
STORING AND QUERY	 .	 fl	
IrIt,, flII ATIERI	 TABASE

PERPUSTAKAAN UMP

1111 III III Ill 11111111111111111 III IIIU
0000103176

SITI HAJAR BINTI SULAIMAN

Report submitted in partial fulfilment of the requirements

For the award of the degree of

Bachelor of Computer Science (Software Engineering)

Faculty of Computer Systems & Software Engineering

UNIVERSITI MALAYSIA PAHANG

JUNE 2015

TABLE OF CONTENTS

CHAPTER TITLE PAGE

INTRODUCTION 1

1.1 Background 1
1.2 Problem Statement 3
1.3 Objectives 4
1.4 Scopes 4
1.5 Thesis Organization 5

2	 LITERATURE REVIEW 6

2.0 Introduction 6
2.1 Introduction to XML 6
2.2 Short History of XML 7
2.3 Overview of XML document 8
2.4 Data Model of XML document 9
2.5 Relational Database 12
2.6 Mapping Relational Data 12
2.7 Technique to Reconstruct the XML view 13
2.8 Summary 14

3	 METHODOLOGY 15

3.1 Introduction 15
3.2 Research Methodology 15
3.3 Flow cart 17
3.4 Xrecursive Algorithm 18
3.5 Summary 18

4	 RESULT AND DISCUSSION 19

4.1 Introduction 19
4.2 Analysis Process 19
4.3 XML Document 20
4.4 Tree Structure 21
4.5 Relational Database 22
4.4 Summary 23

5	 CONCLUSION	 24

5.1 Conclusion	 24
5.2 Research Contributions	 26
5.3 Propose Improvement	 26
5.4 Summary	 27

28
REFFERENCE

APPENDICES

Appendix A	 31
Appendix B	 34

LIST OF TABLE

TABLE NO TITLE PAGE

Table 1 XML Definition 6
Table 1 Tag_structure 22
Table 2 Tag_value 23

LIST OF FIGURES

FIGURE NO TITLE PAGE

Figure 2.1 XML instance example 8

Figure 2.2 XIvIL Data Model 10

Figure 2.3 Relational Database 12

Figure 3.1 Methodology Flow Process 16

Figure 3.2 Flow chart 17

Figure 4.1 Process flow 19

Figure 4.2 XML Document 20

Figure 4.3 Tree Structure 21

iv

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

XML is stands for eXtensible Markup Language. A markup language

describes the structure and contain of data. The term of extensible means

capable being extended and modified. Thus, XML is a markup language

that can be extended and modified to match the needs of the author and data

content. (Goldberg, 2007) . Xml was specially designed for data storage and

transportation. XML looks a lot like HTML, complete with tags, attributes,

and values. The reason to use XML is that it is easy extended and adapted.

Xml can also be used to share the data between disparate system and

organizations. On the other resources says, XML or eXtensible Markup

Languages is a specification for storing information. It is also a

specification for describing the structure of that information. XML is a

Markup language (just like HTML), while the XML has no tags of its own.

(Goldberg, 2007)

The structure of XML is fundamentally tree oriented. This document

explores relationships found in the tree structures of XML, and derives

XML Query Language requirements from this structure. We will see that

supporting the tree structure of XML makes a query language very

expressive, capable of combining hierarchy, sequence, position, and text in

powerful ways. (Robie, 1999). Hierarchical database are the example of the

oldest kinds of database. They arrange data in 'tree' structured. In fact that

hierarchical structure must have the parent and child relationship.

1

Hierarchical database is suitable for the simple structure only. These

schema which is required instances to maintain relationship among entities

strictly through nested structures. However, XML document have its own

ability to transfer the data into the relational structure. Similarly outlook

with the other database language called Relational Database. The relational

structure can maintain relationship among entities through use the keys

rather than physical nesting.

A relational database (RDB) is a collective set of multiple data sets

organized by tables, records and column. Relational database (RDB)

establish:. as well-define relationship between database tables. Table

communicate and, share information which facilitates data search ability,

organization and reporting. Relation database organize data in different way

if we compare with hierarchical structure.

Each table in relation database is known as relation, which contains one or

more data category columns. Each table have rows contain a unique data

instance defined for a corresponding column category. One or More data

record characteristics relate to one or many records to form functional

dependencies. There have its own meaning with the type of relation that has

classified. For example, One to One, One to many, Many to one, and many

to many relationship among the table.

Relational database performs the database operation by "select", "project",

and "join". Select is used for retrieved the data. Project is identifies data

attributes and join combines relations. On the other hand, there had a lot of

advantages of use relational database. The advantages are easy to

extendibility, as new data may be added without modifying existing

records. Relational database also promote a flexibility performance with

multiple data requirement capabilities.

