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ABSTRACT  

 

Ordinary differential equations (ODEs) and stochastic differential equations (SDEs) are 
widely used to model biological systems in the last decades. In both types of equations, the 
unknown function and its derivatives are evaluated at the same instant time, t. However, 
many of the natural phenomena do not have an immediate effect from the moment of their 
occurrence. For instance, a patient shows symptoms of an illness days or even weeks after 
the day in which they were infected. The dynamics of the systems differ if the 
corresponding characteristic equations involve time delay. Therefore, ODEs and SDEs 
which are simply depending on the present state are insufficient to explain this process. 
Such phenomenon can be modelled via stochastic delay differential equations (SDDEs). 
Batch fermentation process is one of the systems which subject to the presence of 
uncontrolled fluctuation and delayed feedback. ODEs and SDEs are not capable to model 
uncontrolled fluctuation and delayed feedback in fermentation process. It is necessary to 
model this process via SDDEs. Thus, this research is carried out to propose a stochastic 
model with delay effect for cell growth and solvent production of acetone and butanol by 
Clostridium Acetobutylicum P262 in fermentation process. The kinetic parameters of the 
results model are estimated via maximum likelihood method. The analytical solutions of 
this model is hard to be found, hence numerical method of 4-stage stochastic Runge-Kutta 
(SRK4) provide a way to simulate the solutions of the model. The RK4 and SRK4 methods 
are translated into C languages to obtain the numerical solutions of mathematical model for 
the cell growth concentration and solvents production. The experimental data is used to 
validate the results. The results indicate that the most suitable model to explain the solvent 
production by Clostridium Acetobutylicum P262 in fermentation process is SDDEs.  

 

 

 

 

 

 

 

 

 

 
 



vi 
 

ABSTRAK 
 

Persamaan pembezaan biasa (ODEs) dan persamaan pembezaan stokastik (SDEs) 
digunakan secara meluas untuk memodelkan sistem biologi dalam beberapa dekad yang 
lalu. Dalam kedua-dua jenis persamaan fungsi yang tidak diketahui dan terbitannya dinilai 
pada masa yang sama, t. Walau bagaimanapun, kebanyakan fenomena semula jadi tidak 
mempunyai kesan segera pada kejadiannya. Sebagai contoh, seorang pesakit menunjukkan 
gejala penyakit satu hari atau beberapa minggu selepas hari dimana mereka telah dijangkiti. 
Sistem dinamik berbeza jika ciri persamaan yang sepadan melibatkan masa lengahan. Oleh 
itu, ODEs dan SDEs yang hanya bergantung kepada keadaan semasa tidak mencukupi 
untuk menerangkan proses ini. Fenomena seperti ini boleh dimodelkan melalui persamaan 
pembezaan stokastik dengan masa lengahan (SDDEs). Kelompok penapaian adalah salah 
satu sistem yang tertakluk kepada kehadiran turun naik yang tidak terkawal dan maklum 
balas lengahan. ODEs dan SDEs tidak boleh untuk memodelkan turun naik yang tidak 
terkawal dan maklum balas lenagahan dalam proses penapaian. Ia adalah perlu untuk 
memodelkan proses ini menggunakan SDDEs. Oleh itu, kajian ini dijalankan untuk 
mencadangkan satu model stokastik dengan kesan kelewatan untuk pertumbuhan sel dan 
penghasilan pelarut aceton dan butanol oleh Clostridium Acetobutylicum P262 dalam 
proses penapaian. Parameter kinetik model yang terhasil dianggarkan melalui kaedah 
kebolehjadian maksimum. Penyelesaian tepat model ini sukar untuk ditemui, maka kaedah 
berangka 4 peringkat stokastik Runge-Kutta (SRK4) menyediakan satu cara untuk 
mensimulasikan penyelesaian model. Kaedah SRK4 diterjemahkan kepada program C 
untuk mendapatkan penyelesaian berangka bagi model matematik kepekatan pertumbuhan 
sel dan penghasilan pelarut. Data eksperimen digunakan untuk mengesahkan keputusan. 
Keputusan menunjukkan model yang paling sesuai untuk menerangkan penghasilan pelarut 
oleh Clostridium Acetobutylicum P262 dalam proses penapaian adalah SDDEs. 
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CHAPTER 1 

