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ABSTRACT 

 

Build-up column is a steel structure composed of two I-beam steel joined with steel 

plate or angles as the lacings of the column. The build-up column is one of the main 

load carrying members among all the other structural components of a building. Since 

the build-up column is assembled manually at the construction site, there might have 

some error in the section and orientation of the lacings assembled which will affect the 

performance of the build-up column. The main objectives of this study the effect of the 

different section and orientation of steel elements on build-up column in terms of 

buckling and stress distribution. Finite Element Analysis of Ansys 12.0 software is used 

to design the ten model of the build-up column. In order to study the effect of section of 

lacings, steel plate and L-angles are used. Besides that, to study the effect of orientation 

of the lacings, inclination angles of 40
°
 , 45

°
, 50

°
 , 55

 °
 and 60

°
 are used. Based on the 

results, orientation of the steel lacings influenced the stress distribution of the due to the 

load. The greater the inclination angle the smaller the stress builds up on the lacings. 

Thus, the build-up column is more stable.  

 

Keywords: Built-up column, Chord, Lacings, Stress Distribution, Buckling, Ansys, 

Finite Element Modeling, Orientation, Section 
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ABSTRAK 

 

Tiang "built-up" adalah satu struktur keluli terdiri daripada dua I-rasuk keluli bergabung 

dengan plat keluli atau sudut sebagai penyusun ikatan tiang. Tiang "built-up" adalah 

salah satu ahli yang menanggung beban kesemua ahli-ahli lain di kalangan semua 

komponen struktur lain bangunan. Sejak tiang "built-up" yang dipasang secara manual 

di tapak pembinaan, mungkin mempunyai beberapa kesilapan dalam penggunaan keluli 

penyusun ikatan tiang berbeza dan orientasi penyusun ikatan dipasang yang akan 

memberi kesan kepada prestasi tiang "built-up". Objektif utama kajian ini kesan seksyen 

yang berbeza dan orientasi elemen keluli pada ruangan membina-up dari segi lengkokan 

dan pengagihan tekanan. Analisis Unsur Terhingga perisian ANSYS 12.0 digunakan 

untuk mereka bentuk model sepuluh tiang "built-up". Untuk mengkaji kesan bahagian 

penyusun ikatan, plat keluli dan L-sudut digunakan. Di samping itu, untuk mengkaji 

kesan orientasi penyusun ikatan, sudut kecondongan 40 °, 45 °, 50 °, 55 ° dan 60 ° 

digunakan. Berdasarkan kepada keputusan, orientasi penyusun ikatan keluli 

mempengaruhi taburan tekanan daripada kerana beban. Lebih besar sudut 

kecenderungan yang lebih kecil tekanan yang membina pada penyusun ikatan. Oleh itu, 

ruang membina-up adalah lebih stabil. 

 

Kata Kunci: Tiang, I-Rasuk, Penyusun Ikatan Tiang, Beban, Tekanan, Orientasi, Ansys 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 BACKGROUND OF STUDY 

 

 Roof, slab, beam, column and foundations are the structural components of a 

building. These are the common and vital structural components that play the role of 

transferring the load of the building from upper part of the structure to the ground. 

Column is one of the members which is subjected to axial compression. Columns are 

vertical load bearing member. The column must be designed to withstand the 

compression load caused by the self-weight and other structural member as well. A 

column either crushes (strength failures) or it buckles (a stability failure). Both modes 

of failure must be considered for every column.  

 

 Build-up column is one of type of steel column used in the steel building 

construction. Built-up columns are often used in steel buildings and bridges providing 

economical solutions in cases of large spans and/or heavy loads. Depending on the way 

that the flanges are connected to each other, they can be grouped into laced and battened 

built-up columns. A build-up column is made up of two or more vertical steel member 

(chords) which is slightly separated and connected to each other by lacings, battens or 

perforated plates. The load carrying function is performed by the main structural 

members which are the chords. The two chord members have a tendency to buckle 

independently. These connectors cause the chords to behave as one integral unit and 

thus the column is able to achieve its maximum capacity.  Lacings provide a tying force 

to ensure that the chords do not buckle independently.  
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 There are several components involved in the build-up column. The main 

member of the column is the chord. Steel column is used as the chord member. There 

are wide variety of steel column that can be used as the chord for the build-up column 

such as I-column, channel, angles and tee steel. In this software simulation of build-up 

column, I-column is used as the chord member. Lacing is one of the components in the 

build-up column. It is believed that the connector causes built-up members to behave as 

one integral unit to achieve maximum capacity. These members are frequently used as 

light compression members, such as truss members, bracing members and columns of 

light steel structures. Plates, L-angle and C-angles can be used as the lacings for the 

build-up column. In laced columns, the lacing should be symmetrical in any two 

opposing faces to avoid torsion. Lacings and battens are not combined in the same 

column. 

 

Build-up column is one of the structural components that have been used in the 

construction field. Many research, experiment and finite element modelling had been 

carried out to determine the stability, capacity and performance of the column under 

different types of conditions. It is vital to understand the characteristics of the column 

and behaviour of the column in order to determine suitable column for the construction 

process. 

 

1.2 PROBLEM STATEMENT 

 

 Build-up column is a load carrying member. It is used to replace normal steel 

column in order to support the heavy loads. At the site, the build-up column is fixed 

manually by the  workers. During the construction process, there might be some errors 

that contribute to the variation of orientation in the lacing system. Thus, it is important 

to analyze the effect of different orientation on the lacing system to the performance of 

the column. 

 There are many types of steel that can be used for the lacing system. At the 

construction site, there might be some changes in the design of the column due to 

availability of the steel at site and also due to the cost of the steel. Therefore, it is 

important to analyze the effect of different section of the lacing system to the 

performance of the column. 
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Thus to understand the effects of these variables to the performance of the column, 

variation in terms of the section and orientation of the lacings, the built-up column will 

be simulated and tested using finite element modelling software Ansys 12.0. 

 

1.3 OBJECTIVES OF STUDY 

 

The main objectives of the study are : 

 

i. Effect of different section of steel in lacing system to build-up column behavior 

in term of buckling and stress distribution. 

ii. Effect of different orientation in lacing system to build-up column behavior in 

term of buckling and stress distribution. 

 

1.4 SCOPE OF STUDY 

 

In this analytical investigation, ANSYS 12.0 simulation software is used in order in 

order to check the performance of the build-up column. The single lacing system build-

up column will be analyzed using the simulation software. In this build-up column 

software simulation V- laced column (without transverse member) will be used 

throughout the simulation of the entire build-up column. The build-up column consists 

of two chord and lacings. Figure 1.1 illustrates the detailing involved in the simulation 

of the build-up column. Steel UC 203 x 203 x 127kg/m will be used for the model 

creation of the build-up column. The height of the column will be 7.0 m. The effective 

width between the chords is 1.0 m.   

 

The column will be modelled applying an assumption that its cross section is 

subjected under axial force only. Load will be applied on top of the column axially. For 

all the tests of the columns, analysis will be performed considering two situations. The 

columns will be tested with different angles of inclination in the lacing system and 

different types of steel in the lacing system. Five models for each condition will be 

tested with the load applied axially. 
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 There will be ten different types of model will be consider as shown in Table 

1.1. Model sample VLC-1 to VLC-5 will be analyzed with different values of angles. 

The angles of inclination that will be used for the analysis are 40
°
, 45

°
, 50

°
, 50

°
 and 60

°
. 

These first five models will be using lacing system with steel plates. The steel plate has 

a cross section area of 500mm
2
 with the dimension of 100mm x 5mm.  

 

 Furthermore, VLC-6 to VLC-10 will be analyzed for the different types of steel 

in the lacing systems. The types of steel that will be used are L-angle, steel plate and C-

angle. Combination of Steel plate with L-angle and steel plate with C-angle will also be 

analyzed in the simulation. L-angle with dimension of 60mm x 60mm x 8mm, C-angle 

with 100mm x 50mm x 10mm and steel plate of 100mm x 5mm dimension will be used 

for the lacing system. The angle of inclination of the lacing system is fixed at 45
°
 for 

this five columns. 

 

 

 

 

 

 

 

 

 

     

Figure 1.0 : Components of the built-up column 
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Table 1.1 : Property table for the built-up column models 

 

Sample Type of lacing Angle, ᶿ 

 

Panel 

length, a 

Length of 

lacing, d 

Cross section 

area, Ad 

VLC – 1 Steel plate 40 2.384 1.56 500 

VLC – 2 Steel plate 45 2.0 1.41 500 

VLC – 3 Steel plate 50 1562 1.27 500 

VLC – 4 Steel plate 55 1.4 1.22 500 

VLC – 5  Steel plate 60 1.154 1.15 500 

VLC – 6 L - angle 40 2.384 1.56 500 

VLC – 7 L - angle 45 2.0 1.41 500 

VLC – 8 L - angle 50 1562 1.27 500 

VLC – 9 L - angle 55 1.4 1.22 500 

VLC – 10 L - angle 60 1.154 1.15 500 

 