Data is king! This statement is made by IT professionals because a large

age of the application is data driven. In particular, developer needs solution

to generate XML document using information stored in databases. XML

and database are needed to integrate. The XML and database integrations

are important because the XML provides a standard technique to describe

data.

1.2 PROBLEM STATEMENT

XML (eXtensible Markup Language) is the example of the tools that carry

a data in a hierarchical structure. The hierarchical database is the traditional

organization of data. This concept is acceptable if handle by machine. But

not design to human look. User has its own difficulties to read and store

data in a hierarchical structure.

XML is bulky indeed. Metadata in XML document, which are encode as

element name, attribute, comment or processing instruction can result in

verbose presentation. Besides, to track the data in a hierarchical structure

database will cost a lot of time. This is because the set of large data lead us

to track it line by line. Moreover, the new records cannot be added to a

child table until it has already been incorporated into the parent table. The

hierarchical structure database still creates repetition of database system and

welcoming the redundancy.

Moreover, with the hierarchical model we will easy to see the problem arise

because as each "child" can only have one "parent". The ability to describe

the relationship between data such as "many-to-many" or "many-to-one"

are not well form if there is involve of more than one child.

The propose method approach is clear about the content in data sets. The

data in tree view make a lot of confuse because sometime the redundancy

occur. To avoid this situation, the methods and a way have to prove by the

end of the research.

3

1.3 OBJECTIVE

These are objectives of this research:

I. To provide an visual interface for an XML database

II. To introduce technique for converting xml document into a

relational structured database

III. To enable users processing any querying and searching

activities on the converted relational structured database.

1.4 SCOPES OF STUDY

The thesis is focusing on development of search engine that have the

criteria to adequacy a searching of a query. To fulfil the objective of this

thesis, the scope is shown as below:

I. Present the visual interface and converter.

II. Reconstruct the simple XML file to relational database.

4

1.5 THESIS ORGANIZATION

This thesis consists of seven (5) chapters.

I. Chapter 1 contain introduction of the project including problem

statement, objective, scope and overview on every chapter

II. Chapter 2 describes the literature Review on the querying and

storing the XML document using relational database. This part will

discuss about the concepts, existing systems which are related to

the case study will be reviewed.

III. Chapter 3 is system methodology. It will be discuss on the

method that is used to build the system and project planning. It

also provides the needs of the project.

IV. chapter 4 describes the project implementation and design that

will, use technically and practically. This chapter also elaborates in

details the work flow of the research. . Supposedly, result analysis

is expected to be parallel with the research objective. This chapter

also covers on the research constraints.

V. Chapter 5 is conclusion. Conclusion will summarize the research

findings as a whole, and discussed for any future enhancement for

the research topic or technique. References and appendices will be

added to the last part of this project.

5

CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

Chapter two is the important chapter for any thesis development. A
selected literature review will be present in this chapter. Besides that the
purpose of this chapter also to describe and explain the literature review
carried out to be used in developing the system. The previous researches
related to this project also discussed in this section and the existing system
related to this project also explained and compared to highlights the
differences.

2.1 INTRODUCTION TO XML

Before we know the deep in the XML document, better to introduce the
XML, there are many opinions from the book author about the XML; table
I will show the explanations about XML from the books.

Author Definition
XML	 is	 stands	 for	 eXtensible

(Goldberg, Markup	 Language.	 A	 markup
2007) language describes the structure and

content	 of	 data.	 The	 term	 of
extensible	 means	 capable	 being
extended and modified. Thus, XML
is a markup language that can be
extended and modified to match the
needs of the author and data content.

(Godberg, XML	 or	 eXtensible	 Markup
2009) Languages	 is	 a	 specification	 for

storing	 information.	 It	 is	 also	 a
specification	 for	 describing	 the
structure of that information. And
while XML is a Markup language
(just like HTML) , while the XML
has no tags of its own.

Table 1

XML was specifically designed for data storage and transportation. XML
look a lot like HTML, complete with tags, attribute and Values. The XML
document is represented in the tree structure. XML documents must contain
a root of every element. In fact that tree structure must have the parent and
child relationship.

2.2 A SHORT HISTORY OF XML.

Extensible Markup Language (XML) history begin with the development of
standardised generalised Markup language (SGML) by Charles Goldfarb,
along with Ed Mosher and Ray Lone in the 1970s while working at IBM
(Anderson,2004). SGMLL despite the name is not a mark-up languages in
its own right, but language used to specify mark-up languages. The purpose
of SGML was to create vocabularies which could be used to mark-up
documents with structural tags. It was imagined at the time, that certain
machine readable documents should remain machine readable for perhaps
decades.

