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ABSTRACT 

This study aims to synthesize nanocellulose from Hevea brasiliensis fibres or commonly 
known as rubber wood fibres. Rubber trees are able to grow abundantly in Malaysia due 
to its close proximity to the equator (within 15° latitude). When the production of latex 
dwindles considerably, the trees are felled and are replaced with newer saplings. Hence, 
the end —of-cycle trees can be used as a rich source of synthesis of nanocellulose. The 
wood fibres obtained were pre-treated using sodium anthraquinone. This was followed 
by a series of treatment with a mixture of sodium chlorite and acetic acid as well as 
sodium hydroxide and hydrogen peroxide. The bleached pulps were then air dried and 
soaked in distilled water for 8 hours. It was then mixed in a mechanical blender for 15 
minutes. Diluted suspensions (0.3%) are prepared and put through the sonicator for a 
period of four hours at 650C. Fibres obtained were then examined by the Mastersizer to 
determine the morphological size of the wood fibres. After sonicating for about four 
hours, the modal range of fibres obtained were 158.49 - 181.97 (jtm). Fibres were then 
run through the homogenizer for a period 10, 20, 30 and 40 runs. After 40 runs, the modal 
range was between 0.142 - 0.200 (gm). The nanocellulose fibres were studied further by 
examining with Fourier Transform Infrared Spectroscopy (FTIR). There was a 
disappearance of vibration peaks at 1730.28 and 1234 cm-1 from spectra of treated fibres 
which shows the removal of hemicellulose and lignin components respectively. Images 
obtained from the FESEM shows that the chemical treatment resulted in increased 
roughness and striations of fibres. It also showed the average diameter achieved after 
chemo -mechanical treatment to be 160 nm. 

Keywords: Wood fibres, Cellulose, Chemo -mechanical process, Nanocellulose
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ABSTRAK 

Kajian mi bertujuan untuk mensintesis nanosellulosa daripada gentian Hevea brasilienis 
atau lebih dikenali sebagain gentian kayu getah. Pokok getah lazimnya dapat tumbuh 
dengan subur di Malaysia kerana kedudukaimya yang berdekatan dengan garisan 
khatulistiwa (dalam lingkungan 15 0 latitud). Apabila penghasilan!produksi susu getah 
mula berkurangan dengan ketara, maka pokok getah akan ditebang dan digantikan dengan 
anak pokok yang baru. Justeru, pokok yang berada di akhir kitaran boleh digunakan 
sebagai sumber yang kaya untuk mensintesis nanosellulosa. Gentian kayu di rawat 
dengan mengunakan natrium anthraquinone. mi diikuti dengan beberapa siri rawatan 
dengan campuran natrium kiorida dan asid asetik dan juga natrium hidroksida dan 
hydrogen peroksida. Pulpa yang terluntur kemudian direndam di dalam air suling selama 
lapanjam. Rendaman tersebut kemudian di kisar mengunakan pengisar mekanikal selama 
15 minit. Campuran yang mengandungi 0.3% fiber kemudian diletakkan dalam mandian 
sonicator selama empat jam pada suhu 65 °C. Gentian yang diperoleh kemudian diperiksa 
menggunakan Mastersizer untuk menentukan saiz morfologi. Selepas melalui proses 
sonifikasi, modal saiz yang diperoleh adalah dalam lingkungan 158.49-181 .97im. 
Gentian kemudian melalui homogenizer untuk tempohl0, 20, 30, 40 kitaran. Selepas 40 
kitaran, modal saiz yang diperoleh adalah dalam lingkungan 0.142-0.200 rim. Gentian 
nanosellulosajuga dikaji dengan menggunakan Fourier Transform Infrared spectroscopy 
(FTIR). Gentian yang dirawat menunjukkan kehilangan puncak getaran pada 1730 cm' 
dan juga 1234 cm-1 yang membuktikan penyingkiran hemisellulosa dan lignin. Imej 
yang diperoleh daripada kajian FE-SEM menunjukkan rawatan kimia telah meningkatkan 
kekasaran pada permukaan gentian tersebut. Imej juga menunjukkan diameter gentian 
sebanyak 1 6Onm selepas rawatan kimia serta mekanikal.
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I INTRODUCTION 