 

 

INTRODUCTION  

 

 

1.1 RESEARCH BACKGROUND  

  

 Differential equations play a crucial role in formulation and analysis of 

many biological and physical systems (Jones et al., 2011). They relate the function 

of one or more variables with its derivative. The differential equations are called 

ordinary differential equations (ODEs) if the unknown function also known as 

dependent variable is a function of single independent variable t  (Abell and 

Braselton, 2004). ODEs which explicitly allow the perturbation of random 

fluctuations are classified as stochastic differential equations (SDEs). In various 

range of applications SDEs have a richer mathematical framework compared with 

ODEs. SDEs incorporate the uncontrolled fluctuation into the biological and 

physical phenomenon, hence it provides a realistic mathematical model for the 

analysis of underlying systems than their deterministic counterpart do (Hale, 

1993). However, ODEs and SDEs which are simply depending on the present 

state are unable to illustrate the physical processes which involve time delay. In 

both types of equations the unknown function and its derivative are evaluated at 

instant time t.  

 

In most of natural phenomenon, a delayed-feedback is introduced when 

they are some hidden variables and processes which are not well understood but 
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are known to cause a time-lag (Bocharov and Rihan, 2000). A patient, for 

example, shows symptoms of an illness days or even weeks after the day in which 

she/he was infected. ODEs and SDEs can be improved by incorporating time 

delay into both equations. Deterministic differential equation with delayed-

feedback is called delay differential equations (DDEs). However, DDEs are 

inadequate to model the process with the presence of both time delay and random 

effects. The process that involves the incorporation of both time delay and random 

effects can be modelled via stochastic delay differential equations (SDDEs). 

SDDEs are a generalization of DDEs and SDEs (Mohammed, 1984).  

 

One of the most important systems that subject to the presence of noise 

and time delay is batch fermentation process. Fermentation is a process of 

converting sugar to solvents (acetone, butanol and ethanol) under anaerobic 

condition by using yeast undergoes (Madihah, 2002). There are two important 

features that control the mechanism of this process, namely time delay and the 

system is continually subject to the effects of random which is referred to as noise. 

The presence of time delay is a consequence of the simple fact that microbes are 

in the process of adapting themselves to the new environment. Thus, there is no 

growth occur. The microbes, synthesize the new enzymes in response to the 

changes in the availability of substrate. Microbes at this stage are assumed to be in 

a lag phase. Obviously, at the end of lag phase the microorganism is well adjusted 

and cells multiply rapidly. Cell mass doubles regularly with time. This period is 

recognized as an exponential phase. As time evolves the intrinsic variability of 

competing within species occur and deviations from exponential growths arise. It 

happens as a result of the nutrient level and concentration of toxin reach as a value 

which is unable to sustain the maximum growth rate. This phase is the most 

frequently known as a stationary phase. The production of solvent occurs in two 

different phases which are acidogenic and solventogenic phases. Acetyl-CoA and 

butyryl-CoA function as the intermediates key for solvent production. 

Acetylaldehyde and butyraldehyde are produced in this stage. The production of 

solvents (acetone and butanol) happens in solventogenic phase. As 
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aforementioned, cell growth of Clostridium Acetobutylicum P262 is subjected to 

delayed-feedback and noise. The presence of these two features will influence the 

concentration of acetone and butanol that will be produced in batch fermentation 

process. To understand the behaviour of this physical system it is necessary to 

develop a mathematical model that incorporates both of the delayed-feedback and 

noisy environment. Thus, this research is carried out to model jointly time delay 

and stochasticity of the microbial growth and solvents production of acetone and 

butanol in batch fermentation process. 