One of the most popular applications of SGML came with the development
of HyperText Markup Language (HTML) by Tim Bemers Lee in the late
1980s (Raggett, Lam, Alexander & Kmiec, 1998). Since its development
HTML has somewhat become a victim of its own popularity, as it was
rapidly adopted and extended in many ways, beyond its original vision. It
remains popular today, though as a presentation technology, and is
considered unsuitable as a general purpose data storage format.

When it comes to data storage and interchange, HTML is a bad fit, as it was
originally intended as a presentation technology, while SGML is considered
too complex for general use. XML bridges this gap by being both human
and machine readable, while being flexible enough to support platform and
architecture independent data interchange.

7

2.3 Overview of the XML document.

XML documents consist of three parts that is XML declaration,
a DTD (Document Type Definition) and an XML instance. An XML
declaration and a DTD are not mandatory for an XML document. An XML
declaration specifies the version and encoding of XML being used. A DTD
is a schema that contains the structure of XML instance, and corresponds to
an extended context-free grammar. An Xml instance is a tagged document.
We omit concrete description of and XML declaration and a DTD.

An XML document instance is a hierarchical element. The boundaries
of which are either delimited by start-tags and end-tags, or empty elements,
by empty-element tags. Characters of every element are in between start-tag
and end-tags. Figure 1 show an example of an XML instance. (yoshikawa,
Aug 1999)

<issue>
<editor>

<first>Michael</fjrst>
cfamily>Franklin</family>

</editor>
<articles>

<article category='research suxveysw>
<titie>cosarative Analysis of six XML Schema Laflguages</title>
<authors>

uthór
<first>Dongwonc/first>
<family>Lee</family

</author>
<author>

<first >Wesley</first>
<tr4iddle>w. c/middle>
<family>chu</family>

c/author.
</áuthors>
•.csuunary>Js <keyvord>XML</keyword> is enrging ... c/su11nary,

</article>
</articles>

<tissue>

Figure 1

A start-tag is the token that enclose an element with < and >. Hence, an
end-tags is token that enclose the element type with </ and >. The element
can nest properly within each other and the nesting represent a logical

8

structure. Within start-tags, attribute name and attribute values can be
specified.

XML document have two level of conformance which is valid and well-
formed. A well-formed XML document follows tagging rules prescribe in
XML. Hence, the XML valid is depend on the XML is well-formed or not.
The XML document also valid if the document compiles with the constraint
expressed in an associated DTD.

It is an XML processor that examine whether an XML document is well-
formed (or valid). The XML processor is a software module, which is used
to read XML documents and provide access to their content and structure. It
is assumed that an XML processor doing its work on behalf of another
module, called the application (Consortium, 1998)

2.4 Data Model for XML Document

We employ the data model XPath (Consortium, 1998) to represents
XML documents. We assume that the XML documents are guaranteed to be
valid or well-formed by XML documents XM processors. Here we briefly
introduce the XPath data model. The full specification of data model can be
found in [World Wide Web consortium 1999]

In the XPáth data model, XML documents are modelled as an ordered
tree. There are seven types of nodes. In this thesis, we consider only the
following four types of nodes for the sake of simplicity. For each type of
nodes, there is a way of determining a string- value for a node of the type.
Some of node also has expanded-name.

9

	

1+	 1Afl Jeme
lo

An6	 91

sEj Ji toQilTh26
PSEMEW cXgoy

-xt

	

02 	 lLL	 l9Z	 27ff125_O30
C	 A2'	 aimo,r	 r—, tM

OfTUDI

Inl?	

LLJ	 I
z	 24	 29O

TTTTT

	

16	 J$ 21	 2O 2$O

Figure 2

The XML document order is define among all nodes on the
corresponding from the first character. Figure2 above had shown an XIvIL
tree. Reverse document order is simply the reverse of the document order.

I.	 Root node:

The root node is the root of tree. The element node for the document
element is a child of the roots node. The string-value of the root node
is the concatenation of the string-value of all text node descendant of
the root node in document order.

IL	 Element node:

'[here is an element node for every element in the document. An
element node has an expanded-name, which is the element type name
specified in the tag. Element nodes have zero or more children. The
type of each node is element or text. The string-value of an element
node is the concatenation of the string-values of all text node
descendant of the element node in document order.