1.1 Motivation and statement ofproblem 
Cellulose fibres are the constituents of plant fibres ( Kalia et al., 2010). It is considered 

to be one of the most abundant organic compounds derived from biomass according to 

Dufresne et al. (2005). They also stated that the worldwide production of this polymer is 

estimated to be around 1010 to 1011 tonnes each year. According to Yano et al. (2005), 

cellulose is used widely in various industries such as the paper, films, as well as the 

pharmaceutical industry. 

Cellulose is a long chain polymer which is formed through the linking of smaller 

molecules or repeating units of D-glucose which is a type of simple sugar (Habibi et al., 

2010).Kalia et al. (2009) stated that cellulose consists of helically wound cellulose 

microfibrils, bound together by an amorphous lignin matrix which is believed to keep 

water in fibres as well as to give the stem support from physical forces such as strong 

winds as well as gravitational effects. According to Kalia et al. (2009) besides cellulose 

and lignin, hemicellulose is also present. It is said to be the compatibilizeer between lignin 

and cellulose. Natural fibres also contain pectin, waxes and water soluble substances. 

Cellulose, lignin and hemicellulose is said to be the basic components of natural fibres 

which contribute to the physical properties such as relatively high strength, high stiffness 

and low density( Mitchell, 1989). 

Nanocellulose refers to the cellulose fibres having diameters ranging from 10-200nm 

(Verma et al., 2011). There are two main types of nanocellulose which are cellulose 

nanocrystals and cellulose microfibrils according to Habibi et.al  (2010). Based on their 

journal, microfibrjls occur when 36 individual cellulose molecules are brought together 

by biomass into larger units. Nanocellulose can be extracted from the cell wall of 

lignocellulosic materials using different methods, such as mechanical, chemo-mechanical 

and enzymatic techniques (Jonoobi et al., 2009; Panthapulakkal et al., 2006). In previous 

studies, nanocellulose was extracted from many different fibres such as coir, hemp, 

banana stem, cassava bagasse and rice husk. Nevertheless, there is still relatively fewer 

studies on the production of nanocellulose from rubber wood. The use of rubber wood is 

extremely beneficial to Malaysia as it is one of the main commodities. Hence, once the 
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latex production decreases, these trees can be processed to produce nanocellulose which 

has a wide array of uses. Besides that in the previous study performed by Jonoobi et al. 

(2011), they did not perform thermo-chemo pre-treatment on the wood fibres. Hence this 

study would also like to inculcate pre-treatment before performing chemo-mechanical 

analysis. Based on previous studies of synthesis of nanocellulose from other plant base, 

pre- treatment of fibres is believed to be able to clean and chemically modify the fibre 

surface as well as increase surface roughness ( Kalia et al., 2009). 

1.2 Objectives 

The following is the objective of this research: 

o To synthesis nanofibres from rubberwood (Hevea brasiliensis) by means of pre-

treatment prior to chemo -mechanical process. 

1.3 Scope of this research 

The following are the scope of this research: 

i) Preparation of wood fibre sample. 

ii) Pre —treatment on wood fibres. There are two types of pre- treatment that 

would be examined. First method would be using a mixture of sodium 

hydroxide and anthraquinone and the second method would be using sodium 

sulphite. 

iii) Chemo-mechanical treatment to further separate the cellulose fibres into 

smaller fibres known as nanocellulose. 

iv) Verification analysis on the quality of product formed was done by studying 

the morphology of the cellulose fibres using Scanning Electron Microscope 

(SEM). The tracking of functional group changes were done using Fourier 

Transform Infrared Spectroscopy (FTIR). The structure and phase analysis 

were done using X-ray diffraction .Thermogravimetric analysis was carried 

out to determine the potential and extent of thermal decomposition.
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1.4 Main contribution of this work 
Previous studies have demonstrated the synthesis of nanocellulose from a variety of plant 

source that is native to the researchers' homeland. For example, jute from India and hemp 

from the Philippines. The current study extends these techniques to a local Malaysian variety, 

the rubber tree. Addressing the problems with manufacturing nanocellulose fibres from this 

study would also be the main focus of this study. 

1.5 Organisation of this thesis 
The structure of the reminder of the thesis is outlined as follow: 

Chapter 2 provides an overview of the history of the rubber industry in Malaysia, 

characteristics as well as uses of the rubber wood tree. Composition of wood fibres 

especially cellulose were also discussed in detail. The advantage of cellulose fibres 

compared to synthetic fibres were also looked into. Besides that, most importantly a 

concise description of nanocellulose from its characterisation to the synthesis were also 

discussed in detail 

Chapter 3 gives a review of the materials used as well as the preparation of the chemicals. 

Besides that the methodology was also discussed in detail. This includes the pre-

treatment, thermo-chemo and thermo -mechanical treatment. Characterization analysis 

were also discussed. 

Chapter 4 is devoted to the results and discussion of the characterization and analysis of 

the sample of wood fibres. 

Chapter 5 gives a summary of the whole study performed which is divided into two parts 

which are the conclusion and recommendation
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2 LITERATURE REVIEW 

2.1 Overview 

Chapter 2 provides an overview of the history of the rubber industry in Malaysia, 

characteristics as well as uses of the rubber wood tree. Composition of wood fibres 

especially cellulose were also discussed in detail. The advantages of cellulose fibres 

compared to synthetic fibres were also looked into. Besides that, a concise description of 

nanocellulose from its characterisation to its synthesis were also discussed. 

2.1.1 The history of the rubber industry in Malaysia 

Sir Henry Wickham is known as the father of the rubber industry in Malaysia. In 1876, 

seeds were brought by him from Brazil to the Kew Garden in the United Kingdom. Some 

of the seedlings were then transported to the Singapore Botanical Garden through Ceylon 

(now known as Sri Lanka). Initially, cultivation of rubber in Malaysia began in Kuala 

Kangsar in 1879 (Ratnasingam, 2000). 

Figure 2.1: Agroforestry Database 4.0 (Orwa et al.2009)
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The map in Figure 2.1 shows the countries where the species has been planted. Native 

range includes countries such as Bolivia, Brazil, Colombia, Peru, Venezuela. Whereas, 

exotic range includes countries such as Malaysia, Brunei, Cambodia, China, Ethiopia, 

India, Indonesia, Laos, Liberia, Myanmar, Philippines, Singapore, Sri Lanka, Thailand, 

Uganda, Vietnam. 

According to Shigematsu et al. (2011), more than 80% of total rubber plantation areas in 

the world are in Asia, with Malaysia, Indonesia and Thailand covering almost 70% of the 

total rubber cultivation. Malaysia is currently the 3rd most important country in the world 

for rubber cultivation (Shigematsu et al., 2011). 

2.1.2 Rubber Wood Tree 

Hevea brasiliensis is a quick-growing tree. It rarely exceeds 25 m in height in plantations, 

but wild trees of over 40 m have been recorded (Balsiger et al., 2000). It has a well-

developed taproot system and far-spreading laterals to absorb water. According to 

Ratnasingam et al. (2012), rubber wood was formerly regarded as a by-product of the 

rubber plantations and used for the production of charcoal or as fuel wood, for brick 

making, tobacco drying and rubber drying. Other rubber wood residues have been used 

successfully in Malaysia for the production of particle board, wood-cement board, and 

medium-density fibreboard. 

The importance of the timber from the rubber plantations is now fully recognized, and in 

Southeast Asia it is planted solely for timber production (Ratnasingam et al., 2012). Most 

of the timber is used to manufacture furniture. Other uses include interior finish, 

moulding, e.g. for wall panelling, picture frames, drawer guides, cabinet and other 

handles, parquet flooring, many household utensils, crates, coffins, veneer, and glue-

laminated timber. 

