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ABSTRACT 

 

One of the biggest challenging in metabolic engineering is to design an accurate model 

of large-scale of metabolic network in metabolic engineering field; which require an 

appropriate sensitivity analysis and optimization techniques. This research focusing on 

identifying the optimize values of large-scale kinetic parameters of E. coli model. The 

model under study consist of five metabolic pathways which are Glycolysis, Pentose 

Phosphate, TCA cycle, Gluconegenesis and Glycoxylate; which contain 194 kinetic 

parameters to be optimize. This model also includes PTS system in addition to Acetate 

formation, 23 metabolites, 28 enzymatic reactions and 10 co-factors. The experimental 

data were run in 0.1 and 0.2 dilution rates at continuous culture on steady-state 

condition. The One-At-A-Time Sensitivity Measure and Particle Swarm Optimization 

(PSO) techniques was applied to the model under study in order to identify the optimum 

values of the kinetics. The result stated from the One-At-A-Time Sensitivity Measure 

shows that there are 7 kinetics affecting highly in the model response under 0.1 dilution 

rate, while in 0.2 there are 8 kinetics affecting highly in the model response also. The 

result stated from PSO shows that, this technique can minimize the errors of our 

simulation result by % as compare to (Ishii et al., 2007) and % as compare to (Hoque et 

al., 2005).  Based on the results found by the techniques, these tichniques can be applied 

to correct the model response through large-scale kinetic parameters.  
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ABSTRAK 

 

Menghasilkan model yang tepat bagi rangkaian metabolik berskala besar merupakan 

satu cabaran besar dalam bidang kejuruteraan metabolik yang mana ianya memerlukan 

penggunaan teknik analisa sensitif dan pengoptimuman yang baik. Kajian ini memfokus 

kepada pencarian nilai bagi parameter kinetik dalam model rangkaian metabolik 

Escherichia coli berskala besar. Model ini terdiri daripada 194 pembolehubah kinetik 

dari lima laluan metabolic; glycolysis, pentose phosphate, TCA cycle, Gluconeogenesis 

dan Glycolysis. Model ini juga mengandungi laluan metabolik bagi pembentukan 

Acetate dan sistem PTS meliputi 23 metabolite, 28 tindakbalas enzim dan 10 co-factor. 

Data bagi eksperimen di laksanakan pada kondisi keadaan tetap dan kultur berterusan 

dalam kadar pencairan 0.1D dan 0.2D. Teknik One at a Time Sensitivity Measure dan 

Particle Swarm Optimization di cadang untuk digunakan  dalam mengenalpasti  nilai 

optimum bagi parameter kinetik agar hasil simulasi adalah selari dengan nilai 

eksperimen.  Hasil  analisa sensitif menggunakan One at a Time Sensitivity Measure 

terhadap 194 parameter kinetik mendapati, tujuh pembolehubah  yang sangat terjejas 

pada kadar peningkatan konsentrasi  40% pada kadar pencairan 0.1D, manakala 8 

parameter kinetik sangat terjejas  pada kadar pencairan 0.2D. Penggunaan teknik 

Particle Swarm Optimization pula dilihat terbukti dapat mengurangkan ralat sebanyak 

294% hasil simulasi berbanding dengan data ekperimen yang ekperimen yang dibuat 

oleh Ishii, 2007, 11%  dari eksperimen data  oleh Hoque, 2005 berbanding hasil  

simulasi asal (Kadir, 2010). 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1 Introduction   

 

Metabolic engineering has become very important in the production of a new 

scientific endeavor in E. coli (Edwards and Palsson, 1997). Metabolic engineering 

based on genetic engineering which is the targeted manipulation of genetic-cell 

information involves enzymatic, transport and regulatory gene which are the goals of 

direct modifications and the improvement of cellular activities (Ka et al., 1998). The 

classical approach of metabolic engineering requires detailed knowledge of enzyme 

kinetics, the system of work, intermediate pools involved and genetic manipulation 

(Gregory, 1999).  

 

However, metabolic engineering is usually faced with the challenges of 

effectively developing and designing the cell metabolism with respect to the metabolism 

regulation. In order to address this, it is necessary to generate a mathematical model 

which can efficiently describe the dynamic behavior of the cell in response to the 

changes in the cultural environment and/or the specific genetic modification (Kadir et 

al., op cit). In fact, analysis of the sensitivity, genetic optimizing and regulatory 

processes are the metabolic engineering practice within cells which are done to increase 

the cellular production of a certain substance.  

 

With a view to studying the dynamics of the metabolic engineering system, there 

is need to consider how the substrate is converted to Substrate or to a Product and which 

enzymes should be involved in the conversion process. The conversions in the 
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metabolic networks consist of a substrate and product and also between them the 

enzymes which can convert the substrate to product either in an irreversible or 

reversible way (Kadir et al., 2010). This is described in Figure 1.1. The study of the 

substrate, enzyme and product conversions are achieved by metabolic computational. 

 

 

 

  Enzyme 

 

                                                                      Enzyme 

  Enzyme 

 

 

 

Figure 1.1: Metabolic conversion 

 

1.1.1 Metabolic Computational    

 

Metabolic computational modeling plays a substantial role in the biological 

system. Every modeling has been constructed using ordinary differential equations 

(ODEs). The accuracy of the model output prediction would, however, depend on the 

behavior system physiology, which has a set of parameters such as temperature, 

reaction rates and kinetic constants. It had been reported that one of the powerful tools 

for explaining the properties of the dynamic metabolic engineering system as well as to 

guide experimentation is metabolic network model (Maggioa et al., 2010). Also, it was 

reported that to build a kinetic metabolic network model requires a large number of 

kinetic parameters, which has been developed to detect the concentration changes in the 

metabolites and reactions (Chassagnole et al., 2002). Some of the mathematical models 

which can describe the dynamic models have been suggested with a view to survey the 

behavior of the cell. Some used flux balance analysis (Reed and Palsson, 2003), 

(Radhakrishnanet al., 2002),  (Edwards et al., 2001), network component analysis (S. 

Shuster et al., 2000; Liao et al., 2003), C-metabolic flux analysis (Siddiquee et al.,2004; 

Substrate  

Product 

Product 

Product 
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Toya et al., 2010), dynamic modelling (Chassagnole et al., 2002; Usuda et al., 2010), 

metabolic analysis design (Simon and David, 1996), Metabolic control analysis (Diana 

and Joseph, 2002) and the steady-state of the model (Barbara et al., 1992). In order to 

simulate the kinetic parameters in a model, there is the need to consider the 

mathematical equations as simple as possible so that the implementation will become 

easy.  

 

If the modeling can be effectively simulated, it can be of a great help at in 

answering some specific questions such as the accuracy of the model outputs. These 

models are however declared using simulation and represented by specific or some part 

of metabolic pathways (Chassagnole et al., 2002; Yugi et al., 2005; Ishii et al., 2007; 

Kremling et al., 2007; Nishio et al., 2008; Kadir et al., op cit). After the model is build, 

there would be need for sensitivity analysis in order to optimize the model. 

 

1.1.2 Sensitivity analysis 

 

Engineering and science are often studied with the aid of mathematical models 

designed to simulate the complex physical process (Gangelosi and Parisi, 2001). One of 

the steps in mathematical model development is the determination of the most effective 

parameter in the model outputs. A “sensitive analysis” of these parameters is not only 

definite to model validation, but also it can lead to future research. Sensitivity analysis 

is often referred to as either local or global. The local analysis addresses sensitivity 

relative to point estimates of parameter values while global analysis examines 

sensitivity with regard to the entire parameter distribution. Sensitive analysis can help 

the researcher to determine which parameter enables the very effectiveness of the 

model’s result (Saltelli, 2000). 

 

The sensitive analysis method can be classified in a variety of ways: statistical, 

mathematical or graphical. The statistical method involves running a simulation in 

which an input is assigned some probability distributions, and later the assessment of 

the effect of variance on the input is done to identify the output distribution. Also, it can 

allow one input to identify the effects of the interaction among multiple inputs 

(Griensven et al., 2006). The mathematical method is the sensitivity of a model output 
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to the range of variation of an input. The method typically involves calculating the 

output for a few values of an input that represent the possible range of the input (Salehi 

et al., 2000). The graphical methods give representation of sensitivity in the form of 

graphs, charts or surface. Generally the graphical method is used to give visual 

indication of how an output is affected by variation in inputs (Gelderman and Rentez, 

2001). 

 

1.1.3 Optimization  

 

Optimization means to find out the best alternative with the most cost effective 

or highest achievable performance under the given constraints, such as the best result, 

the best design, among other options. The optimization problem is generally aimed 

towards minimizing the difference between the model outputs estimated parameters and 

the respective experimental measurements. It had been stated that in the metabolic 

engineering model, the kinetic parameter optimization problem of kinetic model can be 

formulated as an estimation problem (Yukako et al., 2013).  

 

However, recently several researches have been done with some algorithms in 

order to study the structure and behavior of the cell. Some of the algorithms used are 

Least Squares Minimization (Rizzi et al., 1997), Simulated Annealing (Chassagnole et 

al., 2002), a second order polynomial model in RSM (Ismail, 2005), DEPSO algorithm 

(Rui et al., 2007), a weight least squares objective function (Won et al., 2012), IDE 

algorithm (Chong et al., 2012), a deterministic outer-approximation algorithm (Miro et 

al., 2012), a real-coded genetic algorithm (Yukako et al., 2013), formulation of a 

parameter optimization problem within a control vector parameterization approach 

(Maggio et al., 2013) and PSEO algorithm (Abdullah et al., 2013). 

 

From the findings of these researchers, it was noted that the problem of 

designing and validating the metabolic engineering model can be solved through 

simulation, modeling, analysis and optimization when there are some data available for 

the pathways which include metabolites, enzymes and co-factors. 
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1.2 Problem statement  

 

Metabolic engineering allows the direct application of the core subjects of 

kinetics, transports and thermodynamics to the analysis of the reactions of metabolic 

networks (Gregory, 1999).  On the other hand, metabolic network description provides 

convenient ways of summarizing and codifying the information gathered from the 

metabolism of an organism. The most successful scientific tools that can represent the 

metabolic networks are the mathematical modelling (Wagner, 2012). However, 

mathematical modeling of metabolism is usually closely associated with changes in 

compound concentration in terms of rates of biochemical reaction (Gombert and 

Nielsen, 2000).  

 

In metabolic engineering, one of the biggest challenges is how to design an 

accurate kinetic model that represents the large-scale number of parameters in the 

pathways. Also, kinetic constant and initial metabolite constant of the metabolic 

network of E. coli from an estimated measurement value or from vitro are a big 

challenge, because the kinetic parameters that are usually obtained or estimated from 

measurements reported by different laboratories using different models and conditions 

stored in databases are insufficient (Yukako et al., 2013).  

 

During the last years, the design of large-scale metabolic network of E. coli 

(build – develop) has been greatly advanced by a systematic application of modeling, 

simulation and optimization based on the available data (Jeong et al., 2000). The model 

that has been working is tested in software programing and point towards genetic 

modification in the pathway reaction that will lead to predicting new design models 

(Kadir et al., 2010).  

 

The issues of designing an accurate kinetic metabolic model especially in E. coli 

is solved by many methods such as sensitivity analysis and optimization methods. To 

this end, the latest methods involved are stated below with their problems and solutions. 
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 1.2.1    The sensitivity methods 

 

Several dynamic models have been proposed in order to study the sensitivity of 

the large scale kinetic parameters inside the E. coli:  

 

The model of glycolysis and pentose phosphate pathways was investigated by 

stepwise internalization method and applied to 85 kinetic parameters (Chassagnole et 

al., 2001). 

 

Twelve kinetic parameters were stated as the most affected parameters using 

global sensitivity analysis of Sobol Methods and Monte carlo simulation which was 

applied to Embden-Meyerhof and pentose phosphate pathways in addition to 

phosphortransferase system, bringing the number of the kinetics to 85 (Maggio et al., 

2010). 

 

The kinetic parameters were investigated by scaling each kinetic parameter 

individually and then quantify the changes using the Pearson correlation coefficient for 

Vmax  parameters only, whereby ten kinetic parameters were stated as most sensitive 

ones in the glycolysis and pentose phosphate pathways (Yukako et al., 2013). 

 

The main idea behind the sensitivity analysis is to identify the model inputs that 

cause significant changes in the outputs and should therefore be the focus of attention if 

the robustness is to be increased (perhaps by further research). Therefore, the latest 

researchers have been working in the E. coli bacteria model. They investigated only two 

pathways which are glycolysis and Pentose Phosphate pathways by applying local or 

global sensitivity analysis for the kinetic parameters of that pathways either for 𝑉𝑚𝑎𝑥  or 

𝐾 or for the both. Therefore, the number of kinetic parameters investigated in the 

pathways are 85 kinetics only. But in the model under study we have 194 kinetic 

parameters which are distributed in five pathways in addition to acetate formation. 

Moreover, the need for local sensitivity analysis is the simplest method to be used in 

order to achieve our main target. 

 



7 

1.2.2 The optimization methods 

 

Several dynamic models have been proposed in order to study the behavior and 

to identify the importance of the large scale kinetic parameters inside the E. coli: 

 

Many of such models used the central carbon metabolism, which contain PTS 

system, Glycolysis and Pentose-Phosphate pathways in the central carbon metabolism; 

they fit the time course of unbalanced metabolite concentration with analytical function 

by using Simulated Annealing for the whole 𝐾𝑚 Kinetics only (Chassgnole et al., 2002).  

 

Others used large scale dynamic metabolic which contain Embden Meyerhof-

Paranas, Pentose-Phosphate pathways and PTS system with the acetate formation of E. 

coli. Nine parameters were estimated using the optimization technique (GRAMS) for the 

whole kinetics 𝑉𝑚𝑎𝑥   and 𝐾𝑚 (Maggio et al., 2010).  

 

(Baker et al., 2010) optimized 4 kinetic parameters by applying four algorithms 

to see which algorithm are good in order to correct the kinetic parameters simulation 

result to be closer to the experimental data. 

 

The Large kinetic model using Real-Coded Genetic Algorithm (RC-GA) for the 

optimization also uses the same model formulated by other researchers (Chassagnole et 

al., 2002) in E. coli. The target kinetic parameter is Vmax whereas ten kinetic parameters 

have been often identified through the application of sensitivity analysis by increasing 

each parameter individually in percentage to be optimized (Yukako et al., 2013). 

 

As explained in the previous paragraphs we concluded that, the optimization of 

large-scale kinetic parameters in complex models becomes difficult due to the model’s 

behavior which requires sensitivity analysis in order to identify the most affected 

parameters in the model response. Moreover the use of PSO is to correct the kinetic 

parameters simulation result to be more close to real experimental data of the model 

under study. 
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1.3 Objective  

 

The main objective of this research is to optimize the kinetic parameters needed 

for large scale of the metabolic network of E. coli. In order to achieve the main 

objective, several sub-objectives were considered as listed below: 

  

i. To identify the most sensitive kinetic parameters in the main metabolic 

pathway of E. coli using the local sensitivity analysis technique.   

 

ii. To optimize the kinetic parameters using the PSO algorithm. 

 

iii. To validate the optimization result based on real experimental data. 

 

1.4 Research scope 

 

This study aims at the large-scale kinetic parameters issues of the metabolic 

network model of E. coli formulated by (Kadir et al., 2010) which contain Glycolysis, 

Pentose Phosphate, TCA cycle, Gluconeogenesis and Glycoxylate pathways, PTS 

system as well as Acetate Formation. 

 

 There are 194 Kinetic parameters, 23 metabolites, 28 enzymatic reactions with 

10 co-factors used in this research.  

 

The condition considered in this study was in a continuous culture with steady-

state condition in the dilution rate of 0.1 and 0.2. 

 

This study considers only the local sensitivity analysis technique of One-At-A-

Time Sensitivity Measures and the minimization of errors between the simulation result 

and experimental data after applying the sensitivity analysis using PSO Algorithm. The 

analysis of One-At-A-Time sensitivity measures and Particle Swarm Optimization will 

be coded in MATLAB and applied to the model under study. The validation will be 

conducted by comparing three output results which are (Kadir et al., 2010), (Hoque et 

al. 2005) and our result after we got the result of PSO. 
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1.5 Thesis organization  

 

 Chapter 1 generally describes the introduction (Modelling and Simulation in 

Computational field, Sensitivity Analysis and Optimization), the problem statement, 

objectives, and scope of the research. Chapter 2 reviews the metabolic engineering, 

computational biology, dynamic modeling, Sensitivity analysis and PSO algorithm. 

Chapter 3 presents the framework of this study, the model description, sensitivity 

analysis method, optimization algorithm and validation. Chapter 4 elaborates the 

sensitivity analysis calculation and Particle Swarm Optimization implementation of 

sensitivity results, discussion of results, and validating the optimization result by 

comparing results from experiment with (Kadir et al., 2010) and (Hoque et al., ). The 

conclusions of the present research are summarized and presented in Chapter 5 with 

suggestions and recommendations for future research. 

 



 

 

 

 

CHAPTER 2  

 

 

LITERATURE REVIEW 

 

 

2.1 Introduction  

 

This chapter presents the detailed description of the concepts, classification and 

architecture of the metabolic engineering, computational biology, dynamic modeling, 

and sensitivity analysis and optimization algorithms. 

 

2.2 Metabolic engineering  

 

Metabolic engineering is the direct improvement of product formation or 

cellular properties through the modification of specific biochemical reactions, and these 

reactions are connected to each other to shape the metabolic pathways (Stephanopoulos 

et al., 1998). Metabolic pathway  is a sequence of feasible and observable biochemical 

reaction steps connecting a specified set of input and output metabolite; the word 

metabolite refer to metabolism which mean is a set of chemical reaction that happen in 

the cell of living organisms in order to sustain life. Those reactions allow organisms to 

grow, reproduce, maintain their structure and respond to their environment; the 

collection of the pathways is called metabolic network (Schilling et al., 1999). 

Metabolic network is a complete set of metabolic and physical processes that determine 

the physiological and biochemical properties of a cell (Mathews and Van Hold, 1996). 

 

Metabolic engineering is a abroad field, which contributes to flux measurement, 

understanding of flux control in vivo, engaging the chemical engineering’s in biological 

research, which allows the direct application of the core subjects of kinetics, transports, 
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and thermodynamics to analysis of reactions;  also contribute in the medical field such 

as the analysis of the function and general metabolism of tissues and whole organs in 

vivo; also in industrial production such as the production of new materials, gums and 

solvent etc (Stephanopouls et al., 1998).  

 

One of the important problems in metabolic engineering is the production of 

some products from the metabolism of E. coli, which the product requires in details 

gene regulation. It was reported by (Stephanopoales et al., 1998) on how to improve the 

production of Lysine in corynebacterium-glutamicum and the insertion of new genes.  

Also, (Dellomonace 2011) reported on how fatty acids and alcohols can be catalytically 

converted to chemicals and fuels. Moreover the improvement of the DHAP production 

was produced by E. coli (Patnaik and Liao, 1994). 

 

Genetic regulation occurs at genome level, controlling the expression of certain 

genes. This regulation affects the presence or absence of enzymes in the metabolic 

engineering, and it also activates or inhibits particular enzymes. In order to study the 

gene regulation, there is every need to do computational biology, which gives a clear 

picture about the development of metabolic engineering (Machado et al., 2012). 

 

2.3 Computational biology   

 

In the recent years, the system biology becomes very important for developing 

the metabolic engineering and the genetic in investigating the components of cellular 

networks and their interactions, or applying experimental in genome scale, or 

integrating computational methods with experimental data. A true understanding of 

genetic and metabolic function and design will crucially depend on mathematical and 

computational methods for analyzing biochemical systems. To this end, system biology 

is how to combine biological experiments with computational modeling. The system 

biology has two major approaches: the first one is dynamic model which offers 

computational tools used for analyzing, integrating and interpreting biological data and 

hypotheses such as E. coli (chassagnole et al., 2002), saccharomyces cerevisiae (Joseph 

et al., 1997; Sam et al., 1999) and morphogenesis (Igoshin et al., 2004); the second one 

is the static model which induces the formulation of new concepts and the existing 
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application such as theory of dynamic model, the analysis of molecular noise and 

robustness as well as fragility of the dynamic model.     

 

2.4 Dynamic modeling  

 

Dynamic modelling is a set of equation or rules specifying how the state 

variables change over time, as a function of the current and past values of the state 

variables (Kadir et al., 2010). The modeling of the dynamics of biological systems is 

essentially based on the modeling of a dynamic system of some bio-chemical reactions 

using deterministic rate laws. This has been proven to be extremely successful in both 

chemistry and bio-chemistry for many years. These approaches have as their core the 

law of mass action, which is an empirical law giving a simple relation between reaction 

rates and molecular component concentration at all points of future time (Provost and 

Bastin, 2004). Reaction rate can be used to construct mathematical models based on 

ordinary differential equations (ODEs) of the dynamic set of chemical reactions. ODEs 

are mathematical equations for un-known functions of one or of several variables that 

relates the values of the function itself and derivatives (how many variables of un-

known function changes over time, the known function could be obtained by integrating 

the corresponding ODE) (Andrews and Arkin, 2006).  

 

 Currently, several methods have been proposed in order to study the dynamic 

behavior of the metabolic of E. coli such as a dynamic system computer analysis 

program (Wright et al., 1992),  a fluxAnalyzer (Kalmatet al., 2003), Petri Nets (Koch et 

al., 2005), flux balance analysis (Reed and Palsson, 2003, Varma and Palsson, 1997; 

Kauffman et al., 2003; Edward et al., 2001), network component analysis (Liao et al., 

2003); 13C-metabolic flux analysis (Arauzo-Bravo and Shimizu, 2003; Zhao and 

Shimizu, 2003; Matsuoka and Shimizu; Toya et al., 2010), and even for dynamic 

modeling (Chassagnole et al., 2002; Usuda, 2010; Kadir et al., 2010). 

 

In order to study the dynamic model, there is a need to employ mathematical 

modelling, which is used to describe the underlying mechanism of a large number of 

processes in the natural, physical or social sciences so that mathematical techniques can 

assist in understanding the system. The phonetic statement is translated into an equation 
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called dynamic equation of the model knowledge of the initial state of a system and the 

dynamic equation that describes the forces of change in the system is often sufficient to 

forecast an observed pattern of the system (Steuer et al., 2006).  

