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Abstract 
 
This paper explains the research work on two phase 
flow using Lattice Boltzmann Method. Three type of 
configuration of the bubbles simulation being 
simulated using Visual C++ program. Free energy 
model was reviewed then the base on latest models 
base on isotropy approach and Galilean invariance 
are also considered. Simulation results are validated 
and good agreement with previous studies. 
 
Keywords: Multi-phase, bubbles, lattice Boltzmann 
method 
 
1. Introduction 
 
 Multiphase flow of fluids can be found everywhere 
either in natural environment phenomenon or in the 
technology evolution. Study of multiphase flow could 
contribute a better understanding on multiphase 
behaviour. The knowledge of multiphase flow 
behaviour is important in the development of 
equipment which directly related to multiphase 
problem. 
  
 Lattice Boltzmann Method (LBM) is relatively new 
method and has a good potential to compete with 
traditional CFD methods. Recently it has been proved 
to be a promising tool to simulate the viscous flow [3]. 
LBM base on derivation of kinetic theory which 
working in mesoscopic level instead of macroscopic 
discretisation by traditional method. Instead of easy in 
incorporating with microscopic physics, it is also 
having shorter time compare to the current method. 
 
 LBM have more advantages in multi-phase 
compare to traditional method. In multi-phase, two 

main issues which are surface tension force modelling 
and interface recording have to be considered [4] 

2. Multiphase Lattice Boltzmann Method 

 Evolution of the equation is important in the initial 
stage of simulation using Lattice Boltzmann Method. 
The equation is  discretised   in time and space, for a 
set of distribution function if . Model of two 
dimension nine-velocity model (D2Q9) is used 
evaluate the equation form as  

1(x e , ) (x, ) (x, ) (x, )eq
i i i i if t t t f t f t f t F

τ
⎡ ⎤+ Δ + Δ − = − +⎣ ⎦

                 (1) 
 
where tΔ is time step, e  is the particle’s velocity, τ is 
the relaxation time for the collision, F  is the external 
force and 0,1,....,8i = . The collision term at the right 
hand side of Equation 1 has been applied the BGK 
approximation.   
 
The discrete velocity is expressed as 
 
 ie =(0,0 for i=0,  
 ie =cos(i-1)π/4, sin(i-1)π/4 for 1,3,5,7  
 ie =21/2 cos(i-1)π/4,sin (i-1)π/4 for i=2,4,6,8.  
 

eq
if is an equilibrium distribution function, the choice 

of which determines the physic inherent in the 
simulation. 
 
 The time evolution of the lattice consist of basically 
two steps which are: a streaming process, where the 
particle densities area shifted in discrete time steps 
through the lattice along the connection lines in 
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direction ie  to their next neighbouring nodes and a 
collisions step, where locally a new particle 
distribution is computed by evaluating the right hand 
side of Equation 1. 
 
 Free energy theory in two-phase lattice Boltzmann 
model states that the physical inherent in simulation 
described by the equilibrium. Then, a power series in 
local velocities is assumed.[6].  
 

2
, , , , ,( ) ( )eq

i i i i i if A B e u C e e u u Du G e eα α α β α β α α ββ= + + + +
 (2) 
 
where the summation over repeated Cartesian indices 
is understood. The coefficient , , ,A B C D and Gαβ are 

determine by placing constraint on the moment of eq
if . 

In order that collision term conserves mass and 
momentum, the first moment of eq

if are constrained by 
 

eq
i

i
f ρ=∑   (3) 

,
eq

i i
i

e f uα αρ=∑  (4) 

 
The next moment of eq

if is chosen such that the 
continuum macroscopic equations approximated by 
evolution equation correctly describe the 
hydrodynamics of the component, non-ideal fluid. This 
gives 
 

, ,

[ ( ) ( ) ]

eq
i i ie e f

P u u u u
α β

αβ α β α α γ γ αβρ υ ρ ρ δ

=

+ + ∂ + ∂
∑  (5) 

 
where 2 ( 1/ 2) / 3c tυ τ= − Δ is the kinematic shear 
viscosity and Pαβ  is the pressure tensor. In order to 
fully constrain the coeffiecient , , ,A B C D and Gαβ , a 
fourth condition is needed, which is 
 

2

, , ( ]
3

eq
i i i

ce e f u u uα β α βγ β αγ λ αβ
ρ δ δ δ= + +∑  (6) 

 
Yonetsu’s Approach which is based on isotropic tensor 
approach has been chosen to the solve the coefficient 
in the Equation 2-6) 
 

2
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1 2
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2