 

1.2  PROBLEM STATEMENTS 

  

All biological and physical processes need time to complete. In batch 

fermentation process, time delay occurs due to the fact that initially cells are in the 

position of adapting themselves to the new environment. Hence, the biological 

regulatory reaction of the cell growth is not instantaneous. Cells only respond after 

some time lag, 0r > . The process indicates an intrinsic variability in the 

stationary phase. Cells compete with each other for space and food due to the 

exhausted of nutrient level and toxin concentration. Bearing in mind, all the 

phases involve in batch fermentation, it is necessary to model the process via 

SDDEs. Hence, the research problems were set as below;  

 

(i) Will the stochastic model with time delay be an efficient model to describe 

the solvent production of acetone and buthanol by Clostridium 

Acetobutylicum P262 in batch fermentation process? 

(ii) How to develop the algorithm to approximate the solutions of stochastic 

model in (i)? 

(iii) How to estimate the kinetic parameter and simulate the solutions of 

stochastic model with delayed-feedback? 
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1.3  OBJECTIVES OF THE RESEARCH 

 

 Based on the above research problems, this research embarks on the 

following research objectives; 

(i) To model jointly time delay and random effects of cell growth and solvents 

production (acetone and butanol) in batch fermentation. 

(ii) To develop the algorithm of simulating the strong solutions of stochastic 

model in (i). 

(iii) To estimate the kinetic parameter of mathematical model in (i) by using 

simulated maximum likelihood. 

(iv) To simulate the solutions of stochastic logistic model with time delay via 4-

stage stochastic Runge-Kutta method. 

 

1.4  SCOPE OF THE RESEARCH 

 

This research focuses on modelling delayed-feedback and uncontrolled 

fluctuation of batch fermentation process via SDDEs.  Current study considers 

three phases namely lag, exponential and stationary phase in fermentation process. 

Solvent production of acetone and butanol are modelled by using stochastic 

Luedeking-Piret equations with delayed-feedback. Moreover, to investigate the 

performance of SDDE in explaining the behaviour of solvents production by 

Clostridium Acetobutylicum P262, mathematical models of ODEs, DDEs and 

SDEs are presented. This research had employed a 4-stage Runge-Kutta to 

simulate the solutions of DDEs, and 4-stage stochastic Runge-Kutta to 

approximate the solutions of SDEs and SDDEs.  The data are obtained from the 

experiment done by Madihah (2002) for three different yeast cultures which are 

control medium (yeast extract only), YE1, yeast extract with ammonium chloride, 

YE2 and yeast extract with ammonium nitrate, YE3. 
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1.5  SIGNIFICANCE OF THE RESEARCH 

 

This research provides significance contribution to the mathematics and its 

application in terms of; 

(i) New findings: This research considers the important features previously 

neglected, which are time delay and random effect to describe the 

behaviour of batch fermentation process. The mathematical model 

developed in this research is more realistic since it considers all phases that 

involve in batch fermentation.  

(ii) Specific or potential application: The newly developed mathematical model 

can be used by practitioners of biotechnology for better prediction of 

acetone and buthanol production in fermentation process. In biotechnology 

industries, for instance, our theoretical predictions and mathematical 

formulations will help to explain and verify experimental output.  

(iii) The algorithms of simulating the numerical solutions of SDDEs can be 

applied in other related fields to simulate the solutions and analysis of the 

stochastic model with delayed-feedback. 

 

1.6  THESIS ORGANIZATION  

 

A brief description of the chapters contained in this thesis is now 

presented. 

 

The first chapter provides the introduction to the whole thesis. It consists of the 

background of the research, statement of the problems, objectives of the research, 

scope of the research and their significance.  