 

The best way to design and develop an accurate dynamic model is through 

simulating, sensitivity analysis and optimization algorithm methods. 

 

Each dynamic modeling contains mass balance equation, kinetic rate equation, 

metabolite, enzyme, kinetic enzyme and co-factor. They are all described below: 

  

2.4.1 Pathways   

 

The pathways which are long chains of chemical reactions take place in the 

normal operation of living system. In the model of (Kadir et al., 2010), there are five 

pathways involved which are Glycolysis, Pentose Phosphate, TCA cycle, 

Gluconeogenesis, Glycoxylate pathways, PTS system and acetate formation. Each 

enzyme described by mass balance equation is the quantity of all species in a solution 

containing a particular atom; it must be equal to the amount of that atom delivered to 

the solution. The solution of the equation may be derived from the dynamic equation 

and the initial state of the system as well as a graph or table of values of the solution 

may then be compared with the observed pattern of nature; i.e. to what extent the 

solution of equation matches the pattern is a measure of the validity of the mathematical 

model. The metabolite concentration rate of the changes in this metabolic network is 

given by the following equation 

 

                                                    
d𝐶𝑖

dt
= ∑ 𝑅𝑖𝑗v − μCi𝑗                                                           (2.1) 

Where, 𝐶𝑖 is the concentration of metabolite  𝑖 , 𝑅𝑖𝑗 is the stoichiometric 

coefficient of metabolite 𝑖 in the reaction  𝑗 , 𝑣𝑗 is the rate of the reaction j and 𝜇𝐶𝑖 is the 

growth rate on the dilution effect. 
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2.4.2 Metabolite and co-metabolites  

 

The metabolite means any substance or product produced by metabolism or by a 

metabolic process. For example the metabolite of F6P which is called Fructose-6-

phosphate. Co-metabolites are organic molecules that are required by certain enzymes 

to carry out catalysis, they bind to the active site of the enzyme and participate in 

catalysis but are not considered as substrate of the reaction, for example CoA is 

a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the 

oxidation of pyruvate in the citric acid cycle (Chassagnole et al., 2002). 

 

2.4.3 Enzyme  

 

Enzymes are natural proteins produced in tiny quantities by all living organisms, 

functioning as highly selective biochemical catalysts in converting one molecule into 

another. For example, the enzyme of PTS is called phosphotransferase system, which 

converts the extra glycolysis to glucose-6-phoshate (G6P). 

 

2.4.4 Kinetics enzyme  

 

Enzyme-kinetics is central to every biological process that ever has been or will 

be studied and is the basis for a great number of essays that are routinely undertaken in 

every research laboratory (Irwin, 1993). The important parameters in a kinetic reaction 

are Vmax, Km and Vmax/Km. Vmax: Maximum velocity of the reaction aka how the 

enzyme behaves when the substrate is in abundance. Km: The affinity of the enzyme for 

the substrate the lower the value, the better the affinity. Vmax/Km = 1/2 Vmax aka how 

the enzyme behaves at low substrate concentrations (Cleland, 1963). 

 

2.4.5 Kinetic rate equation  

 

It means the change in concentration of a reactant in a given period of time; for 

example, the kinetic rate equation of PTS is described by the equation below: 

 

http://en.wikipedia.org/wiki/Coenzyme
http://en.wikipedia.org/wiki/Fatty_acid_metabolism#Synthesis
http://en.wikipedia.org/wiki/Fatty_acid_metabolism#.CE.B2-Oxidation
http://en.wikipedia.org/wiki/Fatty_acid
http://en.wikipedia.org/wiki/Pyruvic_acid
http://en.wikipedia.org/wiki/Citric_acid_cycle
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    vPTS =
vPTS
max[GLcex]

[PEP]

PYR

(Ka1+Ka2
[PEP]

[PYR]
+Ka3[GLc

ex]+[GLcex]
[PEP]

[PYR]
)(1+

[G6P]nG6P

KG6P
)
                             (2.2) 

 

Where 𝑃𝑇𝑆 is phosphotransferase system, 𝑣𝑃𝑇𝑆
𝑚𝑎𝑥 is Maximum velocity of the 𝑃𝑇𝑆  

reaction, 𝐺𝐿𝑐𝑒𝑥 is extracellular glucose, 𝑃𝐸𝑃 is Phosphoenolpyruvate, 𝑃𝑌𝑅 is Pyruvate, 

𝐺6𝑃 is Glucose-6-phosphate, 𝐾𝑎1 is the affinity of the enzyme for the substrate 

(Chassagnole et al., 2002). 

 

2.5 Sensitivity analysis  

 

The idea of the sensitivity analysis as a technique is to identify how different 

input variables will affect a model result under a given set of assumption (Fasso and 

Perri, 2002). In order to optimize large-scale kinetic parameters according to the 

dynamic model of E. coli, there is need to keep the sensitivity analysis at a steady state 

condition, in which the concept of steady state is a mathematical idealization, which 

plays an important role in kinetic modeling (Heinrich and Sehuster, 1996).  

 

There are different methods applied to metabolic model such as Metabolic 

Control Analysis to describe how the sensible properties of the ingredients, enzymes 

and which metabolic variables respond in a metabolic pathway (Diana et al., 2002). 

 

Other researchers applied Metabolic Control Designs, which address the inverse 

problem of getting the sensitivity properties of the components of enzymes which are 

required for the system to show a pre-established pattern of responses (Simon et al., 

1996). 

 

Even Sobol’ method (Sobol, 1990) applied to the model of E. coli (Maggioa et 

al., 2010). 

 

Recently, Stepwise Internalization method was applied to E. coli model 

(Chassagnole et al., 2002). Monte Carlo simulation with Sobol method and variance 

based techniques was used to study the glycolysis, phosphotransferase system, and 

pentose-phosphate pathways. In order to identify the kinetic parameters sensitivity, the 
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time profile was indicated there and eleven kinetic parameters were affected in the 

model response. The kinetics including maximum reaction rate, inhibition and half 

saturation constant have been addressed to formulate a parameter estimation problem 

(Maggioa et al., 2010); moreover scaling all the kinetics concentration individually from 

1% to 100% was done before calculating the changes, and ten kinetic parameters were 

identified as the most affected in the model response (Yukako et al., 2013).  

 

The latest researchers applied different sensitivity analysis methods to study the 

sensitivity in the metabolic network of E. coli to achieve the optimal goal for glycolysis 

and PP pathways (Yukako et al., 2013; Mauch et al., 1997; Noacka et al., 2008); 

Embden-Meyerof-Paranas, PP pathways and PTS system (Maggioa et al., 2010). 

 

In order to optimize large scale kinetic parameters which has become difficult in 

dynamic modeling, sensitivity analysis has to be employed so that kinetic parameters 

will be reduced. There is need for the sensitivity analysis method to be applied when 

using an optimization algorithm for large-scale metabolic model of E. coli due to the 

model complexity. To this end, all the researchers applied different methods in the 

model of E. coli, but they did not apply for the model formulated by (Kadir et al., 2010).  

 

At this juncture, we will attempt a brief description of some sensitivity analysis 

and optimization methods that were applied to E. coli model below. 

 

2.5.1    One at a time sensitivity measures 

 

The core idea behind this model is to conduct a sensitivity analysis for one 

parameter at a time in percentage, while the others parameters are fixed at their nominal 

values then quantify the changes over the model response using suitable mathematics 

formula (Herve et al., 2006).  

 

2.5.2    Variance based sensitivity analysis  

 

It has been reported that, the variance based sensitivity analysis is a form of 

global sensitivity analysis working within a probabilistic framework. It decomposes 

http://en.wikipedia.org/wiki/Sensitivity_analysis
http://en.wikipedia.org/wiki/Probability
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the variance of the output of the model or system into fractions which can be attributed 

to inputs or sets of inputs. For example, given a model with two inputs and one output, 

one might find out that 70% of the output variance is caused by the variance in the first 

input, 20% by the variance in the second, and 10% due to interactions between the two. 

These percentages are directly interpreted as measures of sensitivity (Tomasz, 2013). 

 

2.6 Optimization  

 

Optimization is not a new concept in biology. It helps to predict new designs 

which may evolve. In line with this, chemical processes are affected by numerous 

parameters such as reaction rates and kinetic constant; therefore, the metabolic 

pathways and regulation analysis which takes place in a cell result as the evolutionary 

optimization process (Yukako et al., 2013). Optimization methods had significant 

impact in biological systems as it helps researchers to study, investigate and develop the 

biological models. Some researchers have applied Differential Evolution Algorithm 

(DE) to simulate glycolysis pathway in yeast and to estimate the optimal kinetic (Chuii 

et al., 2012); a Mixed Integer Non-liner Problem (MINLP) is used to calculate which 

enzyme levels should be modulated to obtain stable optimization of large scale models 

(Nikolaev, 2010); a decoupling method and minimizing concentration errors is used to 

estimate the metabolites through the minimizing of slope errors (Gengjie et al., 2011); 

branch-and-bound principle is used to find the best set of model parameter (Pradeep et 

al., 2006); a popularization of PSO  is used to estimate the parameters from the central 

carbon metabolism of E. coli ( Mingshou et al., 2009); degree probability distribution is 

used to enrich the parameter which needs optimization ( Joshua  and Franz, 2010); 

NMR(Nuclear Magnetic Resonance) and GC-MS(Gas Chromatography-Mass 

Spectroscopy) is used to estimate the flux distribution and to simulate the glycolysis and 

pentose-phosphate pathways in E. coli (Hoque et al., 2011); A Spatial Branch-and-Bond 

algorithm is used to address the global optimization of metabolic network (Pozo et al., 

2010); Particle Swarm Evolutionary Optimization (PSEO) to estimate the parameters in 

the complex and nonlinear biological models and to reduce the computational times 

(Abdullah et al., 2013); Improved Differential Evolution Algorithm to (IDE) is used to 

find a solution for the existence of noisy data and sees to the perplexity of the model 

(Chong et al., 2012); a nonlinear optimization problem is used to analyze the sensitivity 

http://en.wikipedia.org/wiki/Variance
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and the stability properties of kinetic representation of the central carbon metabolism of 

E. coli at optimal enzyme levels (Francisco et al., 2006); Differential Evolution Particle 

Swarm Optimization (DEPSO) is used to demonstrate the nonlinear dynamics of gene 

networks and revealing genes regulatory interactions (Rui et al., 2007); a deterministic 

outer-approximation reformulates the set of ordinary deferential equation into an 

equivalent set of algebraic equation (Miro et al., 2012); mass balance and the relevant 

flux configuration optimizes the global growth of the system and reduces the empirical 

statistics of flux in E. coli (Martelli et al., 2009); a genetic algorithm (GA) optimize 

mixtures of 13C-labeled glucose and glutamine (Jason et al., 2012). To this end, all the 

researchers applied or formulated different optimization methods to solve biological 

systems with different problems. Some of the most popular recent algorithms and their 

uses in the E. coli are stated below. 

 

2.6.1 Differential evolution (DE) algorithm 

 

This is a method that optimizes a problem by iteratively trying to improve 

a candidate solution with regard to a given measure of quality (Storn and K. V, 1995). 

 

DE optimizes a problem by maintaining a population of candidate solutions and 

creates new candidate solutions by combining the existing ones according to its simple 

formulae, but keeping whichever candidate solution has the best score or fitness on the 

optimization problem at hand. In this way, the optimization problem is treated as a 

black box that merely provides a measure of quality when given a candidate solution 

and the gradient is therefore not needed. 

 

A basic variant of the DE algorithm works by having a population of candidate 

solutions (called agents). These agents are moved around in the search-space by using 

simple mathematical formulae that combine the positions of existing agents from the 

population. If the new position of an agent is improved, it is accepted and forms part of 

the population, otherwise the new position is simply discarded. The process is repeated 

and by doing so it is hoped, but not guaranteed, that a satisfactory solution will 

eventually be discovered. 

 

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Candidate_solutions
http://en.wikipedia.org/wiki/Candidate_solutions
http://en.wikipedia.org/wiki/Formula
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Formally, let 𝑓: 𝑅𝑛 → 𝑅 be the cost function which must be minimized or fitness 

function which must be maximized. The function takes a candidate solution as argument 

in the form of a vector of real numbers and produces a real number as an output which 

indicates the fitness of the given candidate solution. The gradient of 𝑓 is not known. 

The goal is to find a solution 𝑚 for which 𝑓 (𝑚) ≤ 𝑓 (𝑝) for all 𝑝 in the search-space, 

which would mean 𝑚 is the global minimum. Maximization can be performed by 

considering the function ℎ ∶=  −𝑓 instead. 

Let 𝑋 ∈  𝑅𝑛 designate a candidate solution (agent) in the population. The basic DE 

algorithm can then be described as follows: 

 

 

 

Note that 𝐹 ∈ [0,2] is called the differential weight and 𝐶𝑅 ∈ [0,1]  is called 

the crossover probability, and both of these parameters are selectable by the practitioner 

along with the population size≥ 4 .  

 

In line with this, (Chuii et al., 2012) improved the (DE) Differential Evolution 

Algorithm for the purpose of to developing, executing and estimating the relevant 

parameter, for the metabolic pathway data in order to simulate glycolysis pathway in 

http://en.wikipedia.org/wiki/Row_vector
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Gradient
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yeast, and they named this new algorithm (IDE) Improved Differential Evolution 

Algorithm. This algorithm is a crossbred of (DE) and (KF) Kalman Filter. By using the 

fitness function of IDE algorithm below, estimation of the relevant parameters for 

metabolic pathway data in order to simulate glycolysis pathway for yeast can be 

achieved: 

 

𝑗 = ∑ |𝑓(𝑋, 𝑋0, 𝜃0) − 𝑓(𝑌, 𝑋0, 𝜃)|2𝑁
𝑖=1                                                            (2.3) 

 

The fitness function is applied to evaluate the fitness of each individual 

parameter. X represents the state vector of the measurement system, 𝑌 represents the 

state vector of the simulated system, 𝜃0 represents a set of original parameters, 𝜃 

represents a set of estimated parameters 𝑋0 represents the initial state, 𝑁 ≡ the ending 

index, 𝑖 ≡ the index variable.  

 

2.6.2 Mixed integer non-liner problem (MINLP) 

Mixed Integer Nonlinear Programming (MINLP) problems contain nonlinear 

expressions and integer variables. Mixed integer Nonlinear programming problems are 

in general more difficult to solve than mixed integer programming problems and 

nonlinear programming problems (Wong and Tsai 2011). 

A general MINLP can be formulated as: 

 min f(x) 

         such that  g(x) <= 0 

             l <= 𝑥 𝑖  <= 𝑢 𝑖  

             𝑥 𝑖 in Z for all i ∈  I 

Where f: 𝑅𝑛 → R and g: 𝑅𝑛 → 𝑅𝑚 are twice continuously differentiable 

functions, l, u ∈ 𝑅𝑛 determine lower and upper bounds of the variables, and I ⊆ 

{1,...,n} denotes the set of variables with integral requirements. 

In line with this, (Nikolaev, 2010) present the Mixed-Integer Nonlinear 

Programming (MINLP) formulation to automatically calculate which enzyme levels 
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should be modulated and which enzyme regulatory structures should be altered in order 

to achieve the given optimization goal using non-linear kinetic models of the relevant 

cellular system. He used the glucose uptake through the phosphotransferase system and 

serine biosynthesis to obtain the stable optimization of large-scale kinetic models of the 

cellular system. 

 

2.6.3 Nonlinear programming (NLP) 

 

In mathematics, nonlinear programming (NLP) is the process of solving 

an optimization problem defined by a system of equalities and inequalities, collectively 

termed constraints, over a set of unknown real variables, along with an 

objective function to be maximized or minimized, where some of the constraints or the 

objective function are nonlinear (Kuha and Tucker, 1950). 

 

The problem can be stated simply as: 

 𝑚𝑎𝑥𝑥∈𝑋  𝑓(𝑥) to maximize function product throughput 

or 

𝑚𝑖𝑛𝑥∈𝑋  𝑓(𝑥) to minimize some function such as a cost function 

where 

 𝑓: 𝑅𝑛  → 𝑅  

   𝑥 ∈ 𝑅𝑛  

s.t. (subject to) 

             ℎ𝑖(𝑥) = 0, 𝑖 ∈ 𝐼 = {1, … , 𝑝} 

  𝑔𝑖(𝑥) ≤ 0, 𝑖 ∈ 𝐸 = {1,… ,𝑚} 

 

In line with this, (Pradeep et al., 2006) utilizes from the branch-and-bound 

principle to find the best set of model parameter by creating tight upper and lower for 

the objective function value of the global solution. The lower bound is used in solving 

the convex relaxation of the nonconvex NLP problem. 
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2.6.4 Simulated annealing 

 

Simulated annealing (SA) is a generic probabilistic met-heuristic for the global 

optimization problem of locating a good approximation to the global optimum of a 

given function in a large search space. It is often used when the search space is discrete. 

The name and inspiration come from annealing in metallurgy, a technique involving 

heating and controlled cooling of a material to increase the size of its crystals and 

reduce their defects. Both are attributes of the material that depend on 

its thermodynamic free energy. Heating and cooling the material affects both the 

temperature and the thermodynamic free energy. While the same amount of cooling 

brings the same amount of decrease in temperature, it also brings a bigger or smaller 

decrease in the thermodynamic free energy depending on the rate its occurrence. A 

slower rate produces a bigger decrease. This notion of slow cooling is implemented in 

the Simulated Annealing algorithm as a slow decrease in the probability of accepting 

worse solutions as it explores the solution space. Accepting worse solutions is a 

fundamental property of met-heuristics because it allows for a more extensive search for 

the optimal solution (Metropolic et al., 1953). 

 

 

 

The Algorithm 2.2 above presents the simulated annealing heuristic as described 

above. It starts from a state x0 and continues to either a maximum of kmax steps or until a 

state with an energy of emin or less is found. In the process, the call neighbour (s) should 

generate a randomly chosen neighbor of a given state 𝑥; the call random (0, 1) should 

pick and return a value in the range [0, 1), uniformly at random. The annealing schedule 

is defined by the call temperature (r), which should yield the temperature to use, given 

the fraction r of the time budget that has been expended so far. 

http://en.wikipedia.org/wiki/Probabilistic_algorithm
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Global_optimization
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In line with this, (Chassagnole et al., 2002) applied Simulated Annealing to 

estimate the kinetics in phosphotransferase system with the reaction of glycolysis and 

pentose phosphate pathway. 

 

2.6.5 Genetic algorithm  

In the computer science field of artificial intelligence, a genetic algorithm 

(GA) is a search heuristic that mimics the process of natural selection. This heuristic 

(also sometimes called a metaheuristic) is routinely used to generate useful solutions to 

optimization and search problems. Genetic algorithms belong to the larger class 

of evolutionary algorithms (EA), which generate solutions to optimization problems 

using techniques inspired by natural evolution, such as inheritance, mutation, selection, 

and crossover (John, 1960). 

In line with this, (Yukako et al., 2013) applied a real-coded genetic algorithm 

using the objective function of RC-GA to reduce the errors between the actual model 

values obtained from the simulated result of (Chassagnole et al., 2002) and the 

estimated values provided by the following equation: 

                                   𝐹 = ∑ ∑ |
𝑥𝑖𝑗−𝑦𝑖𝑗

𝑦𝑖𝑗
|𝑇

𝑗=1
𝑅
𝑖=1                                                 (2.4) 

Where 𝑅 is the number of metabolite, 𝑇 is the number of sample point, 𝑥𝑖𝑗 is the 

estimated concentration of metabolite 𝑖 at the 𝑗th sampling, and 𝑦𝑖𝑗  is the true 

concentration of metabolite 𝑖 at the 𝑗th sampling point. 

   

2.6.6 Control vector parameterization 

 

Control vector parameterization, also known as direct sequential method, is one 

of the direct optimization methods for solving optimal control problems. The basic idea 

of direct optimization method is to discretize the control problem, and then apply 

nonlinear programming (NLP) techniques to the resulting finite-dimensional 

optimization problem (Saziye et al., 2009). 
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In line with this, (Maggio et al., 2010) formulated a parameter estimation 

problem in an equation oriented control vector parameterization environment with a 

maximum likelihood objective function in order to determine the values of kinetic 

parameters and variance model parameters by this equation below: 

 

∅ =
𝑁

2
1𝑛(2𝜋) +

1

2
𝑚𝑖𝑛𝑝 ∑ ∑ [1𝑛(𝜎𝑖𝑗

2) +
(𝐶𝑖𝑗
𝑀−𝐶𝑖𝑗)

2

𝜎𝑖𝑗
2 ]𝑁𝑇

𝑗=1
𝑁𝑀
𝑖=1                                (2.5) 

 

Where the summation over 𝑁𝑀 measured state variables (𝐶𝑖𝑗, metabolite 

concentration) and 𝑁𝑇 data points for each measured variable; 𝜎𝑖𝑗 is the variance of the 

𝑗th measrment of variable 𝑖, which is determined by the measured variable variance 

model whose elements correspond to variances of the measured variables. 𝑁 is the total 

number of measurements. Vector 𝑝 corresponds to estimated parameters. 

 

2.6.7 PSO algorithm  

 

This method was proposed in 1995 by Kennedy and Eberhart. It is inspired by 

social behavior and movement dynamics of insects, birds and fishes. The swarm is 

typically modeled by particles that have a position and a velocity in multidimensional 

space. It is used to find the best global position and its information of the best neighbor 

(Russel and James 1995). (Baker et al., 2010) estimated 4 parameters based on time 

course data by this objective function below: 

 

𝑓 = ∫ (𝑦𝑚𝑒𝑠(𝑡) − 𝑦𝑝𝑟𝑒(𝜃, 𝑡))
𝑇𝑊(𝑡)(𝑦𝑚𝑒𝑠(𝑡) − 𝑦𝑝𝑟𝑒(𝜃, 𝑡))𝑑𝑡

𝑡

0
                      (2.6)  

 

Where 𝑓 is the cost function, 𝜃 is the vector of parameters, 𝑦𝑚𝑒𝑠(𝑡)is the vector 

computed values of the state at time 𝑡, and  W(t) is the weighting matrix.  

