Syngas production from methane dry reforming over Ni/SBA-15 catalyst: Effect of operating parameters

Osaze Omoregbe¹, Tan Ji Siang¹, Huong T. Danh², H.D. Setiabudi¹, S.Z. Abidin¹, Dai-Viet N. Vo^{1,*}

¹Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

²Clean Energy and Chemical Engineering, Korea University of Science and Technology (UST), Daejeon, 305-350, Korea

**Corresponding author*. Tel.: +609 549 2874; fax: +609 549 2889.

E-mail address: vietvo@ump.edu.my (D.-V.N. Vo)

Abstract

The influence of operating conditions including reactant partial pressure and reaction temperature on the catalytic performance of Ni/SBA-15 catalyst for methane dry reforming (MDR) has been investigated in this study. MDR reaction was carried out under 1 atm with varying CO₂/CH₄ ratios from 1/2.5 to 2.5/1 at gas hourly space velocity (GHSV) of 24 L g_{cat}^{-1} h⁻¹ and 923-1023 K. The catalyst was characterized using XRD, FESEM, H₂-TPR, BET surface area and TPO measurements. FESEM results showed that Ni particles were well dispersed on nanorod-shaped SiO₂ support. Both CH₄ and CO₂ conversions increased with rising reaction temperature and reached to about 88.2% and 92.9%, respectively at 1023 K and CO₂/CH₄=1:1. Catalytic activity appeared to be stable with time-on-stream at 973-1023 K whilst a slight drop in activity was observed at 923 K reasonably due to deposited carbon formed by thermodynamically favoured Boudouard and CH₄ decomposition reactions. The increase in H₂/CO ratio from 1.2-1.4 with growing reaction temperature was ascribed to the enhancement of H₂ production through CH₄ dehydrogenation. Interestingly, the ratio of CH₄ to CO₂ conversions increased linearly with CO₂ partial pressure whilst an opposite trend was observed for H₂/CO ratio suggesting the rising CO₂ consumption through concomitant CO₂ gasification reaction at CO₂-rich environment.

Keywords: Methane dry reforming; Ni/SBA-15; Syngas; Hydrogen