 

Chapter two contains the review of literature for fermentation process, progress of 

modelling in fermentation process, numerical methods and parameter estimation 

of SDDEs.  
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Chapter three concerns on the fundamental background of random variables, 

Brownian motion, DDEs, SDEs and SDDEs. This chapter also presents numerical 

methods for solving those differential equations. 

 

Chapter four consist the main results of this research. A new mathematical model 

of SDDE for Clostridium Acetobutylicum P262 is developed. Moreover, solvent 

production of acetone and butanol are modelled by using stochastic Luedeking-

Piret equation with delayed-feedback. 

 

Chapter five demonstrate the numerical algorithm of SRK4 to simulate the 

solutions of stochastic model in Chapter four. The method of estimating kinetic 

parameter of stochastic models is also being presented in this chapter. 

 

Chapter six presented the analyses of the result of solvent production by 

Clostridium Acetobutylicum P262. Based on the analysis, it is clear that stochastic 

logistic model with time delay for cell growth and stochastic Luedeking-Piret 

equations with delayed-feedback for solvents describe the experimental data more 

adequately compared to ODEs, DDEs and SDEs. 

 

Chapter seven summarizes the report of this thesis. It provides conclusion to the 

entire research, as well as recommendations for the future studies. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1  INTRODUCTION  

 

Modelling batch fermentation process via differential equations has been 

intensively researched over last few years. It has been developed under a 

framework of deterministic and stochastic modelling. Therefore, the main 

objective of this chapter is to review the previous works of deterministic and 

stochastic modelling of fermentation process which have been discovered in order 

to explore this area. Prior sections are discussed about physiological features of 

batch fermentation process. This chapter is divided into four parts which are 

fermentation process, mathematical model of fermentation process, parameter 

estimation and numerical methods for solving SDDEs. This chapter is concluded 

by remarks and motivation of this research. 

  

2.2  FERMENTATION PROCESS   

 

The term fermentation illustrates microbial cell propagation and generation 

of products under either aerobic or anaerobic conditions (Mosier and Ladisch, 

2011). Aerobic refers to the condition where air is mixed with the medium. While 

anaerobic indicates a condition where oxygen is removed and excluded from 

media. It is due to the presence of this oxygen which is toxic to the cells (Alberts 
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et al., 1989). In a simple word, fermentation is a process of converting 

carbohydrates (sugar) to solvents by using bacterium or yeasts. This process 

occurs by the action of enzymes. It converts nutrients through (biochemical 

conversion) in food into valuable solvents and fuels due to the action of enzymes 

by the utilization of microorganism. This process will change the characteristics of 

food gradually.  

 

Amongst of the bacterium that play an important role in a fermentation 

process is a class of Clostridium species. Clostridiums are the largest genera 

among the prokaryotes that can be classified into two main groups namely 

pathogenic and non-pathogenic. Pathogenic refers to the species that has an ability 

to cause disease. Meanwhile, non-pathogenic is a type of bacteria which cannot 

cause diseases. The non-pathogenic Clostridium has the capability to produce 

amylolytic and hydrolytic enzymes which then leads to the utilization of various 

substrates for solvents fermentation. Amongst these species that have a capability 

in producing solvents are Clostridium Butyricum (Andreesen et al., 1989), 

Clostridium Butylicum (Andel et al., 1985; Crabbendem et al., 1985), Clostridium 

Acetobutylicum (Gottschalk and Bahl 1981; Qureshi et al., 1992), Clostridium 

Aurantibutyricum (Somrultai et al., 1996), Clostridium Tetanomorphom (Gottwald 

et al., 1984) and Clostridium Trobutyricum (Sarin et al., 1990). It was reported by 

Gottschalk and Bahl (1981), Qureshi et al., (1992), Baut et al., (1994), Girbal and 

Soucaille (1998) and Madihah (2002) that Clostridium Acetobutylicum is an 

acetone, butanol and ethanol production species that has a great commercial 

values in industries such as for fuels, reagents and feed stocks. 