 

2.6.8 Related work  

 

In the systems biology, the computational models are usually described by a lack 

of reliable parameter values; its true in kinetic metabolic models and the optimization of 

the models are considered to be as a parameter estimation which minimizes the errors 
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between the simulated model data and the experimental data. Recently, different 

methods were proposed in order to achieve large scale optimization in E. coli by 

applying Simulated Annealing which helps to consider 85 kinetics in 

phosphotransferase system with the reaction of glycolysis and pentose phosphate 

pathway (Chassagnole et al., 2002), or formulating algorithms like A maximum 

LikeLihood problem to glycolysis pathway, phosphotransferase system and pentose 

phosphate pathway (Maggio et al., 2013); or (Yukako et al., 2013) investigating the 

Real-Coded Genetic Algorithm efficiency to estimate the kinetic parameters and 

sensitivity analysis using the model formulated by (Chassagnole et al., 2002).  

 

Unfortunately, the model under study contain five pathways in addition to two 

systems that has been built through the simulation, but has not been investigated, though 

has a large kinetic parameters than the other models (Chassagnole et al., 2002; Maggio 

et al., 2013; Yukako et al.,2013). Most of the values are not fully correct because of the 

simulation, which this model needs in order to be fitted closely into real experimental 

data using suitable optimization algorithm that minimizes the errors between the model 

experimental and the experimental data. Recently, it has been reported that the Particle 

Swarm Optimization is very good in estimation than the most popular optimization 

algorithms such as Evolutionary Computational, Evolutionary Programing and Genetic 

Algorithm which are often applied in the upper part of (Baker et al., 2010).  

 

Based on (Baker et al., 2010) they stated that PSO are more efficient in 

correcting the kinetic parameters after compared to others three algorithms, the use of 

PSO in this study is to correct the kinetic parameters of the model under study. 

 

2.7 Summary  

 

Metabolic engineering component involve analysis and synthesis in the area of 

traditional fields of engineering. This chapter first introduces the concept of metabolic 

engineering, computational biology, dynamic modeling, sensitivity analysis and 

optimization algorithm and the use of objects of kinetic model of E. coli. 
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The methods of one at a time sensitivity measures and variance based sensitivity 

analysis are described in details, which these methods has various application in many 

fields, including engineering and economics etc. The statistical analysis of those 

methods is used to cover all stages of an investigation for the kinetic parameters in this 

study.  

 

To this, there are many local and global sensitivity analysis methods applied to 

the kinetic parameters, but still that methods are not applied to many pathways. 

 

In addition to the optimization part explanation, there are some methods 

described in details including their solution to metabolic models and kinetic parameters.  

  

However, the PSO algorithm was used in addition to Evolutionary 

Programming, Simulating Annealing and Genetic Algorithm to insure the performance 

for each algorithm in the kinetic estimation which the kinetics numbers are 4. The best 

result was found by PSO among the others algorithms. To this, these researches intend 

to optimize more than 4 kinetics using PSO algorithm.  

    

Moreover, the sensitivity analysis methods and optimization algorithms are an 

important in the metabolic model of E. coli because these methods help to assess the 

development and exploration of kinetic models. 

 

Furthermore, the overview of sensitivity analysis and optimization algorithm is 

explained in details, as well as the methods that were used to solve the large scale 

kinetic parameters. 

 

 



 

 

 

 

CHAPTER 3  

 

 

METHODOLOGY  

 

 

3.1 Introduction  

 

This chapter describes the methodology used in this research which contains five 

sections. The first section is about the framework and it described the following in 

details; the pathways, metabolites, enzyme and kinetic equation, and kinetic parameters. 

The second section is about the sensitivity analysis method and their application in this 

research. The third section is about the Particle Swarm Optimization (PSO) method 

which was applied to correct the kinetic parameters of the model under study. The last 

section is about validation, which describes how to prove that the sensitivity analysis 

and optimization algorithm methods are highly sufficient in order to achieve our goals 

in this research.  

 

3.1.1 The condition used in the sensitivity and optimization methods     

 

Based on the method of one at a time sensitivity measures we define the degree 

of sensitivity to measure the sensitivity among kinetics, there are 194 kinetics involved, 

for 0.1 dilution rate each kinetic is increased by 10%, 20%, 40% and 80% then quantify 

the changes using the Highest Mean for each kinetic parameters on the model response 

it will be described in the sensitivity analysis method. Moreover, in dilution rate 0.2 

each kinetic parameter increased by 10% and 20% then quantifies the changes using the 

Highest Variance.  

 

The PSO factors used in this study in order to reach our objectives are fitness 

function, dimension problem, population size, upper and lower values, c1&c2 they 
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represent the exploitation coefficient, r1 & r2 are random numbers between 0 and 1 with 

weight constant 𝜔 which are explained PSO part. The metabolite concentration of 

(Hoque et al., 2005) are Fructose 1,6-biophosphate FDP (0.67 mM),  Phosphoenol-

pyruvate PEP (1.04 mM), Isocitrate ICIT (0.21 mM) and 2-Keto-D-gluconate 2KG 

(0.134 mM) are used in PSO algorithm execution in order to fit the optimization result 

closely with that experimental data picked-up from (Hoque et al., 2005) by test the 

optimization result in (Kadir et al., 2010) model. 

 

3.2 Framework of the research  

 

In order to achieve large-scale kinetic parameters optimization of metabolic 

network of E. coli, this framework in Figure 3.1 was employed to describe the 4th phase 

in this chapter for the purpose of solving large scale kinetic parameters. 

 

 The first phase is describing the model that used in this study which contains 

pathways, conditions, equations, kinetic values, enzymes and metabolite concentrations. 

 

 The second phase is the method of sensitivity analysis technique that we are 

going to use for the analyization of the model under study, and it contains the 

implementation of the sensitivity analysis algorithm in dilution rate of 0.1 and 0.2 using 

One-At-A-Time Sensitivity Measures. 

 

 The third phase is the optimization algorithm of PSO which is proposed to 

optimize the sensitivity analysis result and their implementation to the sensitivity 

analysis result of 0.1 dilution rates in order to achieve optimization for large-scale 

kinetic parameters. 

 

The validation is proposed in the fourth phase by replacing the kinetic sensitivity 

analysis result with optimum values founded by PSO then run the simulation if the 

output is close to real experimental data we accept the optimization result if not it will 

be repeated till our result got close to experimental data. The criteria to prove our result 

is more close to experimental data than the model output result under study by measure 
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the percentage errors between our result, the model under study result with real 

experimental data. 

 

 

 

Figuer 3.1: Framework of the study 

 

3.3 Model description 

 

The metabolic network model under study was used as a case study in order to 

achieve a large-scale kinetic parameters optimization of the metabolic network of E. 

coli. Identification of the pathways, metabolites, enzyme and kinetic rate equations, and 

kinetic parameters involves in this model has to be done so as to realize the goal. 
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3.3.1 Pathways  

   

A pathway is a long chain of chemical reaction that happens normally in living 

systems. In each pathway there is a components involved, which are metabolites, 

enzymes and co- metabolites. In the model of (Kadir et al., 2010) under study, five 

pathways are involved and described in Figure 3.2 with the abbreviation of metabolites, 

enzymes and co-factors and how the conversions happened inside the model for the 

metabolites and the enzymes which described by this symbol → this symbol describe 

the conversions in one direction, in two direction described by this symbol ↕, the co-

factors described by this symbol -------. 

 

Glc
ex

G6P

F6P

FDP

GAP/DHAP

PEP

PYR

AcCOA

AcP

ACE

ICIT

2KG
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GOX
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OAA
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Ru5P

Xu5P R5P
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ADP

ATP

NADP

NADPH

 

Figure 3.2: Metabolic pathway 

 

The first pathway is Glycolysis has 7 metabolites which started by (𝑮𝒍𝒄𝒆𝒙 ) 

Glucose, (G6P) Glucose 6-phosphate, (F6P) Fructose 6-phosphate, (FDP) Fructose 1,6-

bisphosphate, (GAP) Glyceraldehyde 3-phosphate, (DHAP) Dihydroxyacetone 

phosphate, (PEP) Phosphoenolpyruvate, and (PYR) Pyruvate; and 6 enzymes started by 

(Pts) Phosphotransferase system, (Pgi) Phosphoglucose isomerase / Glucosephosphate 

isomerase,  (Pfk) Phosphofructokinase-1, Aldo Aldolase, (GAPDH) Glyceraldehyde 3-

phosphate dehydrogenase, and (Pyk) Pyruvate kinase in addition to PTS 
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phosphotransferase system and the co-factor of  ADP Adenosine diphosphate, ATP 

called Adenosine-5-triphosphte.  

 

The second pathway is Pentose Phosphate pathways which consists of 6 

metabolites started by (6PG) 6-Phosphogluconolactone, (Ru5P) Ribose 5-phosphate, 

(Xu5P) Xylulose 5-phosphate, (R5P) Ribulose 5-phosphate, (S7P) Sedoheptulose 7-

phosphate and (E4P) Erythrose 4-phosphate and 7 enzymes started by (G6pdh) 

Glucose-6phosphate dehydrogenase, (6Pgdh) 6Phsophogluconate dehydrogenase, (Rpi) 

Ribulose 5phosphate 3-isomerase, (Rpe) called Ribulose phosphate 3epimerase, (Tkta) 

TransketolaseI, (Tktb) TransketolaseII and (Tal) Transaldolase.  

 

The third pathway is TCA cycle which consist of 6 metabolites started by 

(ICIT) Isocitrate, (2KG) 2-Keto-Dgluconate, (SUC) Succinate, (FUM) Fumarate, 

(MAL) Malate and (OAA) Oxaloacetate and 6 enzymes started by (cs) Citrate synthase, 

(ICDH) Isocitrate dehydrogenase, (2KGDH) 2-Keto-D-gluconate Dehydrogenase, 

(SDH) Succinate dehydrogenase, (Fum) Fumarase and (MDH) Malate dehydrogenase 

in addition to co-factors of (NADP/NADPH) Nicotinamide adenine dinucleotide 

phosphate).  

 

The fourth pathway is Gluconeogenesis which consists of 4 metabolites started 

by (PEP) Phosphoenolpyruvate, and (PYR) Pyruvate, (MAL) Malate (OAA) called 

Oxaloacetate; and 3 enzymes started by (Mez) Malic enzyme, (Pck) 

Phosphoenolpyruvate carboxykinase and (Ppc) PEP carboxylase).  

 

The fifth pathway is Glycoxylate which consist of 4 metabolites started by 

(Gox) Glyxoylate, (ICIT) Isocitrate, (SUC) Succinate and (MAL) called Malate; and 2 

enzymes started by (ICL) Isocitrate lyase and (Ms) Malate synthase. In addition to 

acetate formation which consists of 3 metabolites started by (AcCOA) Acetyl-CoA, 

(AcP) Acetylphosphate and (ACE) Acetate; and 3 enzymes started by (Pdh) Pyruvate 

dehydrogenase, (Acs) Acetylcoenzyme A synthetase, (Pta) Phosphotransacetylase and 

(Ack) Acetate kinase.  
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3.3.2 Metabolites and Co-Metabolites  

 

Metabolites are organic compounds that are not directly involved in the normal 

growth, development or reproduction of organisms. There are 23 metabolites involved 

in this model and they are stated in Table 3.1 with their initial concentration simulation 

values picked up from (Kadir et al., 2010) in order to fit this result closely to 

experimental data whether all or some of them. 

 

Table 3.1: Metabolites values  

Metabolites  Metabolites name Values mM  

GLCex Extra Glucose  0.12203 

G6P Glucose-6-phosphate 0.12989 

F6P Fructose-6-phosphate 0.021457 

FDP Fructose 1,6-bisphosphate 1.5186 

GAPDHAP Glyceraldehyde 3-phosphate 

Dihydroxyacetone phosphate 

0.31487 

PEP  Phosphoenolpyruvate 1.5076 

PYR Pyruvate 2.8279 

ACCOA Acetyl-CoA 1.0021 

ICIT  Isocitrate  0.22057 

2KG 2-Keto-Dgluconate 5.3784 

SUC Succinate   0.57079 

FUM Fumarate 0.35556 

MALATE Malate 0.14256 

OAA Oxaloacetate 0.029714 

GOX  Glyoxylate 0.34542 

ACP Acetylphosphate  2.0035 

ACETATE  Acetate   0.0034493 

6PG 6-Phosphogluconolactone 0.017854 

RU5P Ribose 5-phosphate 0.021398 

R5P Ribulose 5-phosphate 0.076388 
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Co-Metabolites are organic molecules that required by certain enzymes to carry 

out catalysis. The Table 3.2 below describes the Co-Metabolites involved in this study 

and their values with their references which are 10 Co-Metabolites. 

Table 3.2: The Co-Metabolites values 

 

Co-Factors  Co- Names  Values mM Reference  

NAD Nicotinamide 

adenine 

dinucleotide  

1.47 Chassagnole et al., 

2002 

NADH Nicotinamide 

adenine 

dinucleotide 

0.1 Chassagnole et al., 

2002 

NADP Nicotinamide 

adenine 

dinucleotide 

phosphate 

0.195 Chassagnole et al., 

2002 

NADPH Nicotinamide 

adenine 

dinucleotide 

phosphate 

0.062 Chassagnole et al., 

2002 

COA  Coenzyme A 0.001 Chassagnole et al., 

2002 

ADP Adenosine 

diphosphate  

0.595 Chassagnole et al., 

2002 

ATP Adenosine-5-

triphosphte 

4.27 Chassagnole et al., 

2002 

AMP Dihydroxyacetone 

phosphate  

0.955 Chassagnole et al., 

2002 

XU5P Xylulose 5-phosphate 0.026516 

S7P Sedoheptulose 7-phosphate 0.0047299 

E4P Erythrose 4-phosphate 0.027837 
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H Histidine  0.001 Chassagnole et al., 

2002 

P Phosphate  10 Hoefnagel et al., 

2002 

 

3.3.3 Kinetic rate equations  

 

There are 28 enzymes involved in the model of (Kadir et al., 2010). These 

enzymes and their values are shown in Table 3.3. The enzymes are responsible for 

thousands of metabolites processes that sustain life; the enzymes are mathematically 

described by kinetic rate equations and these equations are described in Table 3.3.  

 

All the kinetic rate equations and dynamic equations (mass balance) involved in 

this study are based on the pathways of (Kadir et al., 2010) which the kinetic rate 

equation she used are picked up from literature article as she stated in here article. In 

order to identify the kinetic reaction rate we should explain the rate equation and 

reaction rate. Which in a chemical the reaction is described by the rate equation that 

connect the reaction rate with the concentration of reactants and constant parameters 

through specific equation and the reaction rate means how fast or slow the reactant or 

product in particular reaction. The kinetic rate equations for that mode under study are 

stated bellow in Table 3.4.  

 

Table 3.3: Kinetic rate equations 

 

Reaction’s Kinetic equation 

Cell growth     

{
 
 

 
 𝜇𝑚 (1 −

[𝑋]

𝑋𝑚
)(

[𝐺𝐿𝑐𝑒𝑥]

𝐾𝑠 + [𝐺𝐿𝑐𝑒𝑥]
)𝑘𝐴𝑇𝑃𝑣𝐴𝑇𝑃(. ), ([𝐺𝐿𝑐

𝑒𝑥] > 0)

𝜇𝑚𝐴[𝐴𝑐𝑒
𝑒𝑥]

𝐾𝑠𝐴 + [𝐴𝑐𝑒𝑒𝑥]
 𝑘𝐴𝑇𝑃𝑣𝐴𝑇𝑃(. ), ([𝐺𝐿𝑐

𝑒𝑥] ≤ 1 𝑎𝑛𝑑[𝐴𝑐𝑒𝑒𝑥] > 0)

 

PTS 𝑣𝑃𝑇𝑆
𝑚𝑎𝑥[𝐺𝐿𝑐𝑒𝑥]

[𝑃𝐸𝑃]
𝑃𝑌𝑅

(𝐾𝑎1 +𝐾𝑎2
[𝑃𝐸𝑃]
[𝑃𝑌𝑅]

+ 𝐾𝑎3[𝐺𝐿𝑐𝑒𝑥] + [𝐺𝐿𝑐𝑒𝑥]
[𝑃𝐸𝑃]
[𝑃𝑌𝑅]) (

1 +
[𝐺6𝑃]𝑛𝐺6𝑃

𝐾𝐺6𝑃
)

 



35 

PGI 𝑣𝑃𝐺𝐼 
𝑚𝑎𝑥([𝐺6𝑃]−

[𝐹6𝑃]
𝐾𝑒𝑞

)

𝐾𝐺6𝑃 

(

  
 
1+

[𝐹6𝑃]

𝐾𝐹6𝑃 (1+
[𝐹6𝑃]

𝐾6𝑝𝑔𝑖𝑛ℎ
𝐹6𝑃 )

+ 
[6𝑃𝐺]

𝐾6𝑝𝑔𝑖𝑛ℎ
𝐺6𝑃

)

  
 
+𝐺6𝑃

                                                                                     

PFK  𝑣𝑃𝐹𝐾
𝑚𝑎𝑥𝐾𝐴𝑇𝑃 [𝐹6𝑃]

𝐾(𝐴𝑇𝑃 ,𝐴𝐷𝑃)

(

 
 
[𝐹6𝑃]+𝐾𝑧

𝐹6𝑃

𝐾
𝑏(𝐴𝐷𝑃,𝐴𝑀𝑃)+

[𝑃𝐸𝑃]
𝐾𝑃𝐸𝑃

𝐾𝑎(𝐴𝐷𝑃,𝐴𝑀𝑃)

)

 
 

(

 
 
 
 
 
 
 
 

1+
𝐿𝑝𝑓𝑘

(

 
 
1+[𝐹6𝑃] (

𝐾𝑎(𝐴𝐷𝑃,𝐴𝑀𝑃)

𝐾𝑠
𝐹6𝑃(𝐾𝑏(𝐴𝐷𝑃,𝐴𝑀𝑃)+

[𝑃𝐸𝑃]
𝐾𝑃𝐸𝑃

)
)

)

 
 

𝑛𝑃𝐹𝐾

 

)

 
 
 
 
 
 
 
 

       

Aldo 𝑣𝐴𝐿𝐷𝑂  
𝑚𝑎𝑥 ([𝐹𝐷𝑃]−

[𝐷𝐻𝐴𝑃][𝐺𝐴𝑃]
𝐾𝑒𝑞

)

(𝐾𝐹𝐷𝑃 +[𝐹𝐷𝑃]+
𝐾𝐺𝐴𝑃[𝐷𝐴𝐻𝑃]

[𝐾𝑒𝑞𝑉𝑏𝑖𝑓]
 +
𝐾𝐷𝐻𝐴𝑃[𝐺𝐴𝑃]

[𝐾𝑒𝑞𝑉𝑏𝑖𝑓]
 +
[𝐹𝐷𝑃][𝐺𝐴𝑃]

𝐾𝑖𝑛ℎ
𝑃𝐸𝑃 +

[𝐷𝐻𝐴𝑃][𝐺𝐴𝑃]
𝐾𝑒𝑞𝑉𝑏𝑖𝑓

)

 

GAPDH 𝑣𝐺𝐴𝑃𝐷𝐻
𝑚𝑎𝑥 ([𝐺𝐴𝑃]−

[𝑃𝐸𝑃][𝑁𝐴𝐷𝐻]
𝐾𝑒𝑞[𝑁𝐴𝐷]

)

(𝐾𝐺𝐴𝑃(1+
[𝑃𝐸𝑃]
𝐾𝑃𝐺𝑃

)+[𝐺𝐴𝑃])(
𝐾𝑁𝐴𝐷
𝑁𝐴𝐷

(1+
[𝑁𝐴𝐷𝐻]
𝐾𝑁𝐴𝐷𝐻

)+1)
 

PYK 𝑣𝑃𝑌𝐾
𝑚𝑎𝑥 [𝑃𝐸𝑃]( 𝑃𝐸𝑃

𝐾𝑃𝐸𝑃
+1)

𝑛𝑝𝑦𝑘−1
[𝐴𝐷𝑃]

𝐾𝑃𝐸𝑃(𝐿𝑃𝑌𝐾(
1+

[𝐴𝑇𝑃]
𝐾𝐴𝑇𝑃

[𝐹𝐷𝑃]
𝐾𝐹𝐷𝑃

+
[𝐴𝑀𝑃]
𝐾𝐴𝑀𝑃

+1
)

𝑛𝑝𝑦𝑘

+(
[𝑃𝐸𝑃]
𝐾𝑃𝐸𝑃

+1)
𝑛𝑝𝑦𝑘

) ([𝐴𝐷𝑃]+𝐾𝐴𝐷𝑃)

 

Ppc 𝐾1+𝐾2[𝐴𝑐𝐶𝑂𝐴]+𝐾3[𝐹𝐷𝑃]+𝐾4[𝐴𝑐𝐶𝑂𝐴][𝐹𝐷𝑃]

1+𝐾5[𝐴𝑐𝐶𝑂𝐴]+𝐾6[𝐹𝐷𝑃]
(

[𝑃𝐸𝑃]

𝐾𝑚+[𝑃𝐸𝑃]
) 

G6PDH 𝑣𝐺6𝑃𝐷𝐻
𝑚𝑎𝑥 [𝐺6𝑃][𝑁𝐴𝐷𝑃]

([𝐺6𝑃]+𝐾𝑔6𝑝)(1+
[𝑁𝐴𝐷𝑃𝐻]
𝐾𝑛𝑑𝑝ℎ

)(𝐾𝑛𝑎𝑑𝑝(1+
[𝑁𝐴𝐷𝑃𝐻]
𝐾𝑛𝑎𝑑𝑝ℎ

)+𝑁𝐴𝐷𝑃)
 

PGDH 𝑣𝑃𝐺𝐷𝐻
𝑚𝑎𝑥 [6𝑃𝐺][𝑁𝐴𝐷𝑃]

([6𝑃𝐺]+𝐾6𝑝𝑔)([𝑁𝐴𝐷𝑃]+𝐾𝑛𝑎𝑑𝑝(1+
[𝑁𝐴𝐷𝑃𝐻]
𝐾𝑛𝑎𝑑𝑝ℎ

)(1+
[𝐴𝑇𝑃]
𝐾𝑎𝑡𝑝

))