4
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c
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=
 (7) 

2 02

1 [ ( )2 ]
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A p
c γ γγκ ρ κρ ρ= − ∂ − ∂  (8) 
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c
ρ

= =  (9)  
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c
ρ
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2 1 2 02 2

2, 4 ,
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D D D D
c c
ρ ρ

= − = = −  (11) 

2
2 4

1 2 ( )
8xx x x xG u
c

υ ρ κ ρ⎡ ⎤= ∂ + ∂⎣ ⎦  (12) 

2 2 4 4( ) ( )
8 8xy yx x y y x yG G u u
c c
υ κρ ρ ρ= = ∂ + ∂ + ∂  (13) 

2 2yy xxG G=  (14)  

1 24G Gαβ αβ=  for all ,α β  (15)  
 
Analysis by Holdych et al. [5] shows that the evolution 
scheme, Equation 1 approximates the continuity 
equations  
 

( ) 0t uα αρ ρ∂ + ∂ =  (16) 
 
and the following Navier-Stokes level equation : 
 

( ) ( )t u u uα β α βρ ρ∂ + ∂ =  
[ { }]P u u uβ αβ β β α α β α β γ γυ ρ δ−∂ + ∂ ∂ + ∂ + ∂  

2

3 [ ( )]u P u u u u
c β α γ β γ γ α β γ
υ ρ− ∂ ∂ + ∂  

2
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c β β αβ γ γ
υ ρ− ∂ ∂ ∂  

2

3 [ ( )]u u u u
c β α γ β γ γ β γβ γ γ
υ ρ ρ δ ρ− ∂ ∂ ∂ + ∂ + ∂  

2

3 [ ( )]u u u u
c β β γ α γ γ α αγ λ λ
υ ρ ρ δ ρ− ∂ ∂ ∂ + ∂ + ∂  

2

3 [ ( )]tu u u u
c β γ α β β α αβ λ λ
υ ρ ρ δ ρ+ ∂ ∂ ∂ + ∂ + ∂  (17) 

 
 The top line is the compressible Navier-Stokes 
equation while the subsequent lines are error terms. We 
have, then describe a framework for one component 
free energy lattice Boltzmann. 
 
 Van-Der Waals theory is very closed related to the 
multiphase phenomena. The Van-Der Waals equation 
of state can be describes as follow  
 

2

2 ( )n ap V nb nRT
V

⎛ ⎞
+ − =⎜ ⎟

⎝ ⎠
 (18) 
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where n  is mole number, a  and b  are constant 
characteristic of a particular gas and R is the gas 
constant. p , V  and T  denotes as volume and 
temperature. Equation 18 then rewrite in simplified 
form as follow : 
 

3 (3 1) 8p V T
V

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

 (19) 

 
where  
 

2

8 83 , ,
27 27c c c

a aV b T P
bR b

= = =   (20) 

 
and 
 

, ,
c c c

P V TP V T
P V T

= = =  

 
 (21) 

 
Figure 1: Isotherms plot of p V−  
 
The thermodynamics of the fluid enters the lattice 

Boltmann simulation via pressure tensor Pαβ . The 
equilibrium properties of a system with no surface ( i.e 
periodic boundaries) can be describe by a Landau free 
energy functional 

 
2ψ ( , ) ( )

2
dV t α

κψ ρ ρ⎡ ⎤= + ∂⎢ ⎥⎣ ⎦∫  (22) 

 
Subject to constraint 

 
M dV ρ= ∫  (23) 
 
 
 

 
where ( , )tψ ρ is free energy density of bulk phase. 
κ is a constant related to the surface tension, M is the 
total mass of fluid and the integration are over all 
space. The second term in Equation 22 gives the free 
energy distribution from density gradients in an 
homogeneous system. For Van-Der Waals fluid, free 
energy density of bulk phase can be written in the form 

 
2( , ) ln

1
t RT a

b
ρψ ρ ρ ρ
ρ

⎛ ⎞
= −⎜ ⎟−⎝ ⎠

 (24) 

 
Introducing a constant Lagrange multiplier, μ , we 

can minimise Equation 22, giving a condition for 
equilibrium as 

 
2 0ψ μ κ ρ

ρ
∂

− − ∇ =
∂

 (25) 

By multiplying Equation 25 by 
x
ρ∂
∂

and integrating 

once with respect to x, we obtain first integral 
 

( )2

2 α
κψ μρ ρ− − ∂ = constant (26) 

 
 
