
Abstract— Conventionally the selection of parameters depends

intensely on the operator’s experience or conservative technological

data provided by the EDM equipment manufacturers that assign
inconsistent machining performance. The parameter settings given by

the manufacturers are only relevant with common steel grades. A
single parameter change influences the process in a complex way.

Hence, the present research proposes artificial neural network (ANN)
models for the prediction of surface roughness on first commenced

Ti-15-3 alloy in electrical discharge machining (EDM) process. The
proposed models use peak current, pulse on time, pulse off time and

servo voltage as input parameters. Multilayer perceptron (MLP) with

three hidden layer feedforward networks are applied. An assessment
is carried out with the models of distinct hidden layer. Training of the

models is performed with data from an extensive series of
experiments utilizing copper electrode as positive polarity. The

predictions based on the above developed models have been verified
with another set of experiments and are found to be in good

agreement with the experimental results. Beside this they can be

exercised as precious tools for the process planning for EDM.

Keywords— Ti-15l-3, surface roughness, copper, positive
polarity, multi-layered perceptron.

I. INTRODUCTION

The recent developments in the field of EDM have progressed
due to the growing application of EDM process and the

challenges being faced by the modern manufacturing

industries, from the development of new materials that are

hard and difficult-to-machine [1]. These materials like tool

steels, composites, ceramics, super alloys, hastalloy, nitralloy,
waspalloy, nemonics, carbides, stainless steels, heat resistant

steel, etc. being widely used in die and mould making

industries, aerospace, aeronautics, and nuclear industries.

Many of these materials also find applications in other
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industries owing to their high strength to weight ratio, hardness

and heat resisting qualities. Ti–15–3 (Ti–15V–3Cr–3Al–3Sn)
alloy is a kind of metastable -titanium alloy. Ti-15-3 alloy is

used for springs such as clock-type springs due to its strip

producibility [2]. There are several areas besides springs

where Ti-15-3 is being used in current generation aircraft. One
of the large users is the Boeing 777, and the big item is for

ECS ducting. To produce fire extinguisher bottles, Ti-15-3 is

consumed in place of 21-6-9 steel, providing a weight savings

of about 23 kg per airplane. As well as it is used for numerous
clips and brackets in the floor support structure and other areas

of the 777. In spite of its more advantages and increased utility

of titanium alloys, the capability to produce parts products

with high productivity and good quality becomes challenging.
Owing to their poor machinability, it is very difficult to

machine titanium alloys economically with traditional

mechanical techniques [3]. Thus, titanium and titanium alloy,

which is difficult-to-cut material, can be machined effectively

by EDM [4].
The various machining characteristics used to evaluate the

performance of EDM such as material removal rate (MRR),

tool wear rate (TWR), relative wear ratio (WR) and surface

roughness (SR) [5,6]. The important variables that affect the
performance of EDM are peak current, pulse-on time, pulse-

off time, the polarity of the electrode, nozzle flushing etc [7].

The thermodynamic and physical properties of the tool and the

work-piece also influence the electrical discharge machining
performance [8]. The selection of appropriate machining

conditions for EDM characteristics, such as material removal

rate, is based on the analysis relating the various process

parameters to material removal [9].
Artificial neural network models were proposed for the

prediction of surface roughness from roughing to near-

finishing conditions considering workpiece material, pulse

current and pulse duration as the input parameters of the
models [10]. Particularly mild steel (St 37), alloyed steels (C

45 and 100Cr6), high strength low alloyed (HSLA) steels such

as a microalloyed (Mic/al 1) steel and dual-phase (DP1) steel

were tested employing electrolytic copper as tool electrode of
positive polarity. Assarzadeh and Ghoreishi [11] were

presented back-propagation neural network approach for

prediction and optimal selection of process parameters in

support of MRR and surface roughness in die sinking EDM.

BD3 steel work piece and commercial cylindrical copper as
tool with positive polarity were used throughout the

experiments. Chattopadhyay et al. [12] investigated machining

characteristics of EN-8 steel and also developed empirical

models for prediction of output parameters using linear
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regression analysis. Analyzed results yield that peak current

and pulse on time are the most significant and significant

parameters for MRR and TWR respectively. But peak current

and electrode rotation become the most significant and
significant parameters for surface roughness, respectively.

Optimization of surface roughness of die sinking EDM was

carried out on Ti6Al4V, HE15, 15CDV6 and M-250 by

varying the peak current and voltage [9]. Multiperceptron
neural network models were developed using neuro solutions

package. In this study it was observed that type of material

effectively influences the performance measures.