 

Rpe 
𝑣𝑅𝑝𝑒
𝑚𝑎𝑥 ([𝑅𝑢5𝑃] −

[𝑅5𝑃]

𝐾𝑒𝑞
𝑅𝑝𝑒
) 

Rpi 
𝑣𝑅𝑝𝑖
𝑚𝑎𝑥 ([𝑅𝑢5𝑃] −

[𝑅5𝑃]

𝐾𝑒𝑞
𝑅𝑝𝑖
) 

TktA 𝑣𝑇𝐾𝑡𝐴
𝑚𝑎𝑥 ([𝑅5𝑃][𝑋𝑢5𝑃] −

[𝑆7𝑃][𝐺𝐴𝑃]

𝐾𝑒𝑞
𝑇𝐾𝑡𝐴

) 

TktB 𝑣𝑇𝐾𝑡𝐵
𝑚𝑎𝑥 ([𝑋𝑢5𝑃][𝐸4𝑃]−

[𝐹6𝑃][𝐺𝐴𝑃]

𝐾𝑒𝑞
𝑇𝐾𝑡𝐵

) 

Tal 𝑣𝑇𝑎𝐿
𝑚𝑎𝑥 ([𝐺𝐴𝑃][𝑆7𝑃] −

[𝐸4𝑃][𝐹6𝑃]

𝐾𝑒𝑞
𝑇𝐾𝑡𝐵

) 

DAHP 𝑣𝐷𝐴𝐻𝑃𝑆
𝑚𝑎𝑥 [𝐸4𝑃]𝑛𝑒4𝑝 [𝑃𝐸𝑃]𝑛𝑝𝑒𝑝

(𝐾𝐸4𝑃+[𝐸4𝑃]
𝑛𝑒4𝑝)(𝐾𝑃𝐸𝑃+[𝑃𝐸𝑃]

𝑛𝑝𝑒𝑝)
 

PcK 

𝑣𝑃𝑐𝐾
𝑚𝑎𝑥 (

[𝑂𝐴𝐴]
[𝐴𝑇𝑃]
[𝐴𝐷𝑃]

𝐾𝑚
𝑂𝐴𝐴[𝐴𝑇𝑃]

[𝐴𝐷𝑃]
+[𝑂𝐴𝐴]

[𝐴𝑇𝑃]
[𝐴𝐷𝑃]

+
𝐾𝑖
𝐴𝑇𝑃𝐾𝑚

𝑂𝐴𝐴

𝐾𝑖
𝐴𝐷𝑃 +

𝐾𝑖
𝐴𝑇𝑃𝐾𝑚

𝑂𝐴𝐴

𝐾𝑚
𝑃𝐸𝑃𝐾𝑖

𝐴𝐷𝑃
[𝑃𝐸𝑃]+

𝐾𝑖
𝐴𝑇𝑃𝐾𝑚

𝑂𝐴𝐴

𝐾𝑖
𝑃𝐸𝑃𝐾𝑙

𝐴𝑇𝑃 
[𝐴𝑇𝑃][𝑃𝐸𝑃]
[𝐴𝐷𝑃]

+
𝐾𝑖
𝐴𝑇𝑃𝐾𝑚

𝑂𝐴𝐴

𝐾𝑖
𝐴𝐷𝑃𝐾𝑙

𝑂𝐴𝐴
[𝑂𝐴𝐴]

) 

PDH 𝑣𝑃𝐷𝐻
𝑚𝑎𝑥

[𝑁𝐴𝐷]
( 1

1+𝐾𝑖
[𝑁𝐴𝐷𝐻]
[𝑁𝐴𝐷]

)(
[𝑃𝑌𝑅]

𝐾𝑚
𝑃𝑌𝑅)(

1

𝐾𝑚
𝑁𝐴𝐷)(

[𝐶𝑂𝐴]

𝐾𝑚
𝐶𝑂𝐴)

(1+
[𝑃𝑌𝑅]

𝐾𝑚
𝑃𝑌𝑅)(

1
𝑁𝐴𝐷

+ 1

𝐾𝑚
𝑁𝐴𝐷+

[𝑁𝐴𝐷𝐻]

𝐾𝑚
𝑁𝐴𝐷𝐻[𝑁𝐴𝐷]

)(1+
[𝐶𝑂𝐴]

𝐾𝑚
𝐶𝑂𝐴+

[𝐴𝑐𝐶𝑂𝐴]

𝐾𝑚
𝐴𝑐𝐶𝑂𝐴)
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Pta  𝑣𝑃𝑡𝑎
𝑚𝑎𝑥( 1

𝐾𝑖
𝐴𝑐𝐶𝑂𝐴𝐾𝑚

𝑃
)([𝐴𝑐𝐶𝑜𝐴][𝑃]−

[𝐴𝑐𝑃][𝐶𝑜𝐴]
𝐾𝑒𝑞

)

(1+
[𝐴𝑐𝐶𝑜𝐴]

𝐾𝑖
𝐴𝑐𝐶𝑜𝐴+

[𝑃]

𝐾𝑖
𝑃+

[𝐴𝐶𝑃]

𝐾𝑖
𝐴𝐶𝑃+

[𝐶𝑜𝐴]

𝐾𝑖
𝐶𝑜𝐴+(

[𝐴𝑐𝐶𝑜𝐴][𝑃]

𝐾𝑖
𝐴𝑐𝐶𝑜𝐴𝐾𝑚

𝑃 )+(
[𝐴𝑐𝑃][𝐶𝑜𝐴]

𝐾𝑚
𝐴𝐶𝑃𝐾𝑖

𝐶𝑜𝐴))

 

Ack 𝑣𝐴𝑐𝑘
𝑚𝑎𝑥( 1

𝐾𝑚
𝐴𝐷𝑃𝐾𝑚

𝐴𝐶𝑃)([𝐴𝑐𝑃][𝐴𝐷𝑃]−
[𝐴𝐶𝐸][𝐴𝑇𝑃]

𝐾𝑒𝑞
)

(1+
[𝐴𝑐𝑝]

𝐾𝑚
𝐴𝑐𝑃+

[𝐴𝐶𝐸]

𝐾𝑚
𝐴𝐶𝐸)(1+

[𝐴𝐷𝑃]

𝐾𝑚
𝐴𝐷𝑃+

[𝐴𝑇𝑃]

𝐾𝑚
𝐴𝑇𝑃)

 

Acs 𝑣𝐴𝑐𝑠
𝑚𝑎𝑥[𝐴𝐶𝐸][𝑁𝐴𝐷𝑃]

(𝐾𝑚+[𝐴𝐶𝐸])(𝐾𝑒𝑞+[𝑁𝐴𝐷𝑃])
 

Cs  𝑣𝐶𝑆
𝑚𝑎𝑥[𝐴𝑐𝐶𝑜𝐴][𝑂𝐴𝐴]

(𝐾𝑑
𝐴𝑐𝐶𝑜𝐴𝐾𝑚

𝑂𝐴𝐴+𝐾𝑚
𝐴𝑐𝐶𝑜𝐴[𝑂𝐴𝐴])+([𝐴𝑐𝐶𝑜𝐴]𝐾𝑚

𝑂𝐴𝐴(1+
[𝑁𝐴𝐷𝐻]

𝐾𝑖1
𝑁𝐴𝐷𝐻))+([𝐴𝑐𝐶𝑜𝐴][𝑂𝐴𝐴](1+

[𝑁𝐴𝐷𝐻]

𝐾𝑖2
𝑁𝐷𝐴𝐻))

 

ICDH [𝐼𝐶𝐷𝐻]
𝐾𝑓

𝐾𝑚
𝐼𝐶𝐼𝑇𝐾𝑑

𝑁𝐴𝐷𝑃([𝐼𝐶𝐼𝑇]−
[𝑁𝐴𝐷𝐻][2𝐾𝐺]

𝐾𝑒𝑞
𝐼𝐶𝐷𝐻[𝑁𝐴𝐷𝑃]

)

(

 
 

1
[𝑁𝐴𝐷𝑃]

+
[𝐼𝐶𝐼𝑇]𝐾𝑚

𝑁𝐴𝐷𝑃

𝐾𝑚
𝐼𝐶𝐼𝑇𝐾𝑑

𝑁𝐴𝐷𝑃[𝑁𝐴𝐷𝑃]
+ 1

𝐾𝑑
𝑁𝐴𝐷𝑃+

[𝐼𝐶𝐼𝑇]

𝐾𝑚
𝐼𝐶𝐼𝑇𝐾𝑑

𝑁𝐴𝐷𝑃+ 
[𝐼𝐶𝐼𝑇]

𝐾𝑑
𝐼𝐶𝐼𝑇[𝑁𝐴𝐷𝑃]

 
[𝑁𝐴𝐷𝑃𝐻]𝐾𝑚

𝑁𝐴𝐷𝑃

𝐾𝑚
𝐼𝐶𝐼𝑇𝐾𝑚

𝑁𝐴𝐷𝑃𝐾𝑒𝑖𝑛ℎ
𝑁𝐴𝐷𝑃𝐻+ 

[𝑁𝐴𝐷𝑃𝐻]𝐾𝑒𝑘𝑛ℎ
2𝐾𝐺

𝐾𝑚
2𝐾𝐺𝐾𝑒𝑛ℎ𝑒

𝑁𝐴𝐷𝑃𝐻[𝑁𝐴𝐷𝑃]
+

[2𝐾𝐺]𝐾𝑚
𝑁𝐴𝐷𝑃𝐻

𝐾𝑚
2𝐾𝐺𝐾𝑒𝑛ℎ𝑒

𝑁𝐴𝐷𝑃𝐻[𝑁𝐴𝐷𝑃]
+
[2𝐾𝐺]

𝐾𝑚
2𝐾𝐺 

[𝑁𝐴𝐷𝑃𝐻]

𝐾𝑒𝑛ℎ𝑒
𝑁𝐴𝐷𝑃𝐻[𝑁𝐴𝐷𝑃]

+
[2𝐾𝐺]𝐾𝑚

𝑁𝐴𝐷𝑃𝐻

𝐾𝑚
2𝐾𝐺𝐾𝑚

𝑁𝐴𝐷𝑃𝐻 
[𝑁𝐴𝐷𝑃𝐻]

𝐾𝑒𝑘𝑛
𝑁𝐴𝐷𝑃[𝑁𝐴𝐷𝑃])

 
 

 

IcL 𝑣𝑙𝑐𝑙−𝑓
𝑚𝑎𝑥 [𝐼𝐶𝐼𝑇]

𝐾𝑚
𝐼𝐶𝐼𝑇

(1+
[𝐼𝐶𝐼𝑇]

𝐾𝑚
𝐼𝐶𝐼𝑇+

[𝑆𝑈𝐶]

𝐾𝑚
𝑆𝑈𝐶+

[𝑃𝐸𝑃]

𝐾𝑚
𝑃𝐸𝑃+

[2𝐾𝐺]

𝐾𝑚
2𝐾𝐺+

1
𝐾𝑙
)

 

MS  𝑣𝑀𝑆
𝑚𝑎𝑥 

[𝐺𝑂𝑋]

𝐾𝑚
𝐺𝑂𝑋 

  
[𝐴𝑐𝐶𝑜𝐴]

𝐾𝑚
𝐴𝑐𝐶𝑜𝐴− 𝑣𝑀𝑆

𝑚𝑎𝑥 
[𝑀𝐴𝐿]

𝐾𝑚
𝑀𝐴𝐿

(1+
[𝐺𝑂𝑋]

𝐾𝑚
𝐺𝑂𝑋+

[𝑀𝐴𝐿]

𝐾𝑚
𝑀𝐴𝐿+(1+ 

[𝐴𝑐𝐶𝑜𝐴]

𝐾𝑚
𝐴𝑐𝐶𝑜𝐴))

 

aKGDH 𝑣2𝐾𝐺𝐷𝐻
𝑚𝑎𝑥  [𝑎𝐾𝐺][𝐶𝑜𝐴]

(

 
 

𝐾𝑚
𝑁𝐴𝐷 [𝑎𝐾𝐺][𝐶𝑜𝐴]

[𝑁𝐴𝐷]
 + 𝐾𝑚

𝐶𝑜𝐴 [𝑎𝐾𝐺]+𝐾𝑚
2𝐾𝐺[𝐶𝑜𝐴]+[𝑎𝐾𝐺][𝐶𝑜𝐴]+ 

𝐾𝑚
2𝐾𝐺𝐾𝑧[𝑎𝐾𝐺][𝑆𝑈𝐶][𝑁𝐴𝐷𝐻]

𝐾1
2𝐾𝐺𝐾1

𝑆𝑈𝐶[𝑁𝐴𝐷]

𝐾𝑚
2𝐾𝐺 𝐾𝑧[𝑆𝑈𝐶][𝑁𝐴𝐷𝐻]

𝐾1
𝑆𝑈𝐶 [𝑁𝐴𝐷]

+
𝐾𝑚
𝑁𝐴𝐷 [𝑎𝐾𝐺][𝐶𝑜𝐴][𝑁𝐴𝐷𝐻] 

𝐾1
𝑁𝐴𝐷𝐻[𝑁𝐴𝐷]

 + 
𝐾𝑚
𝐶𝑜𝐴 [𝑎𝐾𝐺][𝑆𝑈𝐶] 

𝐾1
𝑆𝑈𝐶                         

)

 
 

 

SDH 𝑣𝑆𝐷𝐻1𝑣𝑆𝐷𝐻2([𝑆𝑈𝐶]−
[𝐹𝑈𝑀]
𝐾𝑒𝑞

)

𝐾𝑚
𝑆𝑈𝐶𝑣𝑆𝐷𝐻2+𝑣𝑆𝐷𝐻2[𝑆𝑈𝐶]+ 

𝑣𝑆𝐷𝐻1[𝐹𝑈𝑀]
𝐾𝑒𝑞

 

Fum  𝑣𝐹𝑢𝑚1𝑣𝐹𝑢𝑚2([𝐹𝑈𝑀]− 
[𝑀𝐴𝐿]

𝑘𝐹𝑢𝑚 𝑒𝑞
)

𝐾𝑚
𝐹𝑢𝑚𝑣𝐹𝑢𝑚1+𝑣𝐹𝑢𝑚2[𝐹𝑈𝑀]+

𝑉𝐹𝑢𝑚1[𝑀𝐴𝐿]
𝐾𝑒𝑞

 

Mez  𝑣𝑀𝑒𝑧
𝑚𝑎𝑥 [𝑀𝐴𝐿] [𝑁𝐴𝐷𝑃]

(𝐾𝑀𝐴𝐿+[𝑀𝐴𝐿]) (𝐾𝑒𝑞+[𝑁𝐴𝐷𝑃]) 
 

MDH  𝑣𝑀𝐷𝐻1𝑣𝑀𝐷𝐻2([𝑀𝐴𝐿]−
[𝑂𝐴𝐴]
𝐾𝑒𝑞

)

(

 
 
 
 

𝐾1
𝑁𝐴𝐷𝐾𝑚

𝑀𝐴𝐿𝑣𝑀𝐷𝐻2
[𝑁𝐴𝐷]

+𝐾𝑚
𝑀𝐴𝐿 𝑣𝑀𝐷𝐻2+

𝐾𝑚
𝑁𝐴𝐷𝑣𝑀𝐷𝐻2[𝑀𝐴𝐿]

[𝑁𝐴𝐷]
+𝑣𝑀𝐷𝐻2[𝑀𝐴𝐿]+

𝐾𝑚
𝑂𝐴𝐴𝑣𝑀𝐷𝐻1[𝑁𝐴𝐷𝐻]

𝐾𝑒𝑞[𝑁𝐴𝐷]
+ 𝐾𝑚

𝑁𝐴𝐷𝐻𝑣𝑀𝐷𝐻1[𝑂𝐴𝐴]
𝐾𝑒𝑞[𝑁𝐴𝐷]

+

𝑣𝑀𝐷𝐻1[𝑁𝐴𝐷𝐻][𝑂𝐴𝐴]

𝐾𝑒𝑞[𝑁𝐴𝐷]
+
𝑣𝑀𝐷𝐻1𝐾𝑚

𝑂𝐴𝐴[𝑁𝐴𝐷𝐻]

𝐾𝑒𝑞𝐾1
𝑁𝐴𝐷 +

𝑣𝑀𝐷𝐻2𝐾𝑚
𝑁𝐴𝐷[𝑀𝐴𝐿][𝑂𝐴𝐴]

𝐾1
𝑂𝐴𝐴[𝑁𝐴𝐷]

+
𝑣𝑀𝐷𝐻2[𝑀𝐴𝐿][𝑁𝐴𝐷𝐻]

𝐾1
𝑁𝐴𝐷

+𝑣𝑀𝐷𝐻1
[𝑀𝐴𝐿][𝑁𝐴𝐷𝐻][𝑂𝐴𝐴]

𝐾𝑒𝑞𝐾1
𝑀𝐴𝐿[𝑁𝐴𝐷]

 +
𝑣𝑀𝐷𝐻2[𝑀𝐴𝐿][𝑂𝐴𝐴]

𝐾𝛪𝛪
𝑂𝐴𝐴  +

𝑣𝑀𝐷𝐻1[𝑁𝐴𝐷𝐻][𝑂𝐴𝐴]

𝐾𝛪𝛪
𝑁𝐴𝐷𝐾𝑒𝑞

 + 
𝐾1
𝑁𝐴𝐷𝑣𝑀𝐷𝐻2[𝑀𝐴𝐿][𝑁𝐴𝐷𝐻][𝑂𝐴𝐴]

𝐾𝛪𝛪
𝑁𝐴𝐷𝐾𝑚

𝑂𝐴𝐴𝐾1
𝑁𝐴𝐷𝐻 )

 
 
 
 

 

 

Each enzyme described by mass balance equation is the quantity of all species in 

a solution containing a particular atom; it must be equal to the amount of that atom 

delivered to the solution. The solution of the equation may be derived from the dynamic 

equation and the initial state of the system as well as a graph or table of values of the 

solution may then be compared with the observed pattern of nature; i.e. to what extent 
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the solution of equation matches the pattern is a measure of the validity of the 

mathematical model. The metabolite concentration rate of the changes in this metabolic 

network is given by the following equation 

 

                                                    
d𝐶𝑖

dt
= ∑ 𝑅𝑖𝑗v − μCi𝑗                                                           (3.1) 

Where, 𝐶𝑖 is the concentration of metabolite  𝑖 , 𝑅𝑖𝑗 is the stoichiometric 

coefficient of metabolite 𝑖 in the reaction  𝑗 , 𝑣𝑗 is the rate of the reaction j and 𝜇𝐶𝑖 is the 

growth rate on the dilution effect.  

The need for the mass balance equation in kinetic rate equation is to analysis the 

system, which mass balance is an application of conservation of the mass and described 

in Table 3.4 below. 

 

Table 3.4: Mass Balance 

 

Metabolites  Mass balance description  

Cell  d[X]

dt
= μ[X] 

Extra Glucose  d[GLCex]

dt
= −vPTS[X] 

Glucose-6-phosphate  d[G6P]

dt
= vPTS − vPGI − vG6PDH − μ[G6P] 

Fructose 6-phospahte  d[F6P]

dt
= vPGI − vPFK + vTKTB + vTAL − μ[F6P] 

Fructose 1,6-Phosphate  d[FDP]

dt
= vPFK − vALDO − μ[FDP] 

Glyceraldehyde 3-phosphate  d[GAP]

dt
= 2vALDO − vGAPDH + vTKTA + vTKTB − vTAL

− μ[GAP] 

Phosphoenol-pyruvate  d[PEP]

dt
= vGAPDH + vPCK − vPTS − vPYK − vPPC − μ[PEP] 

Pyruvate  d[PYR]

dt
= vPYK + vPTS + vMEZ − vPDH − μ[PYR] 

Acetyl-CoA d[AcCoA]

dt
= vPDH + vACS + vCS − vPTA − μ[AcCoA] 

Isocitrate  d[ICIT]

dt
= vCS − vICDH − vICL − μ[ICIT] 

2-Keto-D-gluconate d[2KG]

dt
= vICDH − v2KGDH − μ[2KG] 

Succinate  d[SUC]

dt
= v2KGDH + vICL − vSDH − μ[SUC] 
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Fumrate  d[FUM]

dt
= vSDH − vFUM − μ[FUM] 

Malate d[MAL]

dt
= vFUM + vMS − vMDH − vMEZ − μ[MAL] 

Oxaloacetate  d[OAA]

dt
= vMDH + vPPC − vCS − vPCK − μ[OAA] 

Glyoxylate d[GOX]

dt
= vICL − vMS − μ[GOX] 

Acetyl phosphate  d[ACP]

dt
= vPTA − vACK − μ[ACP] 

Acetate  d[ACEex]

dt
= (vACK − vACS)[X] 

6-Phosphogluconolactone  d[6PG]

dt
= vG6PDH − v6PGDH − μ[6PG] 

Ribose 5-phosphate  d[Ru5P]

dt
= v6PGDH − vRPE − vRPI − μ[Ru5P] 

Ribulose 5-phosphoenolpyruvate  d[R5P]

dt
= vRPI − vTKTA − μ[R5P] 

Xylulose 5-phsophate  d[Xu5P]

dt
= vRPE − vTKTA − vTKTB − μ[Xu5P] 

Sedoheptulose 7-phosphate  d[S7P]

dt
= vTKTA− vTAL − μ[S7P] 

Erythrose 4-phsophate d[E4P]

dt
= vTAL − vTKTB − μ[E4P] 

 

 Where in Table 3.4 the [.] denotes the concentration, μ is the specific growth 

rate, vi stands for the intracellular fluxes, and the superscript (ex) means extra cellular. 

In the end of each equation there is term called 𝜇 and it denotes the dilution effect 

because of the increases in cell volume which happens as the cell grows (Chassagnole et 

al., 2002). In Figure 3.2 GAP and DHAP is lumped together and are considered to be in 

equilibrium for simplicity purposes (Kadir et al., 2010).  