 

Madihah (2002) introduced direct fermentation of gelatinized sago starch 

into solvent production of acetone, butanol and ethanol by Clostridium 

Acetobutylicum P262. This process is illustrated in Figure 2.1.   
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Figure 2.1: Flow diagram of batch fermentation 

 

Source:  Bazli (2010) 

 

Figure 2.1 shows a flow diagram of batch fermentation process in a frozen 

vial. The frozen vial in the block contains a few millilitres of recombinant microbe 

which is taken out of from freezer and it strain thawed. This vial is referred as an 

inoculum vial and its content is known as an inoculum. The inoculum is then 

transferred to a shake flask via sterile procedure. The process of transferring this 

inoculum is called inoculation. The volume of media in the shake flask is usually 

on the order of magnitude of hundreds of millilitres. Cells can grow and reproduce 

after the inoculation. The shake flask is placed in an incubator shaker. The shaker 

operates under constant temperature. Media in the shake flask is shaking. The 

Shaking motion will keep the cells and the nutrients in the growth media in a 

homogeneous phase. Furthermore, this motion will increase the rate of oxygen 

uptake by the media. The cells then will grow to a particular density to inoculate 

the small fermenter known as seed fermenter. 

 

Then, cells are transferred to a production fermenter after they reach their 

required volume and density. The density associated in which they are growing 

depends upon the desired product being growth or non-growth associated. Cells 

are grown to their mid at the end of exponential phase. At this position, chemical 
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is added that induces the cells to begin over expressing gene for a protein 

recombinant. Depletion of nutrients eventually happen. The cells enter their 

stationary growth phase. Cells are no longer capable to produce the amounts of the 

desired protein. As a result, the solvents of acetone and butanol will be produced.  

 

Solvents of acetone and butanol have great commercial values in various 

industries such as in pharmaceutical, agriculture, cosmetic, chemical, rubbers, 

manufacturing, auto mobile lacquer, aircraft wing dopes and for manufacture of 

lacquers, resin, oil and gas industries (Krouwel et al., 1983). The next following 

subsection reports the applications of acetone and butanol in various industries. 

 

2.2.1 Application of Solvent  

 

 Acetone and butanol have great commercial values in various industries 

such as pharmaceutical, agriculture, cosmetic, chemical, rubbers, manufacturing, 

auto mobile lacquer, aircraft wing dopes and for manufacture of lacquers, resin, 

oil and gas industries, fuel, reagents and feed stocks (Krouwel et al., 1983). The 

application of acetone and butanol are presented in Table 2.1. 

 

Table 2.1: Application of acetone and butanol 

 

Solvent Field Function Reference 

Acetone 

Chemical 
industry 

Solvent  in  auto  mobile  lacquer 
manufacture. Used in aircraft 
wing dopes. Solvent for 
manufacture of lacquers, resin, 
rubbers, fats and oil. 

Krouwel et al., 
(1983) 

Coordinate 
manufacture Weapons production 

Jones and 
Wood (1986) 
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CHAPTER 1 

 

 

INTRODUCTION  

 

 

1.1 RESEARCH BACKGROUND  

  

 Differential equations play a crucial role in formulation and analysis of 

many biological and physical systems (Jones et al., 2011). They relate the function 

of one or more variables with its derivative. The differential equations are called 

ordinary differential equations (ODEs) if the unknown function also known as 

dependent variable is a function of single independent variable t  (Abell and 

Braselton, 2004). ODEs which explicitly allow the perturbation of random 

fluctuations are classified as stochastic differential equations (SDEs). In various 

range of applications SDEs have a richer mathematical framework compared with 

ODEs. SDEs incorporate the uncontrolled fluctuation into the biological and 

physical phenomenon, hence it provides a realistic mathematical model for the 

analysis of underlying systems than their deterministic counterpart do (Hale, 

1993). However, ODEs and SDEs which are simply depending on the present 

state are unable to illustrate the physical processes which involve time delay. In 

both types of equations the unknown function and its derivative are evaluated at 

instant time t.  

