
</tr>
<tr>
<td>PDF</td>
<td>Probabilistic Density Function</td>
</tr>
<tr>
<td>CDF</td>
<td>Cumulative Distribution Function</td>
</tr>
<tr>
<td>MAXIMUMDEFLECTION/MAX_DEFLECTION</td>
<td>Maximum Deflection</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Finite element analysis is to replace the complicated problems with relatively simple problems and then solving. It will solve the field as many as by little interconnection finite element subdomains, for each unit there is a suitable approximate solution, and then solve the domain always satisfy condition, so as to get the solution of the problem. This solution is not the exact solution, but approximate solution, because the actual problem is replaced by a simple question. Since most practical problems difficult to get the accurate solution, and the finite element calculation not only high precision, but also can adapt to various kinds of complicated shapes, and therefore become an effective means of engineering analysis (Corley, 2004).

ANSYS software is the combination of filed form of financial structure, fluid mechanics, electric, magnetic, acoustic analysis. It's concentrated in one of the large general-purpose finite element analysis software (Liang, 2003). It is developed by the world's largest ANSYS finite element analysis software company from United States. It can interface with most CAD software, sharing and exchange of data. For specific areas of physics, ANSYS software allows users to delve deeper to solve a wider range of issues to deal with more complex situations, like the field of construction, exploration, geology, water conservancy, transportation, electric power, mapping, land, environment, forestry, metallurgy etc.
The box girder refer to the cross-sectional like a box in the form of beam. When the bridge span is huge, perform box girder is the best, it’s closed thin-walled section of its torsional stiffness beneficial for the bridge and curved bridge of cantilever construction. It has a large area of the roof and floor, can effectively resist the positive and negative moment reinforcement and satisfy the need. It has the good dynamic characteristics and small shrinkage deformation value (Hanson, 2009).

In this research, Finite Element Methods (FEM) models were used to stimulate the characteristic behavior of the steel, concrete and reinforcement steel structure using ANSYS+CIVILFEM 12.0 program. CivilFEM is the ANSYS civil engineering special software package based on the structure of civil engineering for a variety of numerical simulation of design and checking (Watson, 2007).

CivilFEM ANSYS powerful analysis ability and CivilFEM provides for civil engineering special functions and modules together, in order to meet the special needs of the civil engineering industry, provides a powerful tool for the design of a variety of high-end civil engineering analysis (Weng, 2008).

1.2 Problem Statement

In the modern century of bridge construction field, box girder is a significant component of many form of bridge, so, the box girder structures must be designed well with appropriate calculation to make sure it can support the load and it is safe for using in a long period of time (Mansur, 2008). Even though there are several methods which can be used to analysis the behavior of box girder structure, in order to make the procedure easier and specific, finite element method (FEM) is used through ANSYS software.

In the bridge construction process, in order to meet the alignment, driving comfort, people’s aesthetic and other requirements, often perform the bridge in a variety
of curve form and special-shaped bridge structure. But, in modern days, those requirements is not that easily to accomplish. In order to validate it feasibility and reliability, this study test the box girder by load though ANSYS+CIVILFEM software (Salam, 2007).

1.3 Objective

The purpose of this study is to investigate the structural characteristic and behavior of box girder by using finite element software ANSYS.

(i) To modeling the box girder in an ANSYS FEM design.

(ii) To verify box girder pass all the code checking.

(iii) To check the frame structure of box girder in force and moments, axial + bending and stress and strain graph.

(iv) To determine the result based on difference graph.

1.4 Scope of Study

This research is mainly concentrate on generating a 3-Dimension model though the ANSYS+CIVILFEM software. Those focused on the analysis the box girder using the EUROCODE 2 and applying the parameter to generate the results in ANSYS. For the purpose of accomplish the research objectives, there are few researches scope is necessary to be followed. Such as study the parameters of box girder in EURCODE and characteristic of the structure (Warzak, 2001).

This research will applying different size and type of box girder, generating different result by applying different loading on box girder. The result of this research will be comparing for come out the best result due to complete the research study. Explore ANSYS+CIVILFEM software though tutorial to get more and more familiar with operating the software (Warzak, 2001).
1.5 Research Outcomes

Obtain the bending moment diagram, shear force diagram, deformed shape diagram and reinforcement factor diagram though ANSYS software.

1.6 Research Questions

(i) What is the moment characteristic behavior of box girder during subjected loading?

(ii) What is the critical status of box girder at subjected loading? What does it effected the bridge when it applied into actual construction site?

1.7 Work Schedule

1.8 Summary of the Chapter

In this chapter, mainly briefly discusses about reinforced concrete, research topic, research problems. Simply introduces how to do research of this study.
CHAPTER 2

LITERATURE REVIEWS

2.1 Introduction

Box girder is a type of building structure beam, are often made of steel, although in the past the iron is commonly used for construction land. The beam of this type, the integrity of the beam using one or more closed cell structure, rather than an I-shaped steel and H steel has an open end. Bridge construction often requires the use of box girder, the other structures, such as buildings (Jiang, 2012). This type of beam generally can keep more weight than I-shaped beam, it will have more resistance to torsional damage or distortion.

The bridge sometimes have a larger scale, design and construction of box beam. Bridge curved or bent particularly benefit from this design because of the anti-torsion ability of box girder. Concrete can be poured into the appropriate shape, usually in the bridge deck, add the torsional rigidity of the whole structure. Characteristics of box girder design can have only one cell, or the box, and the multi cell system of other design features include many box (Liu, 2003). Box shape other than rectangular or tapered structure in order to meet the specific design, each box can accommodate. This is sometimes referred to as the design of honeycomb beam.

Bridge construction has made the importance of world level today. Bridge box girder in any road network use the key element is more and more popular, in bridge
engineering because of its good stability, applicable, economic, aesthetic, structural efficiency. The structural behavior of box girder is complex, it is difficult to analyze the actual situation, through the conventional method. One or two simply supported box girder bridges in this study by prestressed concrete analysis is moving load according to India road Congress (IRC: 6) recommendations, prestressed code (IS: 1343) according to the IRC: 18 specifications. Analysis of box girder-bridge by SAP 2000 and 14 wizard with a parabolic prestressed with full section. Various span / depth ratio that get the ingredients of the depth, stress and deflection criteria are met standards (Chen, 2007).

The continuing expansion of the road network throughout the world mainly in traffic greatly improved results of extensive city population and urban growth. Many of the changes and development of various bridges leads to this expansion. The bridge type is related to provide maximum efficiency, materials and construction techniques used, for a particular span, and application. To reduce the dead load, unnecessary material, which is not utilized to its full capacity, is removed out of section, this results in the shape of box girder or cellular structures, depending upon whether the shear deformations can be neglected or not (Lucy, M., 2009). Span range is more for box girder-bridge as the comparison of the T shaped beam-bridge produces a relatively small number of piers with the valley width and the resulting economic.

Box girder is connected by a common flange at the top and bottom two web. Closed cell, forming a greater torsion stiffness and strength than an open part is to select the common causes of the box beam structure of this feature (Lucy, M., 2009).

Box girder is rarely used in buildings (box column is sometimes used, but these axial load not loaded in bending). They can be used in special circumstances, such as when the beam load for eccentric shaft (Lucy, M., 2009).

From the point of view of box girder bearing universal application, their indifference whether it is positive or negative moment and their torsional stiffness; from the point of view of economy (Qiang, 2002).