  

3.3.4 Kinetic Parameters  

 

Kinetic parameter or (kinetic enzyme) is the study of the chemical reactions that 

are catalyzed by enzymes; which the values that used in this study are the initial values 

of the kinetic parameters measured by Milli-molar. These proteins are commonly 

enzymes that assist in biochemical transformation. There are 194 kinetic parameters 

involved in this model as stated in Table 3.5 below with their reference. 
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Table 3.5: The kinetic parameters used in this study 

 

Enzyme 

activities  

Kinetic Parameters with values  Mm Reference  

Miu  miu_Max=0.6 , K_Xs=  0.1, K_ACETs= 0.05    Kadir et al., 

2010 

Pts V_PTSmax= 25.739, K_PTSa1=1, K_PTSa2=0.01, 

 K_PTSa3=1,  n_PTSg6p=4,  K_PTSg6p =0.5;       

Kadir et al., 

2010 

Pgi V_PGImax=26.3711,  K_PGIg6p=2.46,   

K_PGIf6p=0.2,  K_PGIeq=0.43,   

K_PGIg6p_6pginh=0.2,  K_PGIf6p_6pgi=0.2; 

Kadir et al., 

2010 

Pfk V_PFKmax=24.613,  K_PFKatp_s=0.16,  

K_PFKadp_a=239, K_PFKadp_b=0.25,   

K_PFKadp_c=0.36, K_PFKamp_a=8.74 

K_PFKamp_b=0.01,   n_PFK=4,  L_PFK=4000000, 

 K_PFKf6p_s =0.14, K_PFKpep=3.26; 

Kadir et al., 

2010 

Aldo V_ALDOmax=2.8337, K_ALDOfdp=0.133    

K_ALDOgap=0.088, K_ALDOdhap=0.088,  

K_ALDOgapinh=0.6, K_ALDOeq=0.14, 

V_ALDOblf=2; 

Kadir et al., 

2010 

Gapdh V_GAPDHmax=121.29, K_GAPDHgap=0.15,  

K_GAPDHpgp0.1, K_GAPDHnad=0.45,   

K_GAPDHnadh=0.02, K_GAPDHeq=0.63; 

Kadir et al., 

2010 

Pyk V_PYKmax=1.085,Km_PYKpep=0.31, 

Km_PYKfdp=0.19, Km_PYKamp=0.2,  

Km_PYKatp=22.5, Km_PYKadp=0.26,  

L_PYK=1000,  n_PYK=4,  n_PK=3 

Kadir et al., 

2010 

PDH V_PDHmax2= 27171,    Km_PDHpyr2=1,    

Km_PDHnad2=0.4, Km_PDHcoa2 0.014,    

Km_PDHaccoa2=0.008, Km_PDHnadh2=0.1,  

Ki_PDH2 = 46.4; 

Kadir et al., 

2010 

G6PDH V_G6PDHmax=0.97922*50, K_G6PDHnadp=14.4, 

K_G6PDHnadphnadpinh=0.01,K_G6PDHnadphg6pinh=0.18, 

Kadir et al., 

2010 
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K_G6PDHg6p=0.07; 

6PGDH V_6PGDHmax=1.81, K_6PGDH6pg=0.1,   

K_6PGDHnadp=0.028, K_6PGDHnadphinh=0.01, 

K_6PGDHatpinh=3.0; 

Kadir et al., 

2010 

RPE V_RPEmax=18.486, K_RPEeq=1.4; Kadir et al., 

2010 

RPI V_RPImax=13.319, K_RPIeq=4.0; Kadir et al., 

2010 

TKTA V_TKTAmax=29.348, K_TKTAeq=1.2;  Kadir et al., 

2010 

TKTB V_TKTBmax=316.22, K_TKTBeq=10; Kadir et al., 

2010 

TAL V_TALmax =24.499, K_TALeq=1.05; Kadir et al., 

2010 

CS CSmax=34.7244*2, Km_CSaccoa=0.18, Km_CSoaa=0.04, 

Kd_CSaccoa=0.1, Kd1_CSh=1e-5, Kd2_CSh=2e-4,  

Ki_CSatp=0.58, Ki1_CS2kg=0.015, Ki2_CS2kg=0.256,  

Ki1_CSnadh=3.3e-4, Ki2_CSnadh=8.4e-3,  K_cat0=1; 

Kadir et al., 

2010 

ICDH ICDH=1.8785*13, Keq_ICDH=1000, 

Kf_ICDH=4830*60, Km_ICDH2kg=0.038, 

Km_ICDHco2=2.2, Km_ICDHicit= 0.011, 

 Kd_ICDHnadp=0.006, Km_ICDHnadp=0.017, 

 Kd_ICDHicit= 0.003, Kd_ICDHnadph=0.00014,  

Keinh_ICDHnadph=7e-3, Keknh_ICDH2kg=5.5,  

Kd_ICDHco2=1.6, Keke_ICDHco2=1.6,  

Kekn_ICDHnadp=1.6e-4, Km_ICDHnadph=0.0036,   

Kenhe_ICDHnadph=0.028; 

Kadir et al., 

2010 

2KGDH V_2KGDHmax=149.74/4, K_2KGDH2kg=1, 

KI_2KGDH2kg=0.75, K_2KGDHcoa=0.002, 

   K_2KGDHnad=0.07, K_2KGDHsuc=1, 

 K_2KGDHnadh=0.018, K_2KGDHz=1.5; 

Kadir et al., 

2010 

SDH Km_SDHsuc=0.1, V_SDH1=1.1334,  Kadir et al., 



41 

V_SDH2=1.1334, Keq_SDH=10; 2010 

FUM 

 

Km_FUM=0.1, V_FUM1=1.1334, 

V_FUM2=1.1334, Keq_FUM=10; 

Kadir et al., 

2010 

MDH V_MDH1=25.874, V_MDH2=25.874, Keq_MDH=1, 

KI_MDHnad=0.31, KI_MDHnadh=0.04,  

KI_MDHmal=3.30, KI_MDHoaa=0.27,  

Km_MDHnad=0.10, Km_MDHnadh=0.04, 

Km_MDHmal=1.33, Km_MDHoaa=0.27,   

KII_MDHnad=0.31, KII_MDHoaa=0.17; 

Kadir et al., 

2010 

PTA V_PTAmax=0.83902*15, Ki_PTAaccoa=0.2, 

 Km_PTAp=2.6,  Ki_PTAp=2.6, Ki_PTAacp=0.2, 

 Ki_PTAcoa=0.029, Km_PTAacp=0.7, Keq_PTA=0.0281; 

Kadir et al., 

2010 

ACK V_ACKmax=191.02*12, Km_ACKacp=0.16,  

Km_ACKadp=0.5,  Km_ACKacet=7,  

Km_ACKatp=0.07, Keq_ACK= 174.2; 

Kadir et al., 

2010 

ACS V_ACSmax=0.089971*150, Km2_ACS=0.07,  

Keq_ACS=0.15; 

Kadir et al., 

2010 

MEZ 

 

V_MEZ=0.1058, Km_MEZmal=0.37,  

Keq_MEZ=0.10; 

Kadir et al., 

2010 

PCK V_PCKmax=4.5116, Km_PCKatp=0.06,  

KI_PCKatp=0.04, Ki_PCKatp=0.04,  

Km_PCKoaa=0.67, Ki_PCKpep=0.06,  

KI_PCKoaa=0.45;  

Km_PCKpep=0.07, Ki_PCKadp=0.04; 

Kadir et al., 

2010 

PPC V_PPCmax2=3.7719/20,Km_PEP=0.3231, 

 k1=0.03176, k2=1.2878, k3=0.05425, 

 k4=0.8139, k5=0.0939, k6=0.2693; 

Kadir et al., 

2010 

ICL r_ICLmax_f=3.8315, K_ICLicit=0.0104,  

K_ICLsuc =1.19, 

K_ICLpep=0.91, K_ICL2kg=1.35; 

Kadir et al., 

2010 

MS Vf_MSmax=3.6869, Vf_MS=3.6869,  

Vr_MS =3.6869/100, 

Kadir et al., 

2010 
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Km_MSgox=2,  Km_MSaccoa=0.01, 

Km_MSmal=1,  Km_MScoa=0.1; 

 

3.4 Sensitivity analysis technique 

      

In biology systems, the stability analysis shows how a biochemical system 

responds to small a perturbation that alters in steady-state condition, which is an 

important part in biology system development. The need for the sensitivity in the 

system biology mostly is to reduce the huge number of the parameters by choosing the 

most sensitive parameters when we need to be identified. Sensitivity analysis methods 

have been widely applied to study the biological system and it can provide valuable 

insights on how robust the biological responses are with respect to the changes of 

biological parameters and which model inputs are the key factors that affect the model 

outputs; moreover sensitivity analysis is valuable for guiding experimental analysis, 

model reduction and parameter estimation. Sensitivity analysis has two approaches and 

they are; local methods which study the impact of small perturbation on the model 

output and the global methods which studies how the model output are affected by large 

variations of the model outputs.  

 

In the Algorithm 3.1 below, represents the simulation of the model under study 

with four major steps start by 194 parameters (input), 53 model response (output), 28 

reaction rate in addition to ODE to be solved steps 1 to 4. The fifth step is the 

validation. 

 

 

 

Where 𝑥 is input of the model, 𝑛 is the number of inputs, 𝑦 is output of the 

model, 𝑅 is the range of inputs and outputs, and 𝑚 is the number of outputs.   
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In this study therefore, the local method of one-at-a-time sensitivity measures 

was used to study the sensitivity analysis for large-scale of kinetic parameters of 

Algorithm 3.1. It is conceptually the simplest method to sensitivity analysis. The 

repetition of every one parameter at a time while holding the others, fixed is a 

sensitivity ranking that can be obtained quickly by increasing each parameter by a given 

percentage while leaving all others constant, thereby quantifying the change in model 

output. This method is applied to 194 kinetic parameters represented in the model under 

study. In order to achieve the sensitivity, the Algorithm 3.2 below should be followed 

and the equations used in these methods are stated below should be used. 

 

There are four major steps and they are stated in Algorithm 3.2. In order to apply 

the sensitivity analysis for large scale kinetic parameters using one-at-a-time sensitivity 

measures, the first step identify how many inputs to be investigated by the sensitivity 

method; the second step in each individual kinetics should be increased by percentages 

of 10%, 20%, 40% and 80%. The third step find the differences between the actual 

model response outputs represented by 𝑦0 and the simulation response after 𝑘 ± (means 

𝑘 increased or decreased) represented by 𝑦. The fourth steps are how to quantify the 

changes over the outputs which proposed the highest variance and the highest Mean. 

 

To identify the changes in the model output by increasing the whole kinetics into 

percentages, follow these equations below: 

 

             𝑆 = 𝐾 + 𝑡 𝐾 (3.2) 

 

Where  𝑆 is the new simulation result, 𝐾  is the kinetic parameter and 𝑡  is the 

percentage of kinetic 𝐾. 

 

For quantifying the changes this two equations below should use: 

 

      𝑉 = 𝐾𝑚 − 𝑆                                                           (3.3)  

  

Where 𝑉 is the differences, 𝐾𝑚 is the actual model kinetic values and 𝑆 is the 

new simulation result.    
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                                                  𝑆𝐴 =
∑𝑦

∑  𝑦0
𝑚 ∗ 100                                                 (3.4) 

 

Where 𝑆𝐴 is the Sensitivity Analysis over the model output,  𝑦  is the summation 

percentage over the all metabolites after increased or decreased by the kinetics and 𝑦0
𝑚 

is the summation number of the model response. Bellow the Algorithm 3.2 used in this 

study as described in the previous paragraphs. 

 

 

 

The Algorithm 3.2 is translate to 9 major steps below: 

 

 In the first step each parameter has minimum and maximum values in the model 

under study represented in step 1 and 2 where 𝑥 are the paremeters and 𝑗 is the 

parameter position start from 1 to 194. 

 

 The secound step set 𝑘 = 𝑥𝑗 where 𝑘 is the kinetic parameters and 𝑥𝑗 is the 

kinetic parameter to 𝑗th position in step 5. 
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 The third step set the percentage changes values to 𝑡 step 6. 

 

 The fourth step the range percentage iteration set to 𝑖 step 8. 

 

 The fifth step the Algorithm 3.1 should used to be investigated step 9. 

    

 The sixth step apply the sensitivity 𝑆 by using this equation 𝑆 = 𝐾 + 𝑡 𝐾 step 

10. 

  

 The seventh step if the the value of the sensitiviy increased or decreased 𝑆 ± 

find the defferences between the new sensitivity result and the orignal result of the 

model output using these equation 𝑦0 − 𝑦, where 𝑦0 is the actul model outputs result 

and 𝑦 is the new sensitivity result steps 11 and 12. 

 

 The eighth step set the new iteration 𝑡 by these equation 𝑡 = 𝑡 ∗ 2 step 14. 

 

 The ninth step is how to quantify the changes using steps 16 and 17. 

 

3.5 Optimization algorithm   

 

Mathematical optimization plays an important role in the development of system 

biology. The PSO algorithm is proposed to achieve large-scale kinetic parameters 

optimization in the metabolic network model of E. coli which was formulated by (Kadir 

et al., 2010) to minimize the model errors with experimental data. PSO was introduced 

as a heuristic method (Eberhart and Kennedy, 1995) inspired by the food-searching 

behaviors of fish and their activities or a flock of birds in D-dimensional search space.  

 

In order to apply the PSO algorithm for our problem of this study, we first 

initialize the PSO particles; the particles are number of birds, the steps of the birds, 

problem dimension and inertia weight.  

 

Second, initialize the acceleration coefficients of PSO 𝑐1, 𝑐2, 𝑟1and 𝑟2.  
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Third, initialize the swarm velocity and position by choosing the range of 

searching for each dimension problem.  

 

Fourth, initialize the kinetic rate equation with their values of metabolites and 

kinetic parameters that are stated in the sensitivity analysis result. Then initialize the 

kinetic parameters that are stated as the most sensitive parameters to be unknown and 

should be found by the fitness function during PSO execution and replace the 

metabolites values with the experimental data.  

 

Fifth, the fitness function used to optimize the large-scale metabolic network of 

E. Coil system model in this study and to reduce the errors between the model response 

and the real experimental data transfer as follows:  

 

                𝑓 = |(𝑦0,1 − 𝑦1) + (𝑦0,2 − 𝑦2)+. . . +(𝑦0,𝑖 − 𝑦𝑖)|                      (3.5)          

                                                                                                    

 

Where 𝑦0,𝑖 is the actual model reaction rate resulting from 0, 𝑖 kinetics and 𝑦𝑖 is 

a simulation reaction result for 𝑖 kinetics.  

 

Sixth, calculate the particle velocity by this equation below: 

        

        𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝐺(𝑡) − 𝑥(𝑡))                       (3.6)     

 

Where; 𝑝(𝑡) is the best position already found by particle 𝑖 until time 𝑡 and 𝐺(𝑡) 

is the best position already found by a neighbor of particle 𝑖 until time t,  𝜔 is an inertia 

weight parameter to explore the search space.c1, c2 are acceleration coefficients toward 

𝑝 and 𝐺 respectively, while 𝑝 is the current local best particle and 𝐺 is the current global 

best particle at iteration 𝑡; and r1, r2 are random number between 0 and 1. 

 

Seventh, update the particle position by this equation below: 

 

                        𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)                                                 (3.7) 
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In each iteration, the particles will use eq (3.6) & (3.7) to update their position 

(𝑥𝑖) and velocity (𝑣𝑖), but the algorithm used in this work will be described in Figure 

3.4. Normally, the estimation of the unknown parameters techniques is based on the 

difference between the simulated model and actual system dynamic behavior (Yukako 

et al., 2013).  

 

Eighth, if the fitness function values is better than the best fitness values of the 

best position already found by particle 𝑖 until time 𝑡 described in equation 3.6 by (pi(t)) 

set the current values as the new best position already found by a neighbor until time 𝑡  

described in equation 3.6 by (𝐺(𝑡)). 

 

Ninth, repeat the previous steps until the number of iteration or the exit criteria 

is met, or detecting high optimum result solution for study problem. 

   

During the PSO execution, the maximum number of generation is set as 100 

(bird-steps), and the dimension problem will be identified based on the sensitivity 

analysis result, while the population size (iterations) was repeated for 100 times. The 

linear inertia weight 𝜔 is 0.9, PSO parameter 𝑐1=1.5 and 𝑐2=0.8 with lower and upper 

values 1± for each kinetics. The pseudo code explaining the relation between the 

optimization theory and their equations used in this study is shown below in Algorithm 

3.3. 

 



48 

 

  

A simple explanation of the PSO’s operation above in Algorithm 3.3 is as 

follows. Each particle represents a possible solution to the optimization. During each 

iteration in PSO, the accelerating direction of one particle was determined by its own 

best found solution so far and the global best position discovered so far by any of the 

particles in the swarm. This means that if a particle discovers a promising new solution, 

all the other particles will move closer to it, exploring the region more thoroughly in the 

process (Yin et al., 2006). 

 

Let 𝐻 denote the number of birds (Swarm) and 𝑛 the dimension of the problems. 

Each individual (1 ≤𝑖≤ 𝐻) has the attributes: A current position in the search space 𝑥𝑖 = 

(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛), a current velocity 𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑛), and a personal best (𝑝𝑖  𝐵𝑒𝑠𝑡) 

position ( the position giving the best fitness value experience by particle) 𝑝𝑖 = 

(𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑛  ). At each iteration, each particle in the swarm updates its velocity 

according to (Kennedy and Eberhart, 1995), assuming that the function fitness is to be 

minimized, and that 𝑟1, and 𝑟2 are two random numbers uniformly distributed in the 

interval (0 to 1). 
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The parameter 𝜔 in equation 3.5 is called the inertia weight that is typically set 

up to vary linearly from 0.9 to 0.4 during the course of search process. The inclusion of 

inertia weight leads to faster convergence of the PSO algorithm. 

 

The acceleration coefficients 𝑐1 and 𝑐2 can be used to control the rate in which a 

particle will move in a single iteration and thus, may exert a great influence on the 

convergence speed of PSO. Typically, these are both set to a value of 2.0, although 

assigning different values to 𝑐1 and 𝑐2 sometimes leads to better performance (Salamn 

et al., 2002). 

 

3.6 Validation  

 

The conditions considered for this model are in a continuous culture (it was used 

in a particular phase of the cell growth to grow microorganisms or cell continually) but 

at a steady-state condition (is a situation in which all state variables are constant in 

spite of ongoing process that strive to change them) with dilution rates (it’s the process 

of reducing the concentration of a solute in solution, usually simply mixing with more 

solvent) of 0.1 and 0.2 dilution rates. 

 

The proposed methods, One-At-A-Time Sensitivity Measures and PSO 

algorithm aims to minimize the errors between the sensitivity simulation and original 

results as well as to achieve a large-scale kinetic parameter optimization in the 

metabolic network model of E. coli. The validation Algorithm steps 3.4 were proposed 

to enhance the strength of sensitivity analysis and optimization algorithm methods for 

large-scale kinetic parameters optimization of (Kadir et al., 2010) model which is 

described as follows:  
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The first five steps it was introduced previously. To this, the kinetic parameters 

that involved in step 3 it’s our main problem need to be solved. The explanation steps 

stated as follow, the first step initializes the pathways that were used in model of E. coli.  

 

The second step, initialize the kinetic parameters and the kinetic rate equation 

that involved in the model under study.  

 

The third step applies the kinetic rate equation computation in addition to the 

pathways rules.  

 

The fourth step formulates the ODE in order to simulate the pathways and the 

fifth step solves the ODE. 

 

The sixth step applies the sensitivity analysis technique to the kinetic parameters 

that initialized in step 2.  
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The seventh step applies the optimization algorithm to the sensitivity analysis 

result of step 6 and replaces the kinetic sensitivity result with the optimized kinetic 

parameters in step 7.  

 

The eighth step compares the ODE result of PSO algorithm with experimental 

data. The final step, if the optimization result after we executed in the model under 

study and the model responses have moved closely to experimental data stop, if not 

repeat the steps of 7, 8 till 9.   

 

Finally to ensure that sensitivity analysis and PSO algorithm methods achieved 

the error minimization, accounts the errors minimization percentage for the model 

response optimization result under study and (Kadir et al., 2010) model response with 

experimental data using this equation below: 

 

  𝑇ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
∑𝐷𝑚−∑𝐸𝑚  

∑ 𝐸𝑚 
∗ 100                       (3.8) 

 

Where 𝐷𝑚 are the metabolites model summations under study and 𝐸𝑚  are the 

summation of the experimental data metabolites. Then quantify the errors minimization 

by account the variance between our metabolites model under study and (Kadir et al., 

2010) metabolites.  

 

3.7 Summary  

 

In conclusion, Chapter 3 explained the methodology of large-scale kinetic 

parameter optimization of the metabolic network of E. coli. Therefore, four phases are 

included. They are model description, sensitivity analysis, optimization and validation. 

 

Each phase has its own objectives and interests. The significant phase in order to 

implement the sensitivity analysis is a model descriptions phase, which consists of 

pathways, metabolites, values of enzymes, reaction rates, dynamic equation and kinetics 

values that were used in this study. The very influential sensitivity analysis phase to 

large-scale kinetics is the one-at-a-time sensitivity measures technique to achieve this 
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phase. The most important phase is the Optimization phase, which has with the view to 

optimize the kinetic parameter’s in PSO algorithm. In addition, the implementation to 

reach the kinetics’ estimation is combined with experimental data to achieve this phase. 

To prove that, this PSO algorithm is good enough in order to fix the model inputs, it 

proposed the model validation. 

 

The result obtained from the experiments of sensitivity analysis and 

optimization phases are discussed in the next chapter with the validation.   



 

 

 

 

CHAPTER 4  

 

 

RESULT  

 

 

4.1 Introduction  

 

In order to evaluate the performance and the effectiveness of large-scale kinetic 

parameters in a metabolic network of E. coli, this thesis applied a set of tests carried out 

by 194 kinetic parameters. This research assumes that there are three parts that are to be 

executed by local sensitivity analysis technique, optimization algorithm and validation.  