The economic life cycle of a rubber plantation is 30-3 5 years, after which replanting is 

necessary (Ratnasingam et al., 2012) Hence , the trees that need to be felled to replant 

newer saplings provides a rich source of rubber wood fibre waste that can be transformed 

into useful products such as nanocellulose which can be then used in various compounds. 

Synthesising nanocellulose from agricultural remnants provides copious , cheap and 

available resource of inexhaustible lignocelluloses materials. Ecological worry has 
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resulted in increased interest in renewable- based resources. Hence, materials such as 

rubber wood fibre is considered as an environmentally secure substitute ( Digabel et al., 

2006) 

2.2 Lignocellulose 

Cellulose, lignin and hemicellulose is reported to be the basic components of natural 

fibres (A.J. Mitchell, 1989). Bismarck et al (2002) in their journal stated that the 

lignocellulosic fibres have different categorised microstructures. The elongated single 

cell fibres consist of a primary wall and three other secondary walls. In the center of this, 

there is the lumen which transports water and other dissolved ions. 

The primary cell wall consists of pectin which will be hardened when lignin deposits. 

Wood cell walls consists of 3-4 rim wide cellulose that are embedded in hemicellulose 

and lignin network (Stamm, 1964). Cellulose consists of helically wound cellulose 

microfibrils that form part of the secondary cell wall (Bismarck et al). Mitchell (1989) 

stated that lignin is the adhesive system or the gluing agent that holds the cell structure 

together which contribute to good physical properties. 

Besides that, binding of lignin matrix is believed to keep water in fibres as well as to give 

the stem support from physical forces such as strong winds as well as gravitational effects. 

According to Kalia et al. (2011), hemicellulose is said to be the compatibilizer between 

lignin and cellulose. Natural fibres also contain pectin, waxes and water soluble 

substance.
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Figure 2.2: Cross Section of an elongated cell 

Figure 2.3: Three Dimensional Cross Section of an elongated cell (Rong et al., 

2001)
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Cellulose is a long chain polymer which is formed through the linking of smaller 

molecules or repeating units of D-glucose which is a type of simple sugar (Habibi et al., 

2010). These glucose units are linked when water is eliminated by combining the 

hydroxyl group and hydrogen. According to the Merck Index (1968), linking two units 

produces a dissacharide called cellobiose. In the cellulose chain, the glucose units are in 

six-membered rings, called pyranoses. There are joined by single atoms (acetal lingkages) 

between the C  of one pyranose ring and the C-4 of the next ring. A molecule of water is 

lost due to the reaction of an alcohol. (Bradfield et al., 2006). 

The interchain hydrogen bonds in the crystalline regions are strong, giving the resultant 

fibre good strength and insolubility in most solvents. This prevents cellulose from 

melting. Hence, cellulose is a relatively stable polymer ( Adriana et al., 2011) . Most 

cellulose structures can absorb large quantities of water thus the cellulose swells but does 

not dissolve in water ( Visakh et al., 2010). 

Cellulose 

CI-IOH	 H OH	 CH,oH I I OH 
C'H 

H\ k/—O. J ,+H H  
H o [CH	 H OH] CHOH 

CUobkte 'JI 30 OM 

Figure 2.4 : Cellobiose unit (Bradfield et al., 2006) 

In contrast with mineral fibres such as glass and carbon fibres, cellulose fibres have good 

flexibiltity and elasticity ( Adriana et al., 2011). These characteristics allow the fibres to 

maintain a high aspect ratio in the manufacturing process. Cellulose fibres are the main 

constituents of plant fibres (Kalia et al., 2011) and it is considered to be one of the most 

abundant organic compounds derived from biomass according to Dufresne et al. (1997). 

It is also advantageous to use it as it is biodegradeable, renewable and relatively cheaper 

to produce when compared to synthetic materials. It is also relevant as it is derived from 

non-food agricultural based economy. Besides that, cellulose has low abrasivity which 

would provide greater durability of the processing equipment (Adriana et al., 2011).