 

In most of natural phenomenon, a delayed-feedback is introduced when 

they are some hidden variables and processes which are not well understood but 
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are known to cause a time-lag (Bocharov and Rihan, 2000). A patient, for 

example, shows symptoms of an illness days or even weeks after the day in which 

she/he was infected. ODEs and SDEs can be improved by incorporating time 

delay into both equations. Deterministic differential equation with delayed-

feedback is called delay differential equations (DDEs). However, DDEs are 

inadequate to model the process with the presence of both time delay and random 

effects. The process that involves the incorporation of both time delay and random 

effects can be modelled via stochastic delay differential equations (SDDEs). 

SDDEs are a generalization of DDEs and SDEs (Mohammed, 1984).  

 

One of the most important systems that subject to the presence of noise 

and time delay is batch fermentation process. Fermentation is a process of 

converting sugar to solvents (acetone, butanol and ethanol) under anaerobic 

condition by using yeast undergoes (Madihah, 2002). There are two important 

features that control the mechanism of this process, namely time delay and the 

system is continually subject to the effects of random which is referred to as noise. 

The presence of time delay is a consequence of the simple fact that microbes are 

in the process of adapting themselves to the new environment. Thus, there is no 

growth occur. The microbes, synthesize the new enzymes in response to the 

changes in the availability of substrate. Microbes at this stage are assumed to be in 

a lag phase. Obviously, at the end of lag phase the microorganism is well adjusted 

and cells multiply rapidly. Cell mass doubles regularly with time. This period is 

recognized as an exponential phase. As time evolves the intrinsic variability of 

competing within species occur and deviations from exponential growths arise. It 

happens as a result of the nutrient level and concentration of toxin reach as a value 

which is unable to sustain the maximum growth rate. This phase is the most 

frequently known as a stationary phase. The production of solvent occurs in two 

different phases which are acidogenic and solventogenic phases. Acetyl-CoA and 

butyryl-CoA function as the intermediates key for solvent production. 

Acetylaldehyde and butyraldehyde are produced in this stage. The production of 

solvents (acetone and butanol) happens in solventogenic phase. As 
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aforementioned, cell growth of Clostridium Acetobutylicum P262 is subjected to 

delayed-feedback and noise. The presence of these two features will influence the 

concentration of acetone and butanol that will be produced in batch fermentation 

process. To understand the behaviour of this physical system it is necessary to 

develop a mathematical model that incorporates both of the delayed-feedback and 

noisy environment. Thus, this research is carried out to model jointly time delay 

and stochasticity of the microbial growth and solvents production of acetone and 

butanol in batch fermentation process. 

 

1.2  PROBLEM STATEMENTS 

  

All biological and physical processes need time to complete. In batch 

fermentation process, time delay occurs due to the fact that initially cells are in the 

position of adapting themselves to the new environment. Hence, the biological 

regulatory reaction of the cell growth is not instantaneous. Cells only respond after 

some time lag, 0r > . The process indicates an intrinsic variability in the 

stationary phase. Cells compete with each other for space and food due to the 

exhausted of nutrient level and toxin concentration. Bearing in mind, all the 

phases involve in batch fermentation, it is necessary to model the process via 

SDDEs. Hence, the research problems were set as below;  

 

(i) Will the stochastic model with time delay be an efficient model to describe 

the solvent production of acetone and buthanol by Clostridium 

Acetobutylicum P262 in batch fermentation process? 

(ii) How to develop the algorithm to approximate the solutions of stochastic 

model in (i)? 

(iii) How to estimate the kinetic parameter and simulate the solutions of 

stochastic model with delayed-feedback? 
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CHAPTER 3 

 

 

RESEARCH METHODOLOGY 

 

 

3.1 INTRODUCTION  

 

This chapter provides preliminaries concepts of this research. It consist of 

the probability theory background, stochastic processes, stochastic integrals, 

formulation of DDEs, SDEs and SDDEs, the numerical methods and parameter 

estimation of SDDEs.  