 

The performance of One-At-A-Time Sensitivity Analysis Measure in 0.1 and 0.2 

dilution rate respectively and PSO algorithm with the large-scale kinetic parameters is 

used to identify the kinetic sensitivity and to optimize the kinetic parameters sensitivity 

result. The proposed methods with all the kinetic values are executed to achieve the 

sensitivity analysis goal; the Particle Swarm Optimization algorithm is applied for seven 

kinetic parameters which appear in 0.1 dilution rate. The validation part is explained in 

details. 

 

4.2 Experimental results and analysis for sensitivity analysis and optimization  

 

The experiment is implemented using Matlab platform. The algorithm methods 

of the experiment include using the one-at-a-time sensitivity measures and PSO 

algorithm. The methods and the metabolic network of E. coli introduced in chapter 3, 

and the kinetics on the metabolic network of E. coli was formulated by (Kadir et al., 

2010). 
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4.3 Sensitivity analysis result 

 

The kinetic parameters are tested using One-At-A-Time Sensitivity Measures 

quantified by the Mean in 0.1 and the highest variance in 0.2 dilution rate, 29 algebraic 

equations for kinetic expression and co-metabolites concentration and twenty nine 

differential equations, it was targeted to perform sensitivity analysis on the large-scale 

dynamic metabolic network under steady-state condition of E. coli for this model 

formulated by (Kadir et al., 2010) where is kinetic are 194.   

 

4.3.1 Dilution rate 0.1 result 

 

In 0.1 dilutions rate all the kinetics individually increased by 10%, 20% and 

40% then the result of each kinetic parameters are quantified using the mean. The 

highest mean obtained being 40% shows that there are seven kinetic parameters that 

have the highest impact on the dynamic model output of E. coli as formulated by (Kadir 

et al., 2010). The sensitivity percentage and the analysis explanation are shown below in 

a Table 4.1. 

Table 4.1: Sensitivity Percentage 

 

Metabolites 

and Fluxes 

Origina

l values  

V_PYK

max 

n_PK ICDH Kf_ICD

H 

Kd_IC

DHnad

p 

Km_ICD

Hnadp 

V_ICLm

ax   

Cell Con 1.5783 -11.98% -27.87% -3% -3.00% -4.59% 4.12% 3.99% 

GLCex 0.022105 -45.95% -263.06% -10.98% -10.98% -17.82% 9.51% 12.16% 

G6P 0.20345 12.24% 25.45% 3.35% 3.35% 5.05% -4.92% -4.77% 

F6P 0.21311 9.99% 21.27% 2.71% 2.71% 4.09% -3.89% -3.81% 

FDP 1.4621 60.42% 90.18% 13.44% 13.44% 20.09% -17.84% -20.37% 

GAPDHAP 0.31094 34.37% 75.73% 4.63% 4.63% 7.28% -4.3% -5.76% 

PEP 1.4914 33.71% 75.80% 3.9% 3.9% 6.21% -2.92% -4.67% 

PYR 2.8117 -4.42% 9.74% -8.92 -8.92 -13.96 10.19% 10.96% 

AcCOA 1.0018 -0.43% 5.77% -6.69% -6.69 -10.46% 7.81% 8.26% 

ICIT 0.21101 63.16% 90.59% 87.88% 87.88% 93.11% -1155.72% -3.95% 

2KG 5.3724 9.47% 36.54% 8.99% 8.99% 15.77% 28.99% -14.74% 

SUC 0.57217 -4.57% -4.87% 15.68% 15.68% 22.94% -18.63% -28.49% 

FUM 0.35609 -2.74% -2.16% 11.69% 11.69% 17.53% -11.9% -18.69% 

MAL 0.14263 -0.27% 4.25% 11.94% 11.94% 18.37% -8.07% -17.49% 

OAA 0.029637 8.35% 29.87% 11.99% 11.99% 18.98% 5.55% -18.53% 

GOX 0.34577 -7.06% -11.61% 23.07% 23.07% 34.97% -27.13% -33.55% 

AcP 2.0199 -30.76% -127.28% -10.24% -10.24% -16.42% 9.72% 11.6% 
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Metabolites 

and Fluxes 

Origina

l values  

V_PYK

max 

n_PK ICDH Kf_ICD

H 

Kd_IC

DHnad

p 

Km_ICD

Hnadp 

V_ICLm

ax   

Cell Con 1.5783 -11.98% -27.87% -3% -3.00% -4.59% 4.12% 3.99% 

ACE 0.000209 -55.5% -408.78% -12.96% -12.96% -21.18% 11.07% 14.04% 

6PG 0.017832 -0.17% -0.87% -1.41% -1.41% -2.22% 0.73% 1.84% 

Ru5P 0.02134 4.38% 8.52% 0.33% 0.33% 0.47% -0.79% -0.5% 

R5P 0.07617 4.75% 9.36% 0.46% 0.46% 0.68% -0.92% -0.69% 

Xu5P 0.026436 5.11% 9.98% 0.57% 0.57% 0.84% -1.02% -0.82% 

S7P 0.004747 -28.5% -185.29% -2.3% -2.3% -3.89% 0.68% 2.13% 

E4P 0.027433 33.67% 70.4% 5.88% 5.88% 9.07% -6.41% -7.8% 

Miu 0.099617 -0.16% -0.33% -0.1% -0.1% -0.16% -0.07% 0.1% 

Pts 1.4003 10.93% 22.93% 2.99% 2.99% 4.48% -4.36% -4.22% 

Pgi 1.3 11.58% 24.35% 3.23% 3.23% 4.87% -4.65% -4.57% 

Pfk 1.3402 11.18% 23.54% 3.08% 3.08% 4.64% -4.47% -4.36% 

Aldo 0.52536 80.38% 141.15% 14.52% 14.52% 22.49% -17.7% -18.48% 

Gapdh 2.3756 4.65% 14.31% 1.72% 1.72% 2.61% -2.78% -2.29% 

Pyk 0.62509 -28.6% -56.26% 0.7% 0.7% 1.13% -0.49% -0.78% 

Pdh. 1.766 -0.7% -3.15% 4.16% 4.16% 6.39% -5.27% -5.52% 

Cs 1.4682 3.47% 13.52% 6.91% 6.91% 10.72% -8.20% -8.85% 

ICDH 0.93296 7.42% 25.01% -2.01% -2.01% -2.1% 24.63% 0.53% 

2KGDH 0.40201 5.4% 10.6% -16.47% -16.47% -25.65% 19.16% 20.34% 

Icl 0.51436 -6.1% -10.45% 19.79% 19.79% 30.64% -21.98% -26.05% 

Ms 0.47975 -6.05% -10.37% 19.55% 19.55% 30.32% -21.62% -25.51% 

SDH 0.85922 -0.83% -0.96% 3.09% 3.09% 4.81% -2.95% -4.17% 

Fum 0.8237 -0.74% -0.91% 2.72% 2.72% 4.26% -2.57% -3.54% 

MDH 1.2698 -2.76% -4.6% 8.88% 8.88% 13.8% -9.66% -11.55% 

Pita 0.2504 -35.12% -161.62% -10.85% -10.85% -17.51% 9.97% 12.29% 

Ask 0.052391 -48.51% -278.56% -11.74% -11.74% -19.05% 10.23% 13% 

Aces 0.15652 -48.54% -278.48% -11.74% -11.74% -19.06% 10.24% 13.01% 

Pck 0.068774 -35.45% -157.26% 8.55% 8.55% 13.82% 8.11% -13.41% 

Ppc 0.2702 22.89% 55.39% -1.88% -1.88% -2.83% 2.96% 2.63% 

Mez 0.019458 -0.2% 3.1% 8.91% 8.91% 13.97% -5.7% -12.04% 

G6pgdh 0.079927 -0.15% -0.74% -1.2% -1.2% -1.88% 0.62% 1.58% 

6pgdh 0.078143 -0.14% -0.74% -1.19% -1.19% -1.87% 0.62% 1.57% 

Rpe 0.04516 -1.3% -2.71% -1.52% -1.52% -2.38% 0.95% 2.01% 

Rpi 0.030597 1.26% 1.56% -0.81% -0.81% -1.28% 0.23% 1.05% 

Tkta 0.022996 0.14% -0.97% -1.2% -1.2% -1.89% 0.63% 1.6% 

TktB 0.019783 -3.81% -6.41% -2.15% -2.15% -3.33% 1.65% 2.88% 

TaL 0.022522 0.74% 2.92% -1.18% -1.18% -1.85% 0.63% 1.59% 

Mean  - 16.06% 54.87% 8.22% 8.22% 11.99% 8.85% 29.36% 

 

We found that seven kinetic parameters were affected in the model output, in 

which the kinetics V_PYKmax, n_PK, ICDH, Kf_ICDH, Kd_ICDHnadp, 

Km_ICDHnadp and V_ICLmax represent the reaction rate of Vpyk, Vicdh and Vicl . The 
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concentration of the metabolite which are substrates and products of the reaction 

rate CPEP, CPYR , CICIT, C2KG, CGOX, and CSUC are represented in Table (4.1) above. 

 

The deviations in V_PYKmax result shows that, the Mean is 16.06% which the 

metabolites of FDP and ICIT are highly increased and ACE is highly decreased. The 

enzyme of ALDO increased a lot due to a high decrease in GLcex, which in turn is 

regulated by its effectors ATP, ADP and PEP. The deviations in n_PK shows that, the 

Mean is 54.87% which suggests that the metabolites of FDP, GAPDHAP, PEP, ICIT 

and E4P were highly increased while ACP, ACE and S7P were highly decreased; the 

enzymes of Aldo increased a lot while the Ack and the Pck decreased a lot due to a high 

increase in GLCex which in turn is regulated by the same V_PYKmax effectors. The 

deviations in ICDH, Kf_ICDH, Kd_ICDHnadp and Km_ICDHnadp gave rise to the 

Means, 8.22%, 8.22%, 11.9% and 8.85% respectively. The results has shown that, a 

high increase in the  metabolite of ICIT, and the deviation in the result of 

Km_ICDHnadp causes a high decrease in ICIT also; which in turn is regulated by its 

effectors NADP, NADPH and 2KG. Moreover, the kinetics of ICDH and Kf_ICDH has 

the same results. These results may lead to a high increase in ICIT metabolites. The 

deviation in V_ICLmax Mean of 29.36% in the result shows that, the metabolites of 

SUC and GOX decreased. This deviation is regulated by its effector ICIT. In addition, 

the changes caused by four kinetic parameters in the reaction rate of Vicdh are important 

due to the changes in ICIT and 2KG during execution time. The rest of the kinetics 

changes and their quantifications are shown in appendix (A). 

 

4.3.2 Dilution rate 0.2 result  

 

At 0.2 dilutions rate all the kinetics individually increased by 10% and 20%. 

However, the formal analysis showed that at 10% increase, no affection was noticed 

while at 20% increase eight kinetic parameters affected the response of the model as 

quantified by the highest variance. The kinetics which are V_ALDOmax, n_PK, 

Ki_PDH, ICDH, Kf_ICDH, V_SDH, V_FUM and V_ICL represent the reaction rates of 

(𝑉𝑎𝑙𝑑𝑜 , 𝑉𝑝𝑦𝑘 , 𝑉𝑝𝑑ℎ , 𝑉𝑖𝑐𝑑ℎ , 𝑉𝑖𝑐𝑙 , 𝑉𝑠𝑑ℎ  𝑎𝑛𝑑 𝑉𝑓𝑢𝑚) with concentration of the metabolites 

which are the substrate and products of the reaction rates of 

(𝐶𝐹𝐷𝑃 , 𝐶𝐺𝐴𝑃𝐷𝐻𝐴𝑃 , 𝐶𝑃𝐸𝑃 , 𝐶𝑃𝑌𝑅, 𝐶𝐴𝑐𝐶𝑂𝐴 , 𝐶𝐼𝐶𝐼𝑇 , 𝐶2𝐾𝐺 , 𝐶𝑆𝑈𝐶 , 𝐶𝐺𝑂𝑋 , 𝐶𝐹𝑈𝑀 𝑎𝑛𝑑 𝐶𝑀𝐴𝐿). The 
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kinetic also quantify the changes by using the highest variance, while the interaction of 

V_ALDOmax in the model response caused high changes in glycolysis pathway for 

FDP, GAPDHAP, PEP and PYR metabolites and pts, pgi, pfk, aldo, gapdh and pyk 

enzymes; also in Acetate formation there is increase in ACP metabolite and pta, ack and 

acs is described in Figure 4.1 & 4.2. 

 

 

 

Figure 4.1: Metabolites affection by V_ALDOmax 

  

 

 

Figure 4.2: Fluxes affection by V_ALDOmax  

 

 The interaction of n_PK in the model response cause high changes in 

glycolysis, TCA cycle pathways in addition to Acetate formation for FDP, PEP, PYR, 

2KG and ACP metabolites, and pyk, pta, ack and aces enzymes. The interaction of 

Kid_PDH in the model response cause changes in glycolysis and TCA cycle pathways 
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in addition to Acetate formation for PEP, PYR, AcCOA, 2KG, SUC, ACE and ACP 

metabolites, and gapdh, pdh enzymes as described in Figure 4.3 & 4.4. 

 

 

 

Figure 4.3: Metabolites affection by n_PK 

 

 

 

Figure 4.4: Fluxes affection by n_PK 

 

 The interaction of ICDH in the model response, cause high changes in 

glycolysis and TCA cycle pathways in addition to Acetate formation for these FDP, 

PYR, AcCOA, ACE, ACE, ICIT, 2KG, SUC, FUM and MAL metabolites; and for these 

pdh, pta, acs, sdh, fum, mdh, icl and ms enzymes as described in Figure 4.5 & 4.6. 
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Figure 4.5: Metabolites affection by ICDH 

 

 

 

Figure 4.6: Fluxes affection by ICDH 

 

 The interaction of Kf_ICDH in the model response, caused high changes in 

glycolysis and TCA cycle pathways in addition to Acetate formation for these FDP, 

PYR, AcCOA, ACE, ACE, ICIT, 2KG, SUC, FUM and MAL metabolites as well as for 

these pdh, pta, acs, sdh, fum, mdh, icl and ms enzymes. The interaction of V_SDH in the 

model response, cause high changes in glycolysis and TCA cycle pathways in addition 

to Acetate formation for these FDP, PYR, ACP, ICIT, 2KG, SUC, FUM, MAL and GOX 

metabolites; and for these pdh, cs, icl, sdh, fum, mdh, pta and acs enzymes. 

Furthermore, the interaction of V_FUM in the model response cause high changes in 

glycolysis and TCA cycle pathways in addition to Acetate formation for these FDP, 

PYR, 2KG, FUM and ACP metabolites; and in these pdh, cs, icdh, icl, ms, sdh, fum, 

mdh, pta and acs. The interaction of V_ICLmax in the model, cause high changes in 

glycolysis and TCA cycle pathways in addition to Acetate formation for these FDP, 
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PYR, 2KG, SUC, FUM, AcCOA and ACP metabolites; and for these cs, icl, ms and mdh 

enzymes. 

 

Overall, there are three pathways that were affected by the increase in the 20% 

concentration in the glycolysis, TCA cycle pathways and Acetate formation. Moreover, 

the effect was more in these FDP, PYR, 2KG and ACP metabolites. 

 

The rest of the kinetics changes and quantification are shown in appendix (B). 

 

4.4 Kinetic Parameters identification result for 0.1 and 0.2 dilution rates 

 

In this study the sensitivity analysis results of 0.1 and 0.2dilution rate were used 

for optimization due to the available data in the articles. 

 

There are seven kinetic parameters that affected the response of (Kadir et al., 

2010) model in 0.1 dilution rate. These kinetic parameters were involved in these three 

reaction rates of 𝑉𝑝𝑦𝑘 , 𝑉𝑖𝑐𝑑ℎ  and 𝑉𝑖𝑐𝑙  which contain these F6P, SUC, PEP, ICIT and 

2KG metabolites, by applying PSO algorithm to these three reaction rates to fit closely 

with the experimental date that was taken from (Hoque et al., 2005). In the PSO 

algorithm that 3 reaction rate are initialized with objective function described in Ch 3, 

the fourth metabolites of F6P, PEP, ICIT and 2KG are replaced by the old metabolites 

of that three reaction rates under study and left the others kinetic parameters involved as 

their original values except the seven kinetic parameters identified in the sensitivity 

analysis result will be unknown and should be found by the PSO algorithm. The lower 

and upper values are determined based on (Kadir et al., 2010) publication for the 

purpose of achieving the best optimum values. The data is shown in Table (4.2). In 

order to prove that these algorithms fit the model simulation result closely to the 

experimental data are shown in validation part.  
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                          Table 4.2: Kinetic Parameters identification for 0.1 dilution  

 

Kinetics  Nominal value  Optimal values 

V_PYKmax 1.085 

 

0.921 

n_PK 3 

 

3.32 

ICDH 24.421 

 

24.62 

Kf_ICDH 289800 

 

2829800 

Kd_ICDHnadp 0.006 

 

0.012 

Km_ICDHnadp 0.017 

 

0.013 

 

V_ICLmax  3.8315 

 

3.942 

 

 

There are eight kinetic parameters that affected the response of (Kadir et al., 

2010) model in 0.2 dilution rate. These kinetic parameters were involved in these seven 

reaction rates of 𝑉𝑎𝑙𝑑𝑜 , 𝑉𝑝𝑦𝑘 , 𝑉𝑝𝑑ℎ , 𝑉𝑖𝑐𝑑ℎ , 𝑉𝑖𝑐𝑙 , 𝑉𝑠𝑑ℎ  𝑎𝑛𝑑 𝑉𝑓𝑢𝑚  which contain these 

𝐹𝐷𝑃, 𝐺𝐴𝑃𝐷𝐻𝐴𝑃, 𝑃𝐸𝑃, 𝑃𝑌𝑅, 𝐴𝑐𝐶𝑂𝐴, 𝐼𝐶𝐼𝑇, 2𝐾𝐺, 𝑆𝑈𝐶, 𝐺𝑂𝑋, 𝐹𝑈𝑀, 𝑎𝑛𝑑 𝑀𝐴𝐿 metabolites, by 

applying PSO algorithm to these seven reaction rates to fit closely with the experimental 

date that was taken from (Ishii et al., 2007). In the PSO algorithm that 7 reaction rate 

are initialized with objective function described in Ch 3, the metabolites of 

𝐺𝑙𝑐, 𝐺6𝑃, 𝐹6𝑃, 𝐹𝐷𝑃, 𝑃𝑌𝑅, 2𝐾𝐺, 𝑆𝑈𝐶, 𝐹𝑈𝑀,𝑀𝐴𝐿, 𝐴𝐶𝐸𝑇, 𝑅𝑈5𝑃, 𝑅5𝑃, 𝑎𝑛𝑑 𝑆7𝑃 are 

replaced by the old metabolites of that model under study and left the others kinetic 

parameters involved as their original values except the eight kinetic parameters 

identified in the sensitivity analysis result will be unknown and should be found by the 

PSO algorithm. The lower and upper values are determined based on (Kadir et al., 

2010) publication for the purpose of achieving the best optimum values. The data is 

shown in Table (4.3). In order to prove that these algorithms fit the model simulation 

result closely to the experimental data are shown in validation part.  
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Table 4.3: Kinetic parameters identification for 0.2 dilution 

 

optimized values Nominal value Kinetics 

2.5 2.8337 V_ALDOmax 

4.787 3 n_PK 

46.6082 46.4 Ki_PDH 

24.6483 24.4205 ICDH 

289800 289800 Kf_ICDH 

1.498 1.1334 V_SDH1 

1.594 1.1334 V_FUM1 

3.142 3.8315 V_ICLmax 

 

4.5 Validation and error minimization 

 

The optimization problem in biological systems sometimes refer to an 

estimation problem, and the metabolite’s estimation values from experimental data is a 

big challenge due to the model’s integrity and complexity. To this end, the kinetic 

parameter’s sensitivity result of 0.1 dilution rate values was used to be optimized 

and then tested in (Kadir et al., 2010) model to validate how the sensitivity analysis and 

PSO algorithm aid to fit the (Kadir et al., 2010) model metabolite’s closely with real 

experimental data. The validation was performed by replacing the nominal sensitivity 

kinetic parameters values with kinetic parameters optimization result and leaves the 

kinetic of others with their actual values so that they can fit these FDP, PEP. ICIT and 

2KG metabolites of (Kadir et al., 2010) to the experimental data of (Hoque et al., 2005). 