Table 2.1 : Lignocellulose Fibres vs Synthetic fibres 

Lignocellulose Characteristic Synthetic 
Yes Renewable Non-renewable 
No Abrasive Abrasive 
Biodegradable Biodegradability Non-Biodegradable 
Relatively cheaper Cost Expensive 
Lower Density Higher 
No Effect on environment Potentially harmful 
Higher (138 GPa) Youngs Modulus Lower ( 65 GPa) 
Low coefficient Thermal expansion High coefficient



23 Nanocellulose 

Nanocellulose refers to the cellulose fibres having diameters of tens of nm (Adriana et 

al.,201 1). Many studies have reported cellulose fibres within the nano range using 

different terminologies. Amongst them include, cellulose nanofibre (CNF), nanofibril, 

nano-cellulose, nanofibrillated cellulose (NFC), and micro fibrillated cellulose (MFC). 

Hydrolysis of amorphous regions of these materials yields crystalline celluloses, which 

are known as cellulose nanocrystals (CNC), nanorods, whiskers, or nanowhiskers. 

Compared to microfibrils, these are typically more crystalline and have smaller aspect 

ratios. Although the different terms used describe variances in material properties, Moon 

et al. (2011) have established a nomenclature consistent with current trends. 

a) --
	

, 
I 	 t -1	 ,  8-W	

;11 11 1 . 51	 1	 ) , 75  
r!q	 -	 -	 ,	 '14	 ,,, e^ 

4-	 4, 

r	 #	 I. 

\ 1 /	 4 1t;si1i!i;.p/;t	 :
Al 

____	 1200 

Wood Fibres 1%Ijcrocrvstalljne M icrofibrillated NanofibriHated 	 Nano Crystals 
WF	 MCC	 MFC	 NFC	 CNC 

Figure 2.5 : Comparison of structure of wood fibre till nano crystal structure 
(Moon, R.J., 2011, Dufresne et al., 1997 and Saito et at., 2007) 

Table 2.2 : Summary of cellulose particle type characteristics (Moon et al., 2011) 

Particle Type Length (,um) Diameter Crystallinity (%) 

WF and PF >2000 20-50 jim 43-65 

MCC 5-10 10-50 um 80-85 

MFC 0.5-10 10-100nm 51-69 

NFC 0.5-2 4-20 nm 

CNC 0.05-0.5 3...5 nm 54-88
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Nanocellulose materials are suitable reinforcement materials for nanocomposites. This is 

because of its low coefficient of thermal expansion along the longitudinal direction as 

well as the high Youngs Modulus along the longitudinal direction in the crystal region 

(Nishino et al., 2004 and Sakurada et al., 1962). This is said to be relatively strong which 

can be seen by the high Youngs Modulus (Dufresne et al.,1997). Nanocellulose-based 

materials can be stronger than steel and stiffer than Kevlar. Having great strength as well 

as being light weight results in good physical properties that can be used in many 

applications.

Table 2.3 : Young's Modulus(GPa) for various materials 

Material Density Tensile 

Strength 

(GPa)

Axial	 Elastic 

Modulus

Reference 

Kevlar-49 - 3.06 144 (Bunsell, 1975) 

Nylon 66 - 1 12.5 (Bunsell, 1975) 

Carbon fibre 1.18 1.5-5.5 150-500 (Callister Jr, 1994) 

Steel wire 7.8 4.1 210 (Callister Jr, 1994) 

Clay - - 170 (Hussain et al.2006) 

nanoplatelets 

Carbon - 11-36 270-950 (Yu et al., 2000) 

nanotubes 

Crystalline 1.6 7.5-7.7 110-220 (Moon et al.2011 

cellulose

Composite materials reinforced with nanocellulose fillers have potential applications in 

important fields like electronic and electrical industry, construction, biomedicine, 

cosmetics, paper industry, packaging, building materials, textile industry and others ( 

Kamel, 2007). These nanocellulose reinforced polymer composites can be used in a wide 

array of product from lightweight armor and ballistic glass to wound dressings and 

scaffolds for growing replacement organs for transplantation in tissue engineering in the 

medical field (Korhonen et al., 2011). In the foam form, it can be used for oil recovery as 

well as storage. It can also be used in the pharmaceutical line, cosmetic bases and 

Pigments, food modifiers, sensors as well as biomedical devices. Nanocellulose also 
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provides smoother surface and enhances glossy properties. MCC have been extensively 

used in pharmaceuticals and food industries. Due to the highly crystalline structure, they 

are functionally applied as a binder, rheological modifier, or as reinforcement fillers. WF 

and PF are predominately applied in paper and textile products with much larger 

dimensions with relatively low crystallinity (Moon et al. 2011). 

Many researches' have been done on the generation of nanocellulose from various 

sources. Sassi et al. (1995) and Tones et al. (2004) stated that cellulose fibres can be 

grouped according to the leaf, bast, fruit, grass and stalk. Type of leaf thus far examined 

includes pineapple, sisal, banana flax, hemp, jute are examples of bast. Fruits include oil 

palm. Grass includes bamboo and bagasse whereas straws are types of stalk. Out of all 

the plants, they concluded that the bast and leave are the two most commonly used in the 

applications as it is hard fibres. 

Rubber wood is a type of hard fibre. It is also the main commodity in Malaysia due to the 

latex production. Nevertheless, very few studies have been performed on the synthesis of 

nanocellulose from rubberwood fibres. Hence, using nanocellulose derived from rubber 

wood fibres would be extremely beneficial to Malaysia especially since nanocellulose has 

a wide array of uses in various fields.



2.4 Pre-treatment 

2.4.1 Surface modification 

Based on previous studies, the main obstacle in the preparation of the nanocellulose 

composite is due to the extremely strong hydrogen bonding within the fibrils itself (S. 

Panthapulakkal et al., 2011). Due to their polar and hydrophilic nature, they are generally 

poorly compatible with non-polar matrices (Adriana et al., 2011). Polar matrices include 

polyolefms which are usually the base used to spin fibres into sheets at a large scale. 

Specific surface modifications would be able to reverse these negative drawbacks 

(Adriana et al., 2011). 

There are numerous modifications to cater to different needs. The common methods for 

fibre surface modification include silylation, mercerization, peroxide, benzoylation, graft 

polymerisation and bacterial cellulose treatment (Kalia et al,20 11). Surface modification 

to form ionic groups at cellulose surfaces include sulfonation, carboxylation and grafting 

(Hubbe et al., 2008). 

a) Acetylation and silane treatment 

Reactions to create hydrophobic surfaces include acetylation and silane treatments 

(Hubbe et al., 2008). Silane —coupling agents usually improves the degree of cross-

linking in the interface region, hence enhancing bonding. Silane coupling agents were 

said to be the most effective amongst other coupling agents in altering the natural fibre-

matrix interface (Kalia et al., 2011). Performance of silane treatment are believed to be 

higher for alkaline-treated fibre than for the untreated fibre. This is because there are more 

reactive sites that can be created for reaction ( Kalia et al., 2011). Acetylation on the other 

hand uses surfactants and polyelectrolytes (Hubbe et al., 2008). 

Though the usage of silanes such as toluene dissocyanate and triethoxyvinyl silane could 

improve the surface of the fibres for consequent treatments, there is still the issue of 

contamination of water source if these chemicals are used in large amounts.
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b) Peroxide treatment 

According to Sreekala et al., (2002) , peroxide treatment involves treating fibres with 

benzoyl peroxide or dicumyl peroxide in acetone before alkali pretreatment. These 

reactions require high temperatures for the effective decomposition of peroxide. 

Nevertheless, organic peroxides tend to decompose easily, producing free radicals. Free 

radicals produced in bulk may pose a threat to the ozone layer. 

c) Benzoylation 

In benzoylation treatment, benzoyl chloride is usually used to include the benzoyl group 

in the fibre which makes it responsible for the drop in hydrophilic nature of the fibre ( 

Joseph et al., 2002). Fibres have to be subjected to alkaline pre-treatment prior to 

benzoylation in order to excite the hydroxyl groups of cellulose and lignin in the fibre. 

After treatment, fibres need to be soaked in ethanol to remove the reacted and unreacted 

benzoyl chloride (Wang, 2004) or fibres maybe denatured. 

d)Mercerization 

Mercerisation is a commonly used method to produce high quality fibres (Ray et al, 

2001). It leads to the breaking down of fibre bundles into smaller fibres. Mercerisation 

reduces the fibre diameter. This results in better fibre-matrix adhesion and an increase in 

mechanical properties (Joseph et al., 2000). Mercerisation also increases the number of 

possible reaction sites and allows better fibre wetting. It is also said to have an effect on 

the chemical compostion of the fibre, degree of polymerisation as well as the molecular 

orientation of the cellulose crystals due to the removal of cementing substances such as 

lignin and hemjceflulose. Hence mercerisation has long lasting effects on mechanical 

properties of flax fibres ( Gassan et al., 1999). 

Hence, this study would be performing mercerisation using two different types of 

chemicals. The first method would be pre-treatment with sodium sulphite (5%)(Lavoine 

et al). The second method with a mixture of sodium hydroxide and anthraquinone (12% 

+ 0.1%) (Jonoobi et al, 2011) . These chemicals were chosen after due considerations as 

they are not too abrasive to the structure of cellulose when compared to using silanes 

winch may damage cell structure or peroxides and benzoyls which may be harmful to the 

environment if used in excess.
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2.4.2 Delignfication 

Treatment of lignocellulosics intends to reduce the crystallinity of cellulose, increase the 

biomass area, break the tough outer lignin layer as well as to remove the hemicellulose ( 

Verma et al., 2011) . Delignification would ensure that cellulose is more available for 

acid hydrolysis. Sodium hydroxide (NaOH) is an excellent pre-swelling agent. It 

increases the accessibility of the core material to further hydrolysis action. Besides that, 

it would also aid the conversion of carbohydrate polymers into fermentable sugars swiftly 

as well as increase the yield ( Kalia et al., 2011). Pre-treatment also helps to lower the 

lignin and hemicellulose contents of the fibres . Hence, it is a form of pulping and 

bleaching as the lignin and hemicellulose which gives fibre its distinct color are removed. 

Delignification includes physical, chemical and thermal methods or a combination of the 

aforementioned three; Different lignocellulosic materials have different physical, 

chemical and biological attributes (Verma et al., 2011). Hence, it is vital to arrange 

appropriate technology based on their properties. Hydrothermal treatment, wet oxidation, 

microwave-assisted treatment as well as alkali treatments have been used widely in the 

delignification of previous studies of various fibres other than rubber wood. 

Hydrothermal pre-treatments results in major lignin re-localisation and aids in removal 

of major wax as well as a small portion of hemicellulose (Verma et al., 2011). On the 

other hand, during steam pre-treatments, water in the cells evaporates and as the pressure 

drops, it explodes to provide increased specific surface area. Part of the hemicellulose 

decomposes to acids, which catalyses the decomposition of hemicellulose and lignin, and 

releases the cellulose. In wet oxidation pre-treatment, the material is treated with water 

and air at around 120°C as reported by Martinet al (2008). 

According to Xiong et al. (2002) , microwave irradiation changes the structure of 

cellulose, degrades lignin and hemicellulose . Compared to condiction!convection 

heating, microwave directly interacts between a heated target and the electromagnetic 

field to generate heat. Therefore, heating is rapid when microwave is used to treat the 

lignocelluloics. This unique heating feature has an explosion effect among particles, and 

improves disruption of obstinate structure of lignocelluloses. Nevertheless, the 

electromagnetic field used in the microwave may intensify the destruction of crystal line 

structures (La Hoz et al., 2005).
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