 

3.2      PROBABILITY THEORY BACKGROUND 

 

 The fundamental background of probability theories which are required in 

this research is presented in this section. Those definitions, theorems, principles 

and basic relations associated with this research have been taken from Gardiner, 

(1989), Kloeden and Platen (1992), Mao (2008) and Mikosch (1998). 

  

3.2.1  Basic Concept of Probability Theory  

 

 Random quantity in mathematics is interpreted as random variables, most 

frequently denoted as ( )X ω . Random variables are measured on its probability 

space ( , , )F PΩ . Ω  corresponds to set of all possible outcomes, also known as a 

sample space. Each possible outcomes in a sample space is denoted asω∈Ω . 
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A and Ac are two distinct outcomes of trial, Ac is complement of A , which are 

subset of Ω . Not all events in Ω  are observable or interesting events. A 

collection of all observable or interesting events is denoted as F. An ordered pair 

( , )FΩ  is a measurable space and the elements of F are called F-measurable sets.  

These interpretations are defined mathematically in the following definitions. 

 

Definition 3.1: Random Variable (Kloeden and Platen, 1992)  

 

A random variable is a real function ( ),X ω ω∈Ω and measurable with respect to 

a probability measure P.  

 

Definition 3.2: Probability Measure (Mao, 2008)  

 

Probability measure P on sample space ( ), FΩ is a function [ ]: 0,1P F →  such that 

(i) ,  then 0 ( ) 1A P A∀ ∈Ω ≤ ≤  

(ii) ( ) 1P Ω =  

(iii) ( ) ( ) 1cP A P A+ =  

(iv) Assume that 1 2 3, , ,... ,...nA A A A are random events which are belonging toΩ . If 

      
11

{( ) ,  for  } then ( ) 1i j n n
nn

A B i j P A P Af
∞ ∞

==

 
∩ = ≠ = = 

 
∑

 

 

Definition 3.3: σ - algebra (Mao, 2008)  

 

A family F is called σ - algebra which is subset ofΩ . If the following properties hold 

 

(i) Ff ∈ , where f illustrates empty set. 

(ii) CA F A A∈ ⇒ ∈ , where CA A= Ω− is complement of A inΩ . 

(iii) For any sequence ,nA F⊆
1

n
n

A F
∞

=

∈


. 
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Definition 3.4: Probability Space (Kloeden and Platen, 1992) 

 

The triple ( , , )F PΩ  is a probability space which comprises of Ω  (a set all of possible 

outcomes), a σ - algebra F of subsetsΩ , called events and a probability measure is  on P F .  

 

The elementary events are grouped together in a set, Ω . σ - algebra is very 

important in studying a stochastic process because it aids as to communicate with 

the process situation (past, present and future). Modelling using SDEs and SDDEs 

involve continuous random variable. Hence, the following definition of 

continuous random variable and stochastic process are required.  

 

Definition 3.5: Continuous Random variable (Mikosh, 1998) 

 

( )X ω is a continuous random variable if there exist density function ( )f x such that  

 

(i) ( ) 0f x ≥  

(ii) ( ) 1f x dx
∞

−∞

=∫  

(iii) ( ) ( )
x

F x f u du
−∞

= ∫  

 

Definition 3.6: Stochastic Process (Kloeden and Platen, 1992) 

 

A stochastic process is a family of random variable ( ),X X t ω=  of two variables 

t T∈  and ω∈Ω  on probability space ( ), ,F PΩ which assumes real values and is 

P −measurable as a function of ω for fixed .t  the ( ),X t ⋅ is a random variable on 

Ω . While ( ),X t⋅ indicates trajectory or sample path of stochastic process. 
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