Besides that, there are several constant variables that need to take into 

consideration. For VLC 1 up to VLC 5 same angle of inclination which is 45
° 
is used for 

the entire model created. Cross section area of all the three types of steel used in the 

lacing system need to be the same. Besides that, the V-laced column lacing system is 

used for model VLC6 up to VLC 10. These two constant variables ensure the expected 

outcome varies only if there is a change in the types of steel used in lacing system. The 

welded connections between flanges and the lacings will be represented with rigid links 

which is considered to be realistic as it accounts for the finite dimensions and rigidity of 

the connections. The connection at the bottom and top is considered to be pinned 

connection. 
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1.5 SIGNIFICANCE OF STUDY 

 

 Built-up column is made up of steel column attached with steel lacings. There 

are many researches and studies regarding the capacity of the column. Most of the 

studies focused on the chord of the column. There had been less studies conducted on 

the lacings part of the column. Thus, based on my study on the lacings orientation and 

section on the performance of the column will be helpful in order to further specify the 

factors contributing to the capacity of the column. 

 

 Furthermore, the study is conducted using the finite element  software Ansys 

12.0. The common laboratory research methodology conducted, will consume time and 

cost. Nowadays, the most powerful method for structural analysis is the finite element 

method (FEM). The simplifications and idealizations of real structural conditions have 

influence on the final results. The usage of Ansys 12.0 software is efficient to provide 

informative data to analyze the structural components of built-up column.  

 

 

 

 



 

 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

 Built-up columns are used in steel construction when the column buckling 

lengths are large and the compression forces are relatively low. In general, built-up 

columns are used in industrial buildings, either as posts for cladding when their 

buckling length is very long, or as columns supporting a crane girder ( " Detailed 

Design of Built-up Column ", 2008 ). 

 

 A built-up column is a kind of compression member consisting of two or more 

longitudinal elements ( chords ), which are slightly separated and connected to each 

other at only a few locations along their lengths by means of connector-like lacings, 

battens or perforated plates. These members are frequently used as light compression 

members, such as truss members, bracing members and columns of light steel 

structures. It is believed that the connectors causes built-up members to behave as one 

integral unit to achieve maximum capacity ( " Analytical Investigation of Cyclic 

Behaviour of Laced Built-up Columns ",2012 )    

  

 Differentiating built-up column from other structural members is the interaction 

between global and local buckling modes. The former is associated with buckling of the 

built-up member as a whole, while the latter with local buckling of chord components 

between the points at which the chord and the shear system are connected. The effect of 

the interaction between global and local buckling in built-up members was investigated 

by Koiter and Kuiken (1971). It was concluded numerically that a laced built-up column 
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can fail either due to elastic failure of the whole column or due to local inelastic failure 

of a part between joints of connectors under compression, and that in the first case EC3 

may give unsafe results. 

 

 According to Charis J.Gantes et.al (2014), built-up column are often used in 

steel building and bridges providing economical solutions in cases of large spans and /or 

heavy loads. Depending on the way that the flanges are connected to each other, they 

can be grouped into laced and battened built-up columns. Laced columns are 

investigated in the present work, in which the flanges are connected with diagonal bars, 

thus establishing truss like action. 

 

2.2 MATERIAL 

  

 According to Konstantinos et.al (2014), the types of chords used plays a major 

role in the capacity of the column. In the experiment test, two types of chords, IPE80 

and UNP60 were used. IPE80 had a bigger cross section area compared to UNP60. 

From the experiment the collapse load obtained for IPE80 was 309kN whereas for 

UNP60 the collapse loads was197.8kN. Thus, this proved that cross sectional area 

influence the most in the capacity of the column. From his study on the built-up column 

the chord member properties were determined for the study of finite element modelling. 

 

 The selection of either channels or I-sections for chord members provides 

different advantages. I-sections are more structurally efficient and therefore are 

potentially shallower than channels. For built-up columns with a large compressive 

axial force, I or H sections will be more appropriate channels. Chords may be adequate 

in order to provide two flat sides.   

 

 Compression members composed of two angles, channels, or tees back-to-back 

in contact or separated by a small distance shall be connected together by tack riveting, 

tack bolting or tack welding so that the individual sections do not buckle between the 

tacks before the whole member buckles. These are special types of columns called laced 

and battens columns. When compression members are required for large structures like 

bridges, it will be necessary to use built-up sections. They are particularly useful when 
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loads are heavy and members are long. Built-up sections are popular in India when 

heavy loads are encountered. the cross section consists of two channel sections 

connected on their open sides with some type of lacing or latticing to hold the parts 

together as one unit. The ends of these members are connected with battens plates 

which tie the ends together. ( "Design of Steel Structures", 2008 ) 

 

2.3 LACING TYPES 

 

 Lacing  is one of the part of built-up column. It provides connections between 

the two chords and helps the built-up column to behave as an one integral unit. Many 

aspects of the build-up column had been experimented and concluded by Konstantinos 

et.al (2014). According to Konstantinos et.al (2014) the panels’ length influences the 

capacity of the column. This shows that the lacing system is one of the factors 

influencing the capacity of the column. It was concluded that the heavily built panels 

influence the capacity of the column. No local buckling was also observed with the 

specimen tested for the shorter panel length. 

 There are many types of lacings for the built-up column. V-shape, N-shape and 

X- shape lacings are the common lacings types that are used in the built-up column. The 

V-shape arrangement of lacings increases the length of the compression chords and 

diagonals and provides a reduction of buckling resistance. This arrangement is used in 

frames with a low compressive force (" Detailed Design of Built-up Column ", 2008). 

 

 The N-shape arrangement of lacings, can be considered as the most efficient 

truss configuration, for typical frames in industrial buildings. The web of the N-shape 

arrangement comprises diagonals and posts that meet at the same point on the chord 

axes. This arrangement reduces the length of the compression chords and diagonals. It is 

usually used in frames with a significant uniform compressive force. the V-shape 

arrangement of lacings increases the length of the compression chords and diagonals 

and provides a reduction of buckling resistance of the members. This arrangement is 

used in frame with a low compressive force. The X-shape configurations are not 

generally used in buildings because of the cost and the complexity of fabrication. 
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2.4 LOAD AND CONNECTION 

 

 In the study conducted by Behrokh Hosseini et.al (2013), the behaviour of build-

up column under constant axial load and cyclic lateral load were investigated. Eight 

columns made up of two IPE100 as the chords and plates as the lacings were used in the 

experiment. To evaluate effects of the axial load, different loads were applied on the 

specimens. Two different distances were also used to show variation on effects towards 

the column. The test results showed that the axial load significantly affected the 

ductility, the strength and the stiffness of the columns. Different in the distances 

between main chords had little effects on strength but had significant change in the 

ductility. Thus, it can be concluded that the distance between main chords need to be 

fixed since it affects the strength capacity of the build-up column. 

 

 There are many types of connection and load that involves and acts on the built-

up column. Loads such as axial load, cyclic load and wind load can be applied on the 

built-up column. Many studies had been conducted in terms of different load types. 

Study had been conducted by A. Poursamad Bonab et.al (2012), focusing behaviour of 

laced column due to cyclic load. The study evaluated the effects of column's 

geometrical parameters and various level of axial loads on cyclic behaviour of laced 

columns. From this study, the load type was determined which was axial load.   

 

2.5 EXPERIMENTAL AND FINITE ELEMENT MODELLING ANALYSIS 

 

 Ansys 12.0 had been used in the study of the built-up column model. Many 

experimental studies had been conducted to study and understand the behaviour of the 

built-up column. Ansys finite element modelling software had been widely used to 

simulate the built-up column model and analyse the model by simulation.  

 

 Based on the study by Vaidotas Sapalas et.al (2013), modelling the steel  built-

up column using FEM Ansys is restricted to the assumptions of National Lithuania 

Code STR and Eurocode 3. The study also states that the FEM modelling of the steel 

built-up column with applied end conditions being safe enough according to STR and 



11 

 

EC3. Models of the built-up column are check and run test to meet the requirements of 

EC3. 

 

 The experimental efforts related to built-up column are limited. Hashemi and 

Jafari (2009),compared the elastic buckling loads of battened columns with end stay 

plates obtained analytically with the experimental results. They concluded that 

Engesser's method is always on the safe side. The same authors compared experimental 

collapse load of simply supported battened built-up columns with the ones found 

analytically with the use of Ayrton-Perry method and the ultimate capacity curve 

method, observing the mean value of the two procedures can be both safe and 

economical. 

 

 Bonab and Hashemi (2012) investigated numerically and experimentally the 

cyclic behaviour of the laced built-up columns under a lateral concentrated load and 

different level of axial loading. One of their conclusions was that high level of axial 

load lead to poor ductility and that laced built-up columns are acceptable for use in 

moderately earthquake-prone areas. Additionally, they investigated the elastic critical 

buckling and compressive capacity of centrally loaded laced columns. 