The validation result shows that the PSO algorithm can achieve the optimization. It was 

also discovered that 3 metabolites got close to the real experimental data which are 

FDP, PEP and 2KG; while ICIT metabolite got a little bit far. This is due to the model’s 

complexity. The analysis shows the real metabolite data which (Hoque et al., 2005) 

provided. Furthermore, because of the 3 reaction rates that contains 5 metabolites, 4 of 

the metabolites are optimized and the other metabolite was not found in the literature 
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review. The errors between (Kadir et al., 2010) and (Hoque et al., 2005) is 131% and 

the error minimization was achieved by reduce 12% from (Kadir et al., 2010) for our 

validation by account the errors percentage for (Kadir et al., 2010) with (Hoque et al., 

2005) and our optimization result with (Hoque et al., 2005) and account the variance 

between them after we account the error minimization percentage. The metabolite of the 

model under study (Kadir et al., 2010) and our optimization result which was done to 

prove the strength of the proposed algorithm and the errors are minimized in Figure 4.7 

below:  

 

  

Figure 4.4: Validation of 0.1 dilution 

 

The kinetic parameter’s sensitivity result of 0.2 dilution rate values was used to 

be optimized and then tested in (Kadir et al., 2010) model to validate how the sensitivity 

analysis and PSO algorithm aid to fit the (Kadir et al., 2010) model metabolite’s closely 

with real experimental data. The validation was performed by replacing the nominal 

sensitivity kinetic parameters values with kinetic parameters optimization result and 

leaves the kinetic of others with their actual values so that they can fit these 

𝐺𝐿𝑐𝑒𝑥 , 𝐺6𝑃, 𝐹6𝑃, 𝐹𝐷𝑃, 𝑃𝑌𝐾, 2𝐾𝐺, 𝑆𝑈𝐶, 𝐹𝑈𝑀,𝑀𝐴𝐿, 𝐴𝐶𝐸𝑇, 𝑅𝑢5𝑃, 𝑅5𝑃 𝑎𝑛𝑑 𝑆7𝑃 

metabolites of (Kadir et al., 2010) to the experimental data of (Ishii et al., 2007). The 

validation result shows that the PSO algorithm can achieve the identification. It was 

also discovered that 10 metabolites got close to the real experimental data which are 

𝐺6𝑃, 𝐹6𝑃, 𝐹𝐷𝑃, 𝑃𝑌𝐾, 2𝐾𝐺, 𝑆𝑈𝐶, 𝐹𝑈𝑀,𝑀𝐴𝐿,𝑅5𝑃 𝑎𝑛𝑑 𝑆7𝑃; while 

𝐺𝐿𝑐𝑒𝑥 , 𝐴𝐶𝐸𝑇 𝑎𝑛𝑑 𝑅𝑢5𝑃 metabolite got a little bit far. This is due to the model’s 
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complexity. The analysis shows the real metabolite data which (Ishii et al., 2007) 

provided. Furthermore, because of the 7 reaction rates that contains 13 metabolites, 10 

of the metabolites are identified and the other metabolite was not identified due to the 

complexity of the model. The errors between (Kadir et al., 2010) and (Ishii et al., 2007) 

is 938% and the error minimization was achieved by reduce 294% from (Kadir et al., 

2010) for our validation by account the errors percentage for (Kadir et al., 2010) with 

(Ishii et al., 2007) and our identification result with (Ishii et al., 2007) and account the 

variance between them after we account the error minimization percentage. The 

metabolite of the model under study (Kadir et al., 2010) and our identification result 

which was done to prove the strength of the proposed algorithm and the errors are 

minimized in Figure 4.8 below: 

 

 

Figure 4.5: Validation of 0.2 dilution 

 

 The error minimization it shown in Table 4.9 for 0.1 and 0.2 dilution rates, 

which accounted by the percentage changes of our simulation result metabolite outputs 

summation with the summation of real experimental data then compared 

mathematically to the model result metabolite outputs summation under study; if the 

errors are minimized means we achieve our goals if not we repeat the PSO algorithm till 

the errors minimized. Furthermore, the errors was minimized by 11% in 0.1 dilution 

rate and 294% in 0.2 dilution rate, which described in Table (4.7) below. 
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Table 4.7: Kinetic parameters percentage minimization errors 

 

Kadir 0.1 dilution 131% 

Simulation  120% 

Errors Minimization 11% 

Kadir 0.2 dilution 938% 

Simulation  644% 

Errors Minimization 294% 

 

4.6 Summary  

 

The kinetic parameters in the metabolic network of E. coli is important, since 

small perturbation causes high changes either as a decrease or as an increase in the 

model outputs. However, the giving of assessment in order to develop or discover a new 

model has not yet evolves in biological system.  

 

Therefore, the model under study, is presented in Ch3 and was investigated to 

study the sensitivity of over 53 outputs via one-at-a-time sensitivity measures. The time 

profile indicates that there are seven and eight kinetics in 0.1 and 0.2 dilution rates 

respectively and they are sensitive to the model response, where PSO algorithm is used 

to optimize the sensitivity result of 0.1 and 0.2 dilution rates with lower and upper 

bounds for each kinetic.  

 

The validation of the identification result using the same model was performed 

and the sensitivity of replacing the original kinetic values by the kinetic optimization 

result was also done with good result according to the errors minimization that was 

proved in the validation with error minimization part. 

 

In order to evaluate the optimization algorithm prediction ability deeply, we 

need to make some new predictions and compare it with new experimental data that are 

different from the data used for identification.   
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Finally, we found that the sensitivity analysis and PSO algorithm methods can 

achieve the large-scale kinetic parameters identification, it was proved in table (4.7) by 

clarify the errors percentage minimization.    



 

 

 

 

CHAPTER 5  

 

 

CONCLUSION 

 

 

5.1 Introduction  

 

The previous chapters have provided a review Metabolic Network, Local 

Sensitivity Analysis and Particle Swarm Optimization for metabolic network of E. coli 

to analyze and identify large-scale kinetic parameters in a dynamic biological metabolic 

system. In addition, PSO was used to minimize the errors that appear between the 

simulation and actual model output values. In this final chapter, the primary results of 

this investigation are summarized, and several key areas are listed as possible avenues 

of further research in this field. 

 

This research aims at large-scale kinetic parameters issues of the metabolic 

network based on sensitivity analysis and optimization techniques. It even proposes a 

local sensitivity analysis and optimization algorithm for large-scale kinetic parameters 

in metabolic networks. This can be realized by introducing One-At-A-Time Sensitivity 

Measures in order to reduce the kinetic parameters and PSO algorithm to identify large-

scale kinetic parameters of the metabolic network of E. coli. These techniques were 

employed to analyze and optimize the kinetics. In addition to estimating the kinetics, the 

result arising from the sensitivity analysis of 0.1 and 0.2 dilution rates as well as 

optimization algorithm implementation is the primary objective of this research. Based 

on the large-scale kinetic parameters, One-At-A-Time Sensitivity Measures and Particle 

Swarm Optimization Algorithm is proposed. The experiments show that, it could 

effectively analyze and identify the kinetics. The identified kinetics was found when 
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using the PSO as compared to the actual model result. The algorithm shows good result 

of kinetic identification. 

 

This thesis proposes One-At-A-Time Sensitivity Measure and PSO algorithm for 

large-scale kinetic parameters in the metabolic network of E. coli as formulated by 

(Kadir et al., 2010) using the MATLAB simulation tool. The simulation results of the 

kinetic parameters showed a seven kinetics and the heights Mean percentage overall of 

194 kinetics with 0.1 dilution rate; and eight kinetic parameters are the highest overall 

variance with 194 kinetics and dilution rate of 0.2 in addition to parameter identification 

of five metabolites which shows that the validation part moved closer to the 

experimental data.  

 

In the experiments and simulation, the local sensitivity analysis and optimization 

algorithm were used. The research focuses on sensitivity analysis and optimizing the 

large-scale kinetic parameters. Then, we increased each kinetic parameter in percentage 

and quantified them by the Mean and the highest variance in 0.1 and 0.2 dilution rate 

respectively. The sensitivity result used in the PSO algorithm in order to be identified, 

the upper and lower values in the algorithm was used to adjust the searching in an 

allowable range with PSO parameters. Finally, our proposed methods deal with large-

scale kinetic parameters identification. The result of the PSO algorithm was performed 

in the same model under study to prove that this algorithm is very good in the 

identification of large scale kinetic parameters.  

 

This research provides the following novel contributions: 

 

The first major contribution of the research has applied local sensitivity analysis 

technique named One-At-A-Time Sensitivity Measures applied to five pathways and 

quantifies the changes using the highest variance and the highest Mean. 

 

The second major contribution is the minimizing of the errors that appear often 

between the experimental data and the actual model results by applying the particle 

swarm optimization algorithm. 
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The third important contribution is about the capability of our proposed methods 

in order to achieve large-scale kinetic parameters identification through the errors 

percentage changes which has done in the result validation part. 

 

5.2 Future work     

 

In order to investigate the influence of large-scale kinetic parameters in the 

metabolic network, the present methods can be applied. The sensitivity method is a 

local sensitivity analysis which lacks the ability to search out the sensitivity for all the 

kinetics simultaneously. We believe that, this method can be blamed as long as there are 

global sensitivity analysis methods. We also believe that, the present study give ideas on 

how to apply global sensitivity analysis method implement another optimization 

algorithm and propose new sensitivity analysis or new algorithm in term of large-scale 

kinetics in the future.  

 

 

 

 

 

 

 

 



70 

 

REFERENCE 

          

A Berry, TC Dodge, M Pepsin and W Weyler. "application of metabolic engineering to 

improve both the production and use of biotch indigo." Journal of Industrial 

Microbiology & Biotechnology 28 (2002 ): 127 – 133. 

A, Salman. "particle swarm optimization for task assignment problem ." microprocessors and 

microsystems (2002): 363-371. 

Afnizanfaizal Abdullah, Safaai Deris, Mohd Saberi Mohamad and Siti Zaiton Mohd Hashim. 

"A New Particle Swarm Evolutionary Optimization for Parameter Estimation of 

Biological Models." International Journal of Computer Information Systems and 

Industrial Management Applications (2013): 571-580. 

Al Zaid Siddiquee K, Arauzo-Bravo MJ, Shimizu K. "Metabolic flux analysis for a ppc 

mutant Escherichia coli based on 13C-labelling experiments together with enzyme 

activity assays and intracellular metabolite measurements." Biotechnol (2004 ): 407-

417. 

Alexander Kerna, Emma Tilleyb, Iain S. Hunterb, Matic Legisac and Anton Glieder. 

"Engineering primary metabolic pathways of industrial micro-organisms." Journal of 

Biotechnology 129 (2007)): 6–29. 

Andreas Drager, Marcel Kronfeld, Michael J Ziller, Jochen Supper, Hannes Planatscher, 

Jørgen B Magnus, Marco Oldiges, Oliver Kohlbacher and Andreas Zell. "Modeling 

metabolic networks in C. glutamicum: a comparison of rate laws in combination with 

various parameter optimization strategies." BMC Systems Biology 3.5 (2009): 1-24. 

Andreas Kremling, Katja Bettenbrock and Ernst Dieter Gilles. "Analysis of global control of 

Escherichia coli carbohydrate uptake." BMC Systems Biology (2007): 1-16. 

Anton Miro, Carlos Pozo, Gonzalo Guillen-Gosalbez,JoseAEgea and Laureano Jimenez. 

"Deterministic global optimization algorithm based on outer approximation for the 

parameter estimation of nonlinear dynamic biological systems." (n.d.). 

Anton Miro, CarlosPozo, Gonzalo Guill en-Gosalbez, JoseAEgea and Laureano Jimenez. 

"Deterministic global optimization algorithm based on outer approximation for the 

parameter estimation of nonlinear dynamic biological systems." BMC Bioinformatics 

(2012): 1-12. 

Arkin, Steven S. Andrews and Adam P. "Simulating cell biology." Magazine 16 (2006): 1-5. 



71 

Asenjo AJ, Ramirez P, Rapaport I, Aracena J, Goles E and Andrews BA. "A discrete 

mathematical model applied to genetic regulation and metabolic networks." Journal 

of Microbiology and Biotechnology 17.3 (2007): 496-510. 

Badowski, Tomasz. "Variance-based sensitivity analysis and orthogonal approximations for 

stochastic models." Variance-based sensitivity analysis and orthogonal 

approximations for stochastic models. 2013. 1-99. 

Bastin, A. Provost and G. "Dynamic metabolic modelling under the balanced growth 

condition." Journal of Process Control (2004): 717–728. 

Bournholdt, Stefan. "Less Is More in Modeling Large Genetic Networks." Scinece Journal 

(2005): 449-451. 

Boyaci, Ismail Hakki. "A new approach for determination of enzyme kinetic constants using 

response surface methodology." Biochemical Engineering Journal (2005): 55–62. 

C. Pozo, G. Guillen-Gosalbez, A. Sorribas, and L. Jimenez. "A Spatial Branch-and-Bound 

Framework for the Global Optimization of Kinetic Models of Metabolic Networks." 

American Chemical Society 50 .9 (2010): 5225–5238. 

C.K. Chong, M. Mohd Saberi, D. Safaai, S. Shahir, W.C. Yee and E.C. Lian. "Aspartate 

Biosynthesis Pathway Simulation Using an Improved Differential Evolution 

Algorithm through Parameter Estimation." Terengganu, Malaysia: UMT, 2012. 

Carlotta Martellia, Andrea De Martinob, Enzo Marinaric, Matteo Marsilid, and Isaac Perez 

Castillo. "Identifying essential genes in Escherichia coli from a metabolic 

optimization principle." PNAS 106 .8 ( 2009 ): 2607–2611. 

Chaouiya, Claudine. "Petri net modelling of biological networks." Briefings in Bioinformatics 

(2007): 210-219. 

Christophe Chassagnole, Naruemol Noisommit-Rizzi, Joachim W. Schmid, Klaus Mauch and 

Matthias Reuss. "Dynamic modeling of central metabolism of Escherichia coli ." 

Biotechnology and Bioengineering (2002): 53-73. 

Christophe H. Schilling, Stean Schuster, Bernhard O. Palsson, and Reinhart Heinrich. 

"Metabolic pathway analysis: Basic concepts and scientific applications in the post 

genomic era." American chemical society and american institute of chemical 

engineers (1999): 296-303. 

Chuii Khim Chong, Mohd Saberi Mohamad, Safaai Deris, Shahir Shamsir, Afnizanfaizal 

Abdullah, Yee Wen Choon, Lian En Chai, Sigeru Omatu. "Using an Improved 

Differential Evolution Algorithm For Parameter Estimation to Simulate Glycolysis 

Pathway." Advances in Intelligent and Soft Computing 151 (2012): 709-716. 



72 

Cleland, W.W. "The kinetics of enzyme-catalyzed reactions with two or more substrates or 

products: III. Prediction of initial velocity and inhibition patterns by inspection." 

Biochimica et Biophysica Acta (BBA) - Specialized Section on Enzymological 

Subjects (1963): 188–196. 

Dellomonaco, Clementina. "Engineered Reversal of the beta oxidation cycle for the Synthesis 

of Fuels and Chemicals." Nature (2011): 355-359. 

Edda Klipp, wolfarm liebermeister, christoph wierling, axel kowald, hans lehrach, and ralf 

herwig. system biology. John Wiley & Sons, 2009. 

Edwards JS, Ibarra RU, Palsson BO. " In silico predictions of Escherichia coli metabolic 

capabilities are consistent with experimental data. ." Nat Biotechnol (2001): 125–130. 

Fell, Simon Thomas and David A. "Design of Metabolic Control for Large Flux Changes." J. 

theor. Biol (1996): 285–298. 

Fonseca, E.O. Voit G. Goel I.-C. Chou L.L. "Estimation of metabolic pathway systems from 

different data sources." System Biology 3.6 (2009): 513–522. 

Francisco G. Vital-Lopez, Costas D. Maranas, and Antonios Armaou. "Bifurcation analysis 

of the metabolism of E. coli at optimal enzyme levels." Minneapolis, MN: IEEE, 

2006. 

Geldermann, J., and O. Rentz. "Integrated Technique Assessment with Imprecise Information 

as a Support for the Identification of Best Available Techniques (BAT)." OR 

Spektrum, (2001): 137-157. 

Gengjie Jia, Gregory N. Stephanopoulos and Rudiyanto Gunawan. "Parameter estimation of 

kinetic models from metabolic profiles: two-phase dynamic decoupling method." 

BIOINFORMATICS 27 .14 (2011): 1964–1970. 

gregory N. stephanopoulos, aristos A. aristidou and jens nielsen. metabolic engineering . San 

Diego : elsevier science , 1998. 

Griensven, A. V., et al. "A global sensitivity analysis tool for parameters of multi-variable 

catchment models." Journal of Hydrology 324.1-4 (2006): 10–23. 

H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A. L. Barabasi. "The large-scale 

organization of metabolic network." Nature 407 (2000): 651-654. 

Harry Ako, Lisa A. Shimeld, Christopher K. Mathews, K. E. Van Holde. Study Guide for 

Biochemistry. Pennsylvania State University: Benjamin/Cummings Publishing 

Company, 1996, 1996. 

Heijnen, Diana Visser and Joseph J. "The Mathematics of Metabolic Control Analysis 

Revisited." Metabolic Engineering (2002): 114–123. 



73 

Heijnen, Diana Visser and Sef J. "The mathematics of metabolic control analysis revisited." 

Metabolic engineering (2002): 114-123. 

Herve Monod, Cedric Nard and David Makowski. "Uncertainty and Sensitivity analysis for 

crop models." Elsevier (2006): 55-100. 

Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerbezem M, Van Swam 

II, Bongers R, Westerhoff HV and Soep JL. "Metabolic enginnering of lactic acid 

bacteria, the combined approach: kinetic modeling, metabolic control and 

experimental analysis ." Microbiology (2002): 1003-1013. 

Hover, Joshua A. Taylor and Franz S. "Numerical optimization of generative network 

parameters." Ottawa, ON, Canada: Association Computing Machinery , 2010. 

Ina Koch, Björn H. Junker and Monika Heiner. "Application of Petri net theory for modelling 

and validation of the sucrose breakdown pathway in the potato tuber." Bioinformatics 

(2005): 1219-1226. 

Ishii N1, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, 

Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama 

N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, 

Nakayama Y, Nish. "Multiple high-throughput analyses monitor the response of E. 

coli to perturbations." Science (2007): 593-597. 

J. Di Maggioa, J.C. Diaz Riccib and M.S. Diaza. "Global sensitivity analysis in dynamic 

metabolic networks." Computers and Chemical Engineering (2010): 770-781. 

James C. Liao, Riccardo Boscolo, Young-Lyeol Yang, Linh My Tran, Chiara Sabatti, and 

Vwani P. Roychowdhury. "Network component analysis: Reconstruction of 

regulatory signals in biological systems." PNAS (2003): 15522–15527. 

Jason L. Walther, Christian M. Metallo, Jie Zhang, Gregory Stephanopoulos. "Optimization 

of 13C isotopic tracer for metabolic flux analysis in mammalian cell." Metabolic 

Engineering 14 (2012 ): 162-171. 

Jems C. Liao, Riccardo Boscolo, Young-Lyeol Yang, Linh My Tran, Chiara Sabatti, and 

Vwani P. Roychowdhury. "Network component analysis: Reconstruction of 

regulatory signals in biological systems." PANS (2003): 15522–15527. 

Jeremy S. Edwards, Rafael U. Ibarra, and Bernhard O. Palsson. "In silico predictions of 

Escherichia coli metabolic capabilities are consistent with experimental data." 

NATURE BIOTECHNOLOGY 19 (2001): 125-130. 



74 

Joseph L. DeRisi, Vishwanath R. Iyer and Patrick O. Brown. "Exploring the Metabolic and 

Genetic Control of Gene Expression on a Genomic Scale." SCIENCE 278 (1997): 

680-686. 

K. Al Zaid Siddiquee, M. J. Arauzo-Bravo, and K. Shimizu. "Metabolic flux analysis of pykF 

gene knockout Escherichia coli based on 13C-labeling experiments together with 

measurements of enzyme activities and intracellular metabolite concentrations." Appl 

Microbiol Biotechnol (2004): 407–417. 

Katsuyuki Yugi, Yoichi Nakayama, Ayako Kinoshita and Masaru Tomita. "Hybrid 

dynamic/static method for large-scale simulation of metabolism." Theoretical Biology 

and Medical Modelling (2005): 1-11. 

Kauffman KJ, Prakash P, Edwards JS. "Advances in flux balance analysis." Biotechnol 

(2003): 491–496. 

Ka-Yiu San, George N. Bennett, and Yea-Tyng Yang. "Genetic and metabolic engineering." 

Elctronic Journal of Biotechnology 1 (1998): 1-8. 

Klamt S, Stelling J, Ginkel M, Gilles ED. "FluxAnalyzer: exploring structure, pathways, and 

flux distributions in metabolic networks on interactive flux maps." Bioinformatics 

(2003): 261-269. 

Klaus Mauch, S. Arnnold and M. Reuss. "Dynamic sensitivity analysis for metabolic 

system." Chemical Engineering Science 52 (1997): 2589-2598. 

Kleijnen, Jack P.C. "Sensitivity analysis and related analyses: A review of some statistical 

techniques." Journal of Statistical Computation and Simulation (1997): 111-142. 

Koch I, Junker BH, Heiner M. "Application of Petri net theory for modelling and validation 

of the sucrose breakdown pathway in the potato tuber." Bioinformatics (2005): 1219-

1226. 

Liao. C James, Riccardo Boscolo, Young-Lyeol Yang, Linh My Tran, Chiara Sabatt, and 

Vwani P. Roychowdhur. "Network component analysis: Reconstruction of regulatory 

signals in biological systems." PNAS (2003): 15522-15527. 

Linh M. Tran, Matthew L. Rizk, and James C. Liao. "Ensemble Modeling of Metabolic 

Networks." Biophysical Journal (2008): 5606–5617. 

M. Antoniotti, F.C. Park, A. Policriti, N. Ugel and B. Mishra. "Foundations of a query and 

simulation system for the modeling of biochemical and biological processes." 

Bioiformatic and Computational biology Journals (2003): 116-117. 



75 

Manfred Rizzi, Michael Baltes, Uwe Theobald and Matthias Reuss. "In vivo analysis of 

metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model." 

Biotechnology and Bioengineering (1997): 592–608. 

Maria, Anu. "INTRODUCTION TO MODELING AND SIMULATION." Winter Simulation. 

China : Arena , 1997. 7-13. 

Mauch, K., Arnold, S. and Reuss, M. "Dynamic Sensitivity Analysis for Metabolic Systems." 

Chemical Engineering Science (1997): 2589-2598. 

Md. Aminul Hoque, Kotb Attia, Omar Alattas and Amir Feisal Merican. "Metabolic flux 

distribution and mathematical models for dynamic simulation of carbon metabolism 

in Escherichaia coli ." African Journal of Biotechnology 10.12 (2011): 2340-2352. 

Merryn H. Tawhai, Alys R. Clark, and Kelly S. Burrowes. "Computational models of the 

pulmonary circulation: Insights and the move towards clinically directed studies." 

Pulm Circ 1.2 (2011): 224–238. 

Mingshou Liu, Dongil Shin and Hwan Il Kang. "Parameter Estimation in Dynamic 

Biochemical Systems Based on Adaptive Particle Swarm." Macau: IEEE, 2009. 

Mirny, Zeba Wunderlich and Leonid A. "Using the Topology of Metabolic Networks to 

Predict Viability of Mutant Strains." Biophysical Journal 91 (2006 ): 2304–2311. 

Monika Maciag, Qariusz Nowicki, Laurent Janniere, Agnieszka Szalewska-Palaz and 

Grzegorz Wegrzyn. "Genetic responce to metabolic fluctuations: correlation between 

central carbon metabolism and DNA replication in Escherichia coli." Microbial Cell 

Factories (2011): 1-11. 