III.	 Attribute node:

Each element node has an associated set of attribute nodes. Note that

the element node is the parent of each attribute nodes. However, an

10

attribute node is not child of element node. Attribute node have an

attribute name and attribute value. Attribute nodes have no child

nodes.

IV.	 Text node:

Text nodes have character data specified in the XML. To use the text

node is recommended by use string-value. A text node does not have

an expanded-name. Text nodes have no child nodes.

The remaining three types of nodes are namespace node, processing
instruction nodes, and document nodes. This discussion on this thesis will
be extended to include these three types of nodes.

11

2.5 RELATIONAL DATABASE

The dominant storage mechanism for structured enterprise data is the
relational database. A relational database is a collection of data item
organized as a set of formally-described table from which data can be
accessed or reassembled in many different ways without having reorganized
the database tables. (Codd, 1970).

On the other hand, relational database is store in a table with rows and
column. Each table composed of record which is called as tuple. Each
record is identified by a field or attributes that containing a unique value.
Every table shares at least one field with another table in 'one to one', 'one
to many', 'or 'many to many' relationships. These relationships allow the
database user to access the data in almost an unlimited number of ways.
These relationships also allow user to combine the tables as building blocks
to create complex and very large databases. Figure shown below is the
structured of relational database.

Attribute

Tuple{

Relation

Figure 3

2.6 MAPPING RELATIONAL DATA

Getting XML data into a database is only half of the issue when using
XML. As older legacy system are being upgraded for service oriented
architecture, and web services, making the contained data available in XML
formats is becoming more important for engineers. This requires
approaches for mapping existing relational data to XML formats.

12

Lv & Yan (2006) approach this problem by attempting to translate
relational database schemas to DTD documents. They present a method to
generate DTDs from relational schemas in the presence of keys, foreign
keys, and functional dependencies, which can preserve the semantics,
implied by functional dependencies, keys and foreign keys of relational
schemas and can convert multiple tables to XML DTDs. While this is a
forward step towards full semantic conversion of relational schemas to
XML DTDs, they note there is still work remaining in converting further
relational semantics such as multi-valued dependencies

DTDs are the most commonly used XML schema definition documents, but
as Lim, Joo, Kim & Choi (2007) note, it is a simple format, which does not
have the resolution to take into account some of the finer points of
relational data, such as maintaining primary and foreign key and other
constraints.

DTD defines the structure of a well formed XML document using simple
format expressions. These do not allow a sufficient level of detail to be used
in XML to relational mapping. For example, DTD can define a list to
contain zero or more, or one or more elements, though it cannot define
other limits.

Lim, Joo, Kim & Choi (2007) base their XML mapping algorithm using the
newer XJvIL Schema Definition documents (XSD). This can specify a list to
contain 2 to 5 elements for example, and can be used to ensure that an XML
document is both well-formed and valid against this schema. XML Schema
allows for finer grained control of an XML format than DTD and is better
suited to enabling automated mapping of an XML Schema to SQL Data
Definition Language for relational database mapping.

2.7 TECHNIQUE TO RECONSTRUCT THE XMLVIEW

Whenever an XML document repository is to be created over relational
database system, one of the possibly many relational schema generation
techniques is used automatically create the relational table. A relational
table is use to storing XML documents. Inserted XML document are then
shredded and "stored" as rows in these tables. In addition, a construction
XML view is created over the created relational table. This way is virtually
reconstruct the "stored" XML document from the shredded rows. The
reconstruction of XML view is specified just like the regular XML view of
relational data.

13

The key of observation here is that a reconstruction XML view
makes it possible to treat XML document through the XML view of
relational data. This turn can be efficiently handled by a query processor
used for processing Further, this query processor can process queries over
XML documents and XML views of existing relational data, because they
are all just XML views of relational data. This makes it possible to query
seamlessly over XML documents and relational data query over XML
views of relational data.

By reconstruct the XML document using relational database is
generally enough to support many mechanism for relational schema
generation. This is because, for a given mechanism, only a program stub
that does the following is required. When the stub is invoked by possibly
with schema of XML documents to be stored, it does the following:

1) Generate the desired relational schema for storing XML documents

2) Produces and XML shredder object that can take in XML document
and shred them into rows in a table of generated relational schema.

3) Creates a reconstruction XML view over the generated relational
schema that indicates how shredded XML documents are to be (virtually)
re-constructed.

However, using the proposed technique, it is sufficient to just generate a
reconstruction XML view instead of full writing a full blown XML query
processor.

2.8 SUMMARY

In conclusion, XML has proved hugely successful in the areas of
document mark-up, data and meta-data sharing, enabling interoperability,
and transparently transporting and storing data. Using relational database in
the XML document by reconstructing the XML view is good to user
understand the element.

14

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

This chapter discuss about the methodology that will used for
designing and implementing the construction of XML document using the
relational database. The technique used in this section is by Xrecursive
techniques. Methodology used in this thesis is for make sure the research
will be done correctly with plan.

3;2 RESEARCH METHODOLOGY

In this thesis, the right methods are the most important part. The right
method will lead to the success. When the methods apply is right, confident
level of the running application is raised up. First of all, I read and explore
the entire journal in this area. There is so much information about
constructing an XML document using relational Database. From cover
them -all, the conclusion be made to develop the techniques approached.
Figure 3.1 show the overall methodology flow in this thesis.

15

Literature review

Introduction to the XML docume nt

\1/
present the structural of data)

\1/
Character istics of the Data bs

\t/
Analyze the information from

literature review
\1/

Develop the approach technique

^An!alyzeeecification reuiremen)

\I,/
Design

(mPlementation the technique aproachi)

Result and analysis

\V

Required Output

Figure 3.1

16

3.3 Flowchart.

Prepare Literature
Review

Implementation
process

document
Having the

 XMIL / 	 Valid
 ^o

yes I	 No

Integrate the XML 1-'-(
Valid file with Database

/	 yes
Output in
relational
database

End

Figure 3.2

Figure 3.2 shows the flowchart of the constructing the XML document
using Relational Database. To begin the implementation process the valid
of XML document should be ready. When the XML document is valid, the
systems will integrate the XML file with the database. At the end of the
process, the XML document will change into relational database. Then, the
process of the searching or querying database activity can be done.

17

3.4 Algorithm

1: Begin

2: let N = { } as empty set, where N represents the list of node of the XML file
1	 Let V = { } as empty set, where V represents the list of the value of th
node.
2	 Let String filename = null and mt id	 1;

5: filename = read XML document name
6: while xml Document is not null
7: Begin

8: read element name as name
9: read the element type
10: if element type is Element or attribute
11: begin

12: read parent as pName
13: id = id + 1;
14: add name,pName, id to the N
15: End
16: else If element-type Is #text.
17: Begin

18: Read text,aluè as value
19: Idid+ 1;

20: Add name vaiüe;•id tâ V
21 end
22: store N into database
23: store V into database
24: End.

3.5 Summary.

Project iiethodoiogy describes the approach use in the study. The
waterfall model is suitable for development in a step by step. With this
method, the development process is carefully focused. For performance on
this methodology explain the basic activities. Every phase must be followed
to ensure that the process of development run smoothly and achieve its
goals.

18

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

Practically, this thesis covers the process of storing XML document
using Relational database. The separation of the element is shown in this
chapter. In the end, the discussion about the output result is stated clearly.

4.2 Analysis process

Depend on the process; the flow of the system is representing in a
flowchart. Figure 4.1 shows the process flow.

Prep... Literature
iovI.W

Implementation
proOsSe

Having the
XML

document

ye. I	 No

int.gr.t. the XML I-..<
	 Valid file with Osteb...

Output In	 yea
r.I.tlon.I
dat.b...

End

Figure 4.1

19

4.3 XML DOCUMENT

The data structure of XML document is hierarchical, consist of nested
structures. The element is strictly marked by the beginning and ending tags,
for empty elements by empty-element tags. Character data between tags are
the content of the elements. It is an instance of XML document contain
information about books as follows.

<'xml versxon="l 0">

<catalog>
<book id="bk101">

<author>Gambardella, Matthew</aüthor>
<title>XML Developer's Guide</title>

<genre>Computer</genre>

<price>44 . 95</price>

<publi3h_date>2000-1O-0l</publish_date>

<description>n in-depth look at creating applications

with XML. </descrition>

</book>
<book id="bk102">

<author>Ralls, Kim</author>

<title'Midnight Ra.n</tLtle>

<genre>anta3y</genre>

<price>5. 95</price>

<publiah_date>2000-12-16</publish_date>

<description>A former architect battles corporate zombies,

an evil sorceress, and her own childhood to become queen

of the world </description

<Ibook>

Figure 4.2

20

4.4 Tree structure

In this section , the tree structure of XML document in figure 4.2 is
represent with Xrecursive labelling as below.

LL

ç_
Calslo

id

trde

de
I

ir /1 	 price

gern	
R EEmr /

publish	
push

Figure 4.3

Each of every XML can describing as a XML tree. In this figure the
oval are the element and the square are the attribute of the elements. A
generated XML tree has been shown in a figure. Every element or attributes
are identify by a signature (number).

21

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45