At equilibrium condition, the chemical potential and 

pressure of both phases are given by 
 

ln 2
1 1

RTRT a
b b
ρμ ρ
ρ ρ

⎛ ⎞
= + −⎜ ⎟− −⎝ ⎠

 (27) 

 
22

1
RTp a
b

ρ ρ
ρ

= −
−

 (28) 

 
Respectively. We now define 
( , )W T pρ ψ μρ= − + , then the Equation 25 and 

Equation 26 can be rewritten as 
 

2W κ ρ
ρ

∂
= ∇

∂
 (29) 

 

( )2

2
W α

κ ρ= ∂  (30) 
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By solving equation 30, we can determine the 
density profile at the interface for different values of 
κ .Noted that the fourth order Rungge-Kutta scheme is 
used to solve equation 30 and temperature is set to be 

0.55T = . 
 

 The Eotvos equation stated that the increasing of Eo 
number are parallel with the decreasing of the surface 
tension. By decreasing of theσ , it will enhance the 
deformation of the bubbles. 
 

2g dEo ρ
σ
Δ

=  (31) 

4

3
LgMo ρ ρυ
σ
Δ

=  (32) 

Re Ud
υ

=  (33) 

 
where g is the gravitational force, ρΔ is the density 
difference for two phase system, Lρ is the fluid 
density, U is the velocity at equilibrium state, d  is the 
radius of bubble and σ  is the surface tension 
coefficient. 

 
3. Results and Discussions 
 
 Simulation of two bubbles rise was done for three 
different cases where several parameters were varied. 

 
In these simulations, density is set to be 0.0001962, 

κ  value is set to be 0.0075, density of fluid is set to 
4.895 for liquid and 2.211 for gas. The periodic 
boundary condition is employed in all boundaries.  In 
this study, the cavity shaped grid was used. For Case 1 
and 2, grid size of 161 x 481 was used while for Case 
3, grid of 201 x 681 was used. 

 
The simulation for Case 1 and Case 2 used the 

same Eotvos number which is Eo =20 while Case 3 
used Eo = 30. Due to the effect of the buoyancy force, 
the bubbles moved upward from the bottom and in the 
meantime the bottom-middle part of the bubbles 
experienced a deformation due to hitting process with 
the surrounding water.  
 
 
 
 
 
 
 
 

3.1. Case 1 
  

              
(a) (b)  (c) (d) 

Figure 2 (a) – (d): Time evolution of bubble rise 
phenomenon at Eo =20 

 
 The figures show the bubble deformation when the 
bubble arose upward from the bottom. The bubble 
shape deform accordingly due to the surface tension 
force while moving upwards due to the buoyancy 
effect. The interfaces of bubble and water are having 
surface tension force. The formation of wake below the 
bubble causes it to take the form of a skirt. 
 
3.2. Case 2 
 

       
(a) (b) (c) (d) 
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 (e) (f) (g) (h) 

 
Figure 3 (a) – (h): Time evolution of bubble rise 

phenomenon at Eo =20 
 
 Figures shows two separate bubbles positioned side 
by side area configured relatively far to the each 
others. As the time step increase, the shape of the 
bubbles deform due to surface tension force which take 
an oblate spheroid shape. The phenomenon was 
resulted by spurious current upward in the middle of 
both bubbles. The bubbles are not merged each other 
due to the interface thickness stronger than surface 
tension force. Lower Eotvos number resulted stronger 
interface. 
 
3.3. Case 3 
 

       
(a) (b) (c) (d) 

 
 
 

       
 (e) (f) (g) (h) 
 

Figure 4 (a) – (h): Time evolution of bubble rise 
phenomenon at Eo =30 

 
 The figures explain the two bubbles coalesce each 
other when they were located relatively closed. By 
increasing Eotvos number to 30 means lowering the 
interface strength. Later it contributed to the merging 
effect of the bubbles. The interface force was unable to 
resist the surface tension resulted by the spurious 
current and eventually starting to merge. At the 
meantime of merging process, the bubble continues 
moving upward due to buoyancy effect. 
 
4. Conclusion 
 
 This paper shows the capability LBM in simulating 
the multi-phase phenomenon. Several simulations of 
bubbles rise has been done. From simulations, Case 2 
and Case 3 bring an understanding on the interface 
force that reacts with the surface tension force of the 
bubbles movement. It was clear that the bubbles in the 
Case 2 not affected with the surface tension forces 
from each other. For the Case 3 which is configured 
close to each other, the bubbles later merge to each 
other due to the broken interface cause by surface 
tension force. The result shows the LBM capability in 
simulating the multi-phase flow. The study has been 
compared to the previous study and having a good 
agreement with other researcher.  
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