N.Oltvai, Albert-László Barabási and Zoltán. "Network Biology: Understanding The Cell’S 

Functional Organization." Nature Reviews Genetics (2004): 101-113. 

Nielsen, Andreas Karoly Gombert and Jens. "Mathematical modeling of metabolism." 

Biotechnology 11 (2000): 180-186. 

Nikolaev, Evgeni V. "The elucidation of metabolic pathways and their improvements using 

stable optimization of large scale kinetic models of cellular systems." Metabolic 

Engineering 12.1 (2010): 26-38. 

Noack, S., Wahl, A., Haunschild, M., Qeli, E., Freisleben, B., Wiechert, W. "Visualizing 

regulatory interdependencies and parameter sensitivities in biochemical network 

models." Mathematics and Computers in Simulation (2008): 991–998. 

Nobuyoshi Ishii, Kenji Nakahigashi, Tomoya Baba, Martin Robert, Tomoyoshi Soga, Akio 

Kanai, Takashi Hirasawa, Miki Naba, Kenta Hirai, Aminul Hoque, Pei Yee Ho, Yuji 

Kakazu, Kaori Sugawar, Saori Igarashi, Satoshi Harada, Takeshi Masuda, Naoyuki 



76 

Sugiyama,. "Multiple High-Throughput Analyses Monitor the Response of E. coli to 

Perturbations." Science (2007): 593-597. 

Ø.Palsson, Neema Jamshidiand Bernhard. "Metabolic Network Dynamics: Properties and 

Principles." Understanding the Dynamics of Biologica lSystems (2011): 19-37. 

Oleg A. Igoshin, Albert Goldbeter, Dale Kaiser, and and George Oster. "A biochemical 

oscillator explains several aspects of Myxococcus xanthus behavior during 

development." PNAS (n.d.): 15760–15765 . 

Palsson, Jennifer L. Reed and Bernhard Q. "Genome-scale in silico models of E. coli have 

multiple equivalent phenntypic states: assessment of correlated reaction subset that 

comprise network states." Genome Research (2004): 1797-1805. 

Palsson, Jeremy S. Edwards and Bernhard O. "How will bioinformatic influence metabolic 

engineering." Biotechnology and Bioinformatic 58 (1998): 162-169. 

Patnaik, R. and Liao, J. "Engineering of Escherichia coli central metabolism for aromatic 

metabolite production with near theoretical yield." Appl. Environ. Microbiol (1994): 

3903-3908. 

Perri, Alessandro Fasso and Pier Francesco. "Sensitivity analysis." Encyclopedia of 

Environmetrics 4 (2002): 1968-1982. 

Pradeep K Polisetty, Eberhard O Voit and Edward P Gatzke. "Identification of metabolic 

system parameters using global optimization methods." Theoretical Biology and 

Medical Modelling (2006): 1-15. 

R, Kennedy J and Eberhart. "Particle Swarm Optimization ." IEEE International Conference 

on Nerual Network . 1995. 942-1948. 

Radhakrishnan Mahadevan, Jeremy S. Edwards, and Francis J. Doyle. "Dynamic Flux 

Balance Analysis of Diauxic Growth in Escherichia coli." Biophysical Journal 

Volume 83 (2002 ): 1331–1340. 

Radhakrishnan Mahadevan, Jeremy S. Edwards, and Francis J. Doyle,. "Dynamic Flux 

Balance Analysis of Diauxic Growth in Escherichia coli." Biophysical Journal 83 

(2002): 1331–1340. 

Ralf Steuer, Thilo Gross, Joachim Selbig, and Bernd Blasius. "Structural kinetic modeling of 

metabolic networks." PNAS 103 (2006): 11868–11873. 

Rocha, Sara Correia and Miguel. "In silico strain optimization by adding reactions to 

metbolic models." Journal of Integrative Bioinformatics (2012): 1-13. 



77 

Rui Xua, Ganesh K. Venayagamoorthyb, and Donald C. Wunsch. "Modeling of gene 

regulatory networks with hybrid differential evolution and particle swarm 

optimization." Neural Networks (2007): 917–927. 

S. Noacka, A.Wahla, M. Haunschildb, E. Qelic, B. Freislebenc and W. Wiechertb. 

"Visualizing regulatory interdependencies and parameter sensitivities in biochemical 

network models." Mathematics and Computers in Simulation (2008): 991–998. 

Salehi, F., S.O. Prasher, S. Amin, A. Madani, S.J. Jebelli, H.S. Ramaswamy, and C. T. Drury. 

"Prediction of Annual Nitrate-N Losses in Drain Outflows with Artificial Neural ." 

Transactions of the ASAE (2000): 1137-1143. 

Saltelli, Andrea. "Sensitivity Analysis For Importance Assessment." Risk Analysis 22.3 

(2002): 579–590. 

Sam Vaseghi, Anja Baumeister, Manfred Rizzi, and Matthias Reuss. "In Vivo Dynamics of 

the Pentose Phosphate Pathway in Saccharomyces cerevisiae." Metabolic Engineering 

(1999): 128-140. 

Sauer, Eliane Fischer and Uwe. "Metabolic flux profiling of Escherichia coli mutants in 

central carbon metabolism using GC-MS." European Journal of Biochemistry 270.5 

(2003): 880–891. 

Schilling, C.H., Edwards, J.S., and Palsson, B.O. "Towards metabolic phenomics: Analysis 

of genomic data using flux balances." Biotechnol Prog (1999): 288–295. 

Segal, Irwin H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-

State Enzyme Systems. usa: willy, 1993. 

Segel, Irwin H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-

State Enzyme Systems. California : Wiley Classic library Edtion , 1993. 

Stefan Schuster, David A. Fell, and Thomas Dandekar. "A general definition of metabolic 

pathways useful for systematic organization and analysis of complex metabolic 

networks." Nature Biotechnology 18.3 (2000): 326-332. 

Steffen Klamt, Jorg Stelling, Martin Ginkel and Ernst Dieter Gilles. "FluxAnalyzer: 

exploring structure, pathways, and flux distributions in metabolic networks on 

interactive flux maps." BIOINFORMATICS (2003): 261–269. 

Stelling, Steffen Klamt and Jorg. "Combinatorial complexity of pathway analysis in 

metabolic networks." Molecular Biology Reports 29.1-2 (2002): 233-236. 

Stephanopoulos, Gregory. "Metabolic fluxes and metabolic engineering." Metabolic 

Engineering (1999): 1-11. 



78 

thomas , simon and david a fellf. "Design of Metabolic Control for Large Flux Changes." 

Theoretical Biology (1996): 285–298. 

Tuty Asmawaty Abdul Kadir, Ahmad A Mannan, Andrzej M Kierzek, Johnjoe McFadden 

and Kazuyuki Shimizu. "Modeling and simulation of the main metabolism in 

Eschercichia coli and its several single-gene knockout mutants with experimental 

verification." Microbial Cell Factories (2010): 1-21. 

Varma A, Palsson BO. "Metabolic capabilities of Escherichia coli: I. Synthesis of 

biosynthetic precursors and cofactors." Theoretical Biology (1993): 477–502. 

Wagner, Andreas. "Metabolic network and their evaluation." Evolutionary Systems Biology 

(2012): 29-52. 

Wagner, D. A. Fell and A. "Structural properties of metabolic networks." Nature 

Biotechnology 18 (20): 1121-1122. 

Wagner, David A. Fell and A ndreas. "The small world of metabolism." NATURE 

BIOTECHNOLOGY 18 (2000): 1121-1122. 

Wright, Kathy R. Albe and Barbara E. "Systems Analysis of the Tricarboxylic Acid Cycle in 

Dictyostelium discoideum." The Journal of Biological Chemistry 267 (1992): 3106-

3114. 

Yin P. Y, Yu S. S, and Wang Y. T. "A hybrid particle swarm optimization algorithm for 

optimal task assignment in distributed system ." computer standards and interfaces 

(2006): 441-450. 

Yoshihiro Toya, Nobuyoshi Ishii, Kenji Nakahigashi, Takashi Hirasawa, Tomoyoshi Soga, 

Masaru Tomita, and Kazuyuki Shimizu. "13C-metabolic flux analysis for batch 

culture of Escherichia coli and its pyk and pgi gene knockout mutants based on mass 

isotopomer distribution of intracellular metabolites." Biotechnology Progress (2010): 

975–992. 

Yoshihiro Usudaa, Yosuke Nishioa, Shintaro Iwatania, Stephen J. Van Dienb, Akira 

Imaizumib, Kazutaka Shimbob, Naoko Kageyamab, Daigo Iwahatab, Hiroshi 

Miyanob and Kazuhiko Matsuia. "Dynamic modeling of Escherichia coli metabolic 

and regulatory systems for amino-acid production." Journal of Biotechnology (2010): 

17–30. 

Yousuke Nishio, Yoshihiro Usuda, Kazuhiko Matsui and Hiroyuki Kurata. "Computer-aided 

rational design of the phosphotransferase system for enhanced glucose uptake in 

Escherichia coli." Molecular Systems Biology 4.1 (2008): 1-12. 



79 

Yukako Tohsato, Kunihiko Ikuta, Akitaka Shionoya, Yusaku Mazaki, and Masahiro Ito. 

"Parameter optimization and sensitivity analysis for large kinetic models using a real-

coded genetic algorithm." Gene (2013): 84–90. 



80 

 

 

 

RESEARCH PUBLICATION 

 

 

Mohammed Adam Kunna, Tuty Asmawaty Abdul Kadir, Aqeel S. Jaber, Rofilde 

Hasudungan. 2014. Large-scale kinetic parameters in metabolic network of 

Escherichia coli using local sensitivity analysis. International Journal of Scientific & 

Engineering Research, 5(10): 1299-1303. 

 

Mohammed Adam Kunna , Tuty Asmawaty Abdul Kadir , Aqeel S. Jaber , Julius B. 

Odili . 2014.  Large-scale kinetic Parameter Identification of Metabolic Network 

Model of E. Coli Using PSO. Advances in Bioscience and Biotechnology, accepted. 

Mohammed Adam Kunna, Tuty Asmawaty Abdul Kadir, Alrasheed I. S,  Aqeel S. 

Jaber. 2014. Large-Scale of Metabolic Network of Escherichia Coli using MATLAB. 

International Journal of Computer Applications, accepted.  

 

Mohammed Adam Kunna, Tuty Asmawaty Abdul Kadir, Alrasheed I. S,  Aqeel S. 

Jaber. 2014. Large-Scale of Metabolic Network of Escherichia Coli using MATLAB. 

Majan College International Conference 2014. 

 

Mohammed Adam Kunna, Tuty Asmawaty Abdul Kadir. 2013. Sensitivity Analysis 

in Large-Scale of Metabolic Network of E. Coli. International Conference on 

Advanced Computer Science Applications and Technologies. 346-35. 

 

Julius Beneoluchi Odili, Mohd Nizam Mohmad Kahar, Adam Kunna Mohammed and 

Anwar Shahid Safi. 2015. A Comparative study of African Buffalo Optimization and 

Randomized Insertion Algorithm for Asymmetric Travelling Salesman's Problem. 

Congress on evolutionary computation (CEC2015).  

 

  

 



81 

  

 

 

 

 

 

 

APPENDIX A 

 

 

The Rest of 40% Changes in Dilution Rate 0.1 

 

miu_Max affection original  changes simulation  percentage  

CELL 

concentration  

1.5783 -0.095 1.6733 -6.02% 

GLCex  0.022105 0.00406 0.018045 18.37% 

G6P  0.20354 0.01275 0.19079 6.26% 

F6P  0.021311 0.001071 0.02024 5.03% 

FDP  1.4621 0.2558 1.2063 17.50% 

GAPDHAP  0.31094 0.01362 0.29732 4.38% 

PEP  1.4914 0.035 1.4564 2.35% 

PYR  2.8117 0.3809 2.4308 13.55% 

ACCOA  1.0018 0.0154 0.9864 1.54% 

IsoCitrate  0.21101 0.04274 0.16827 20.25% 

2KG 5.3724 0.1086 5.2638 2.02% 

SUCCINATE  0.57217 -0.00141 0.57358 -0.25% 

FUMARATE  0.35609 -0.00032 0.35641 -0.09% 

MALATE  0.14263 0.0005 0.14213 0.35% 

OAA  0.029637 0.000576 0.029061 1.94% 

GOX 0.34577 -0.00186 0.34763 -0.54% 

ACP 2.0199 0.2947 1.7252 14.59% 

ACETATE  0.000209 4.33E-05 0.00016523 20.77% 

6PG  0.017832 -1.9E-05 0.017851 -0.11% 
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Ru5P  0.02134 0.000252 0.021088 1.18% 

R5P  0.07617 0.000982 0.075188 1.29% 

Xu5P  0.026436 0.000366 0.02607 1.38% 

S7P  0.004747 -1E-07 0.0047472 0.00% 

E4P  0.027433 0.001926 0.025507 7.02% 

miu  0.099617 -5.4E-05 0.099671 -0.05% 

PTS  1.4003 0.0782 1.3221 5.58% 

PGI  1.3 0.077 1.223 5.92% 

PFK  1.3402 0.0767 1.2635 5.72% 

ALDO  0.52536 0.11904 0.40632 22.66% 

GAPDH  2.3756 0.1003 2.2753 4.22% 

PYK  0.62509 0.0026 0.62249 0.42% 

PDH  1.766 0.0434 1.7226 2.46% 

CS  1.4682 0.0131 1.4551 0.89% 

ICDH  0.93296 0.01144 0.92152 1.23% 

2KGDH 0.40201 0.00193 0.40008 0.48% 

ICL  0.51436 -0.0025 0.51686 -0.49% 

MS  0.47975 -0.00235 0.4821 -0.49% 

SDH  0.85922 -0.00045 0.85967 -0.05% 

FUM  0.8237 -0.00041 0.82411 -0.05% 

MDH  1.2698 -0.0028 1.2726 -0.22% 

PTA  0.2504 0.03894 0.21146 15.55% 

ACK  0.052391 0.010152 0.042239 19.38% 

ACS  0.15652 0.03029 0.12623 19.35% 

PCK  0.068774 -0.00022 0.06899 -0.31% 

PPC  0.2702 0.01583 0.25437 5.86% 

MEZ  0.019458 4.9E-05 0.019409 0.25% 

G6PDH  0.079927 -7.3E-05 0.08 -0.09% 

6PGDH  0.078143 -7.1E-05 0.078214 -0.09% 

RPE  0.045416 -0.00018 0.045595 -0.39% 

RPI  0.030597 8.4E-05 0.030513 0.27% 

TKTA  0.022996 -1.1E-05 0.023007 -0.05% 
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TKTB  0.019783 -0.0002 0.019985 -1.02% 

TAL  0.022522 -1.1E-05 0.022533 -0.05% 

The total affection     113.61% 

 

 

 

K_ALDOeq 

affection  

original  changes simulation  percentage  

CELL 

concentration  

1.5783 0.0074 1.5709 0.47% 

GLCex  0.022105 0.000397 0.021708 1.80% 

G6P  0.20354 -0.00111 0.20465 -0.55% 

F6P  0.021311 -9.6E-05 0.021407 -0.45% 

FDP  1.4621 0.1136 1.3485 7.77% 

GAPDHAP  0.31094 -0.02567 0.33661 -8.26% 

PEP  1.4914 -0.1151 1.6065 -7.72% 

PYR  2.8117 -0.1529 2.9646 -5.44% 

ACCOA  1.0018 -0.0143 1.0161 -1.43% 

IsoCitrate  0.21101 -0.01919 0.2302 -9.09% 

2KG 5.3724 -0.0002 5.3726 0.00% 

SUCCINATE  0.57217 0.00631 0.56586 1.10% 

FUMARATE  0.35609 0.0027 0.35339 0.76% 

MALATE  0.14263 0.00086 0.14177 0.60% 

OAA  0.029637 2.5E-05 0.029612 0.08% 

GOX 0.34577 0.00538 0.34039 1.56% 

ACP 2.0199 0.0165 2.0034 0.82% 

ACETATE  0.000209 4.23E-06 0.00020431 2.03% 

6PG  0.017832 -1.2E-05 0.017844 -0.07% 

Ru5P  0.02134 -0.00018 0.021516 -0.82% 

R5P  0.07617 -0.00068 0.076846 -0.89% 

Xu5P  0.026436 -0.00025 0.026689 -0.96% 

S7P  0.004747 0.000233 0.0045142 4.91% 
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E4P  0.027433 -0.0019 0.029328 -6.91% 

miu  0.099617 -1E-06 0.099618 0.00% 

PTS  1.4003 -0.0066 1.4069 -0.47% 

PGI  1.3 -0.0065 1.3065 -0.50% 

PFK  1.3402 -0.0064 1.3466 -0.48% 

ALDO  0.52536 -0.12239 0.64775 -23.30% 

GAPDH  2.3756 -0.0327 2.4083 -1.38% 

PYK  0.62509 -0.0078 0.63289 -1.25% 

PDH  1.766 0.0008 1.7652 0.05% 

CS  1.4682 0.0005 1.4677 0.03% 

ICDH  0.93296 -0.00421 0.93717 -0.45% 

2KGDH 0.40201 -0.00433 0.40634 -1.08% 

ICL  0.51436 0.00666 0.5077 1.29% 

MS  0.47975 0.00612 0.47363 1.28% 

SDH  0.85922 0.0017 0.85752 0.20% 

FUM  0.8237 0.00144 0.82226 0.17% 

MDH  1.2698 0.0074 1.2624 0.58% 

PTA  0.2504 0.00261 0.24779 1.04% 

ACK  0.052391 0.000972 0.051419 1.86% 

ACS  0.15652 0.00291 0.15361 1.86% 

PCK  0.068774 0.004794 0.06398 6.97% 

PPC  0.2702 -0.00202 0.27222 -0.75% 

MEZ  0.019458 8.4E-05 0.019374 0.43% 

G6PDH  0.079927 -4.3E-05 0.07997 -0.05% 

6PGDH  0.078143 -4.3E-05 0.078186 -0.06% 

RPE  0.045416 7.5E-05 0.045341 0.17% 

RPI  0.030597 -1E-04 0.030697 -0.33% 

TKTA  0.022996 -3.3E-05 0.023029 -0.14% 

TKTB  0.019783 0.000134 0.019649 0.68% 

TAL  0.022522 -5.6E-05 0.022578 -0.25% 

The total affection     111.55% 
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Km_PYKadp 

affection  

original  changes simulation  percentage  

CELL concentration  1.5783 0.0539 1.5244 3.42% 

GLCex  0.022105 0.001761 0.020344 7.97% 

G6P  0.20354 -0.00825 0.21179 -4.05% 

F6P  0.021311 -0.00069 0.021996 -3.21% 

FDP  1.4621 -0.3616 1.8237 -24.73% 

GAPDHAP  0.31094 -0.02742 0.33836 -8.82% 

PEP  1.4914 -0.1272 1.6186 -8.53% 

PYR  2.8117 0.0854 2.7263 3.04% 

ACCOA  1.0018 0.00735 0.99445 0.73% 

IsoCitrate  0.21101 -0.073 0.28401 -34.60% 

2KG 5.3724 -0.0842 5.4566 -1.57% 

SUCCINATE  0.57217 0.00659 0.56558 1.15% 

FUMARATE  0.35609 0.00258 0.35351 0.72% 

MALATE  0.14263 0.00026 0.14237 0.18% 

OAA  0.029637 -0.0005 0.030141 -1.70% 

GOX 0.34577 0.00598 0.33979 1.73% 

ACP 2.0199 0.1237 1.8962 6.12% 

ACETATE  0.000209 1.9E-05 0.00018952 9.12% 

6PG  0.017832 -6E-06 0.017838 -0.03% 

Ru5P  0.02134 -0.00029 0.021632 -1.37% 

R5P  0.07617 -0.00113 0.077299 -1.48% 
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Xu5P  0.026436 -0.00042 0.026857 -1.59% 

S7P  0.004747 0.000167 0.0045805 3.51% 

E4P  0.027433 -0.00258 0.030017 -9.42% 

miu  0.099617 -1.1E-05 0.099628 -0.01% 

PTS  1.4003 -0.05 1.4503 -3.57% 

PGI  1.3 -0.0492 1.3492 -3.78% 

PFK  1.3402 -0.049 1.3892 -3.66% 

ALDO  0.52536 -0.09897 0.62433 -18.84% 

GAPDH  2.3756 -0.0229 2.3985 -0.96% 

PYK  0.62509 0.06013 0.56496 9.62% 

PDH  1.766 0.0015 1.7645 0.08% 

CS  1.4682 -0.0117 1.4799 -0.80% 

ICDH  0.93296 -0.01251 0.94547 -1.34% 

2KGDH 0.40201 -0.00527 0.40728 -1.31% 

ICL  0.51436 0.00775 0.50661 1.51% 

MS  0.47975 0.00717 0.47258 1.49% 

SDH  0.85922 0.00184 0.85738 0.21% 

FUM  0.8237 0.00161 0.82209 0.20% 

MDH  1.2698 0.0088 1.261 0.69% 

PTA  0.2504 0.01679 0.23361 6.71% 

ACK  0.052391 0.004404 0.047987 8.41% 

ACS  0.15652 0.01317 0.14335 8.41% 

PCK  0.068774 0.004121 0.064653 5.99% 

PPC  0.2702 -0.01629 0.28649 -6.03% 

MEZ  0.019458 2.6E-05 0.019432 0.13% 

G6PDH  0.079927 -2.2E-05 0.079949 -0.03% 

6PGDH  0.078143 -2.3E-05 0.078166 -0.03% 

RPE  0.045416 0.000145 0.045271 0.32% 

RPI  0.030597 -0.00014 0.030736 -0.45% 

TKTA  0.022996 -2.6E-05 0.023022 -0.11% 

TKTB  0.019783 0.000214 0.019569 1.08% 

TAL  0.022522 -4.3E-05 0.022565 -0.19% 
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The total affection    224.78% 
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APPENDIX B 

 

 

THE REST OF 20% CHANGES IN DILUTION RATE 0.2 

 

 

 

The kinetic interaction of Ki_PDH in metabolites 

 

 

 

The kinetic interaction of Ki_PDH in fluxes 
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The kinetic interaction of Kf_ICDH in metabolites 

 

 

The kinetic interaction of Kf_ICDