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CHAPTER 3 

 

 

RESEARCH METHODOLOGY 

 

 

3.1 INTRODUCTION  

 

This chapter provides preliminaries concepts of this research. It consist of 

the probability theory background, stochastic processes, stochastic integrals, 

formulation of DDEs, SDEs and SDDEs, the numerical methods and parameter 

estimation of SDDEs.  

 

3.2      PROBABILITY THEORY BACKGROUND 

 

 The fundamental background of probability theories which are required in 

this research is presented in this section. Those definitions, theorems, principles 

and basic relations associated with this research have been taken from Gardiner, 

(1989), Kloeden and Platen (1992), Mao (2008) and Mikosch (1998). 

  

3.2.1  Basic Concept of Probability Theory  

 

 Random quantity in mathematics is interpreted as random variables, most 

frequently denoted as ( )X ω . Random variables are measured on its probability 

space ( , , )F PΩ . Ω  corresponds to set of all possible outcomes, also known as a 

sample space. Each possible outcomes in a sample space is denoted asω∈Ω . 
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A and Ac are two distinct outcomes of trial, Ac is complement of A , which are 

subset of Ω . Not all events in Ω  are observable or interesting events. A 

collection of all observable or interesting events is denoted as F. An ordered pair 

( , )FΩ  is a measurable space and the elements of F are called F-measurable sets.  

These interpretations are defined mathematically in the following definitions. 

 

Definition 3.1: Random Variable (Kloeden and Platen, 1992)  

 

A random variable is a real function ( ),X ω ω∈Ω and measurable with respect to 

a probability measure P.  

 

Definition 3.2: Probability Measure (Mao, 2008)  

 

Probability measure P on sample space ( ), FΩ is a function [ ]: 0,1P F →  such that 

(i) ,  then 0 ( ) 1A P A∀ ∈Ω ≤ ≤  

(ii) ( ) 1P Ω =  

(iii) ( ) ( ) 1cP A P A+ =  

(iv) Assume that 1 2 3, , ,... ,...nA A A A are random events which are belonging toΩ . If 
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Definition 3.3: σ - algebra (Mao, 2008)  

 

A family F is called σ - algebra which is subset ofΩ . If the following properties hold 

 

(i) Ff ∈ , where f illustrates empty set. 

(ii) CA F A A∈ ⇒ ∈ , where CA A= Ω− is complement of A inΩ . 

(iii) For any sequence ,nA F⊆
1

n
n

A F
∞

=

∈


. 
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Definition 3.4: Probability Space (Kloeden and Platen, 1992) 

 

The triple ( , , )F PΩ  is a probability space which comprises of Ω  (a set all of possible 

outcomes), a σ - algebra F of subsetsΩ , called events and a probability measure is  on P F .  

 

The elementary events are grouped together in a set, Ω . σ - algebra is very 

important in studying a stochastic process because it aids as to communicate with 

the process situation (past, present and future). Modelling using SDEs and SDDEs 

involve continuous random variable. Hence, the following definition of 

continuous random variable and stochastic process are required.  

 

Definition 3.5: Continuous Random variable (Mikosh, 1998) 

 

( )X ω is a continuous random variable if there exist density function ( )f x such that  

 

(i) ( ) 0f x ≥  

(ii) ( ) 1f x dx
∞

−∞

=∫  

(iii) ( ) ( )
x

F x f u du
−∞

= ∫  

 

Definition 3.6: Stochastic Process (Kloeden and Platen, 1992) 

 

A stochastic process is a family of random variable ( ),X X t ω=  of two variables 

t T∈  and ω∈Ω  on probability space ( ), ,F PΩ which assumes real values and is 

P −measurable as a function of ω for fixed .t  the ( ),X t ⋅ is a random variable on 

Ω . While ( ),X t⋅ indicates trajectory or sample path of stochastic process. 
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