 

 Based on the experimental investigation conducted by Behrokh Hosseini (2013), 

when a built-up column is subjected to a lateral load in an earthquake, it may not behave 

in an acceptable manner. In his investigation, to evaluate the seismic behaviour, eight 

laced column specimens were tested. These columns were subjected to a constant axial 

load while a gradually increasing lateral cyclic load was applied. The experimental 

results showed that several seismic characteristics of the laced column were reduced as 

the axial load increased. however, in general, the seismic behaviour of the laced built-up 

columns with various geometrical properties was investigated analytically, which was a 

continuation of the experimental investigation of the cyclic behaviour of laced columns. 

Comparison of the results showed that there is a good correlation in load-displacements, 

failure modes and elastic behaviour between the experimental and the analytical 

procedure generally gives a conservative prediction for the ductility of the laced 

columns (" Detailed Design of Built-up Column ", 2008). 
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 According to Mahmood Hosseini et.al (2013), compound buckling is also a 

factor that affects the elastic critical loads of columns. This effect was studied by Duan 

et.al (2002). However, in laced columns, because of the low values of slenderness of the 

main chords between the lacing plates compared of the with the overall slenderness of 

the built-up column, compound buckling cannot occur. With regard to the existing 

complications in calculating the exact elastic critical load of built-up columns by 

analytical methods, all the proposed theoretical methods contain simple assumptions, 

and therefore, it is necessary to evaluate the precision of the different methods 

experimental studies. Very few tests have been conducted on built-up columns. 

Hosseini Hashemi and Jafari (2009), have investigated the elastic critical load and 

compressive capacity of batten columns through laboratory tests and have assessed the 

precision level of the theoretical formulas. However, such tests have not been reported 

for laced columns. 

 

 The finite element method had been used to study the behaviour of single , as 

well as composed CFS structural members. The studied composed members, however, 

are of small scale and interconnected with self-tapping screws. Reasonable 

correspondence with experimental results has been reported, depending on the initial 

assumptions and complexity of the model.  

 

 General guidance for non-linear FEA of thin walled members are given by 

Bakker and Pekoz (2003). The authors emphasize on the importance of engineering 

judgement for determining the model input and for results interpretation. The effect of 

initial imperfections and residual stresses on the accuracy of computational model is 

addressed by the same author. The authors summarise a set of guidelines for the 

implementation of imperfections residual stress in a numerical model. These include 

simple rules of thumb for the amplitude of localised imperfections, as well as 

imperfection spectrum, based on existing experimental data. The spectrums allow for a 

quick assessment of the imperfection amplitude for a particular buckling wavelength.  

 

 Dubina and Ungureanu (2002) studied the erosion of the theoretical buckling 

strength of CFS channels in bending and compression, due to initial imperfections in 

single and coupled instability failure modes. The analysis is based on non-linear FE 
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simulations, from which the higher sensitivity of the distortional-overall interactive 

buckling to sectional imperfections is demonstrated. Non-linear finite shell element 

models have been used by Shifferaw and Scafer (2007) to calibrate the Direct Strength 

Method design expressions for beams, to account for the existing inelastic bending 

reserve in local and distortional buckling. The findings of the numerical investigations 

are validated based on C- and Z-section beams. The authors note an important 

distinction between members free to warp and members, in which warping is restricted. 

 

 Seo et.al (2011) described complex light steel beams, resembling channels with 

rectangular hollow flanges and slender webs with circular openings. These were studied 

using linear finite element solid models. Linear buckling analysis was used to derive the 

elastic lateral-torsional buckling moments, needed for code-based predictions of the 

overall moment capacity. The authors proposed simplified modelling techniques, based 

on equivalent web thickness, to account for opening in the web. The recommendations 

are to be used in approximate FE models or explicit elastic buckling numerical 

solutions, derived by authors.  

 

 Narayanan and Mahendran (2009) investigated distortional buckling in 16 

innovative cross section shapes of CFS columns. Because the overall capacity, obtained 

based on the Australian design code, over predicted the capacity of the columns 

significantly, finite elements model were used to study the failure mechanisms and 

obtain the axial compression capacity. The models included geometrical imperfections 

and residual stresses. They established that residual stresses had a very small effect on 

the ultimate compression capacity. The numerical analyses are validated by 15 

experiments on column if intermediate length, which failed in distortional buckling with 

very little post-buckling strength.  

 

 Lim and Nethercot (2003) used finite element models to study the ultimate 

strength and stiffness of connections of light-steel frames, as well as single lap-joints 

between thin CFS plates. The models could only give a good prediction of the response, 

observed during the experiments, after the slip in bolts was eliminated from the 

experimentally measured graphs.  

 