The previous study evidence that large numbers of research
have been commenced applying a variety of materials, in spite

of this no investigation of EDmaching performance is attained

on Ti-15-3. Selection of parameters to achieve better

performance is an eminent problem in EDM, still no model
correlating the parameters and responses is observed

employing Ti-15-3 alloy. Thus the purpose of this research is

to develop model to predict surface roughness of Ti-15-3 alloy

in EDM process utilizing artificial neural network. To achieve
the goal multilayer perceptron with three hidden layers is

considered and subsequently MLP with one and two hidden

layer is also exercised. Training and testing of the network are

accomplished using experimental data. Experiments, involving
discharge machining of Ti-15-3 at various levels of input

parameters namely peak current, pulse on time, pulse off time

and servo voltage, are completed to find their effect on surface

roughness. The obtained models are also interpreted and

verified experimentally. A comparison is performed among the
different neural network models with distinct hidden layer.

II.MATERIAL ANDMETHODOLOGY

A.Experimental setup

Peak current (Ip) is the maximum current during spark. Pulse

on-time (ti) refers the duration of time (µs) in which the current

is allowed to flow per cycle [13]. Pulse off-time (to) is the
duration of time (µs) between the sparks. Servo voltage (Sv)

specifies a reference voltage for servo motions to keep gap

voltage constant. When gap voltage is higher than servo

voltage, the electrode advances for machining; when it is
lower, the electrode retracts to open the gap [14]. Four

variables such as peak current, pulse on time, pulse off time

and servo voltage were considered to ascertain their influence

on surface roughness. Preliminary tests were executed to fix
their lower and higher limit that assures the stable machining

circumstances. During these experiments, by altering the

values of the input parameters to different levels, stable states

of the machining conditions have also been specified. A
response surface design method based on axial point central

composite designs consisting 31 experimental runs were

designed for this experimentation. The titanium alloy material

Ti-15-3 was machined with copper tool electrode as positive
polarity. The experiments were performed on a numerical

control programming EDM (Model: AQ55L) as shown in

Fig. 1 and 2 respectively. The listing of experimental

parameters is also scheduled in Table I.

Operation panel

Machining tank

Base

Fig. 1 Experimental setup of electrical discharge machining.

Side flushing

Dielectric fluid
(Kerosene)

Machining
tank

Electrode holder

Fig. 2 Electrical discharge machining tank at operational state.

TABLE I

EXPERIMENTAL SETTINGS

Working parameters Description

Work piece material Ti-15V-3Cr-3Al-3Sn,

Work piece size 22 mm × 22 mm × 16 mm

Electrode material Cylindrical Copper,

Electrode size ฀ 19 mm × 50 mm

(length)
Electrode polarity Positive

Dielectric fluid Commercial kerosene

Applied voltage 120 V

Flushing pressure 0.15 MPa

Machining time 40 Minute

B. Experimental Procedure

During experimentation, side flushing at the pressure of 0.15

MPa was used. Each experiment was conducted for fixed

period, 40 minutes. The process parameters were set as DOE
i.e. varying current, on-time, off-time and servo voltage to get

the different results for each readings of input. The

experiments were performed at a constant voltage, 120 V. The

coded levels for all process parameters used are displayed in
Table II. Surface roughness was assessed with Perthometer S2,

Mahr. Five observations were accumulated for each sample

and average of these five observations was picked up as the

value of surface roughness, Ra.
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TABLE II

MACHINING PARAMETERS AND THEIR LEVELS

Process

parameters

Level 1 Level2 Level 3 Level 4 Level 5

-2 -1 0 1 2

Peak Current (A) 1 8 15 22 29
Pulse on time (µs) 10 95 180 265 350

Pulse off time (µs) 60 120 180 240 300
Servo voltage (V) 75 85 95 105 115

C.Surface roughness (µm)

The surface roughness of the workpiece can be expressed in

different ways including arithmetic average (Ra), average peak
to valley height (Rz), or peak roughness (RP), etc. Generally,
the SR is measured in terms of arithmetic mean, Ra which

according to the ISO 4987: 1999 is defined as the arithmetic
average roughness of the deviations of the roughness profile
from the central line along the measurement (Wu et al., 2005).
Center line average (CLA) is defined as the average values of

the ordinates from the mean line, regardless of the arithmetic
signs of the ordinates. Arithmetic mean or average surface
roughness, Ra is considered in this study for assessment of
roughness.

III. ARTIFICIALNEURALNETWORKMODEL

A. MLP Network Model with Three Hidden Layers

The multi-layer perceptions neural network is formed from

numerous neurons with parallel connection, which are jointed

in several layers. The structure of this network contains of
network's input data, numbers of hidden middle layers with

numerous neurons in each layer and an external layer with

neurons connected to output. This kind of network due to its

sigmoid transferred function in the middle layers and linear
transferred function at the external layer has universal

approximation capability. Their main advantage is that they

are easy to use and can approximate any input or output map.

The purpose of this present research work is to develop model
using artificial neural network to predict SR for new

introduced material Ti-15-3 in EDM process. A software

package Neuro Solutions 6 has been applied for the purpose of

forming the ANN model. Multilayer perceptron with different

hidden layer feed-forward (FF) networks are applied to
correlate the input variables such as peak current, pulse on

time, pulse off time and servo voltage to surface roughness.

The configuration of the MLP for three hidden layers is shown

in Fig. 4.

Fig. 4 Multilayer perceptron neural network model structure

An error correcting technique, often called the back-
propagation learning algorithm is retained to modify the

connection weights properly. As a result, the error between the

desired output, To and actual output, Yo of the neural network is

computed in the forward phase. An iterative error reduction

performed in a backward direction in the backward phase.

Training and testing of the network are done using

experimental data. The developed models are also verified
experimentally. The fundamental relation between

performance parameter and variable factors can be described

as in (1) and (2):

),( WXY=f (1)

i
iixwv= (2)

where, Y represents the performance parameter (SR); X is a

vector of the input variables to the neural network; W is the
weight matrix that is evaluated in the network training process;

f (.) represents the model of the process that is to be built

through NN training; v is the induced local field produced at

the input of the activation function; xi is the input signal and
wi is the respective synaptic weight.

The following relations were used to combine the inputs of

the network at the nodes of the hidden layer and the output

layer, respectively.

i
ilill xwfv=fH )()( (3)

)( lj H=fZ , )( jk Z=fO and )( ko O=fY (4)

where, Hl, Zj and Ok are the output at the hidden layer one, two
and three respectively; Yo is the output, SR at the output layer

and wli is the synaptic weight from input neuron i (xi) to the

neuron l in the first hidden layer. Combining (1)-(4) the

relation for the output of the network can be set as following
equation:

))))(((()(
l i

ilijl
j

kj
k

okko xwfwfwfwfO=fY (5)

where wjl is the synaptic weight from neuron l in the first

hidden layer to the neuron j in the second hidden layer, wkj is

the synaptic weight from neuron j in the second hidden layer to
the neuron k in the third hidden layer and wok is the synaptic

weight from neuron k in the last hidden layer to the output

neuron o.

The output at the hidden layer (Hl, Zj and Ok) and output
layer (Yo) are calculated using hyperbolic tangent function of

sigmoid function as in (6) because it yields practical benefits

over the logistic function.

)tanh()( vvf (6)

Finally, the output of the network was compared with the

measured performance of the process using a mean square

error (E) as in (7):
N

o
oo YT

N
E=

1

2)(
1

(7)

B. Training and testing of MLP network model

These networks are used for a generalization of the multilayer

perceptron such that connections can jump over one or more

layers. Three hidden layers were employed for the present
model to verify the network performance. In order to develop

a statistically sound neural network model, the network has

been trained three times. A number of networks are

constructed, each of them is trained separately, and the best

First hidden

layer

Second hidden

layer

Third hidden

layer

Output

layer

Input

layer

SR

ti

to

Ip

Sv

World Academy of Science, Engineering and Technology 74 2011

123



network is selected based on the accuracy of the predictions in

the testing phase. The general network is supposed to be 4–n–

1, which implies four neurons in the input layer, n neurons in

the hidden layer and one neuron in the output layer. The
experimental data used for training and production is planned

in Table III. The ANN was trained in a batch mode where its

parameters were only updated after all the input-output pairs

were presented. The Levenberg-Marquardt (L-M) algorithm
was employed for the training and the target performance goal

(mean square difference between NN output and target output)

was set at 0.001. The maximum number of epochs

(representation of the input or output pairs and the adjustment
of NN parameters) was considered 30,000. The best network

structure of FF neural network model is picked to have four

neurons in the hidden layer.

TABLE III
INPUT PARAMETERS FORNNMODEL AND EXPERIMENTAL RESULTS

Peak current

(A)

Pulse on

time (µs)

Pulse off

time (µs)

Servo

voltage (V)

Surface

Roughness(µm)
)Data sets for training the network

15 180 180 95 4.8643
8 265 240 85 1.9748
29 180 180 95 5.4860
15 180 180 95 5.0313
15 180 180 75 4.5268
15 180 180 95 4.7580
8 95 120 85 3.2173

22 265 240 85 5.7738
8 265 240 105 2.7452
15 180 180 95 5.2477
8 95 240 105 2.7095
15 180 60 95 5.8375
8 265 120 85 1.9028
22 95 120 105 5.7302

22 95 240 105 3.2545
8 95 120 105 4.4534
22 265 240 105 4.7265
22 265 120 85 5.4968
1 180 180 95 1.3498
15 180 180 95 5.4220
15 180 300 95 3.1970
15 180 180 95 5.1380
22 95 240 85 3.4288
22 265 120 105 3.7550
22 95 120 85 3.4155
15 180 180 115 2.4195

8 265 120 105 1.5688
15 10 180 95 3.2750
8 95 240 85 2.4492
15 350 180 95 3.5703

15 180 180 95 4.9573
Production data sets

29 320 60 75 5.63125
15 250 120 90 1.95067
5 150 150 100 1.37133

Fig. 5 depicts the convergence of the output error (MSE)

with the number of iterations (epochs) during training of the

chosen network. Fig. 6 shows the comparison between
experimental results with ANN modeling in verifying the

network generalization capabilities. After 71 epochs, the MSE

between the desired and actual outputs became about

8.12779 × 10-04, at which training is stopped, and the weight

values of the network are stored. Initially, the output from the

network is far from the target value. The output slowly and
smoothly converges to the target value with more epochs and

the network learns the input/output relation of the training

samples. Table IV presents the errors obtained after training of

the network with 30,000 epochs and multiple training (three

times). After training the developed ANN model, it was

primarily tested with trained data and the results are illustrated
in Table V.

Fig. 5 Training MSE of neural network model for surface roughness.
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Fig. 6 Comparison between experimental and predicted output.

TABLE IV

ERROR ANALYSIS FOR THE NETWORK OF SURFACE ROUGHNESS MODEL
(a)

All Runs
Training

Minimum

Training Standard

Deviation

Average of
Minimum MSEs

0.005280371 0.007738097

Average of Final
MSEs

0.005280371 0.007738097

(b)

Best Network Training

Run no. 1

Epoch 71

Minimum MSE 8.12779×10
-04

Final MSE 8.12779×10
-04

TABLEV

ERROR BETWEEN DESIRED AND NETWORK OUTPUT

Performance SR (µm) Performance SR (µm)

MSE 0.010104274 Min Abs Error 5.51026×10-12

NMSE 0.005612847 Max Abs Error 0.3622

MAE 0.040535484 r 0.997189627

C. Verification Test

The ANN predicted results are in concurrence with
experimental results and the network can be employed for
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production. Hence the production data sets are applied. It is

evidence from Table VI that, the output of the network in

terms of mean squared error during training of the network and

the error between the desired and ANN predicted SR is
average of 6.15%. The data is further analyzed for sensitivity

to identify the influence of the varied input process parameters

on output response surface roughness. The results obtained are

shown in Fig. 7 and Table VII. From the result it is apparent
that the peak current has more influence on the performance

measures. After peak current pulse on time and servo voltage

are the most influencing factor for surface roughness. The

pulse off time yields least effect on SR among the four
variables.

TABLEVI

ERROR OFNNMODEL DESIGNED FOR SURFACE ROUGHNESS

Sl No. Experimental NN Predicted Error (%)

1 5.63125 5.9648 5.92

2 1.95067 1.74062 10.77

3 1.37133 1.3471 1.77

Average 6.15
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Fig. 7 Sensitivity analysis for surface roughness

TABLE VII

SENSITIVITY ANALYSIS VALUES FOR SR

Sensitivity SR (µm)

Peak current (A) 2.232086323

Pulse on time (µs) 1.021533552

Pulse off time (µs) 0.637718727

Servo voltage (V) 0.789038321

IV. CONCLUSION

Multilayer perceptron network approach of ANN for process

modeling was achieved to evaluate machining performance of

EDM as surface roughness of Ti-15-3 alloy. This is the first

attempt according to previous study to develop model in
support of surface roughness on Ti-15-3 alloy in EDM

process. The research expose that the surface roughness

increases as peak current increases whilst SR decreases as

increase of pulse off time. The result yields the distinctive
effect of pulse on time on surface roughness. It is observed

from the analysis that around 200 µs pulse on time generates

fine surface finish. Increase of servo voltage preliminary

increases roughness henceforward decreases the SR. The
results reveal that peak current possesses highest influence

whilst pulse off time appears the least effect on the response,

SR. It is also perceived that pulse on time influences surface

roughness more significantly than servo voltage. The proposed

models of distinct hidden layers were confirmed with some

experimental results that were not used for training and testing
the network. The results indicate that the multilayer perceptron

neural network model of three hidden layers can successfully

predict the surface roughness with reasonable accuracy, under

varying machining conditions. Accordingly it becomes as a
precious tool in the manufacturing concern for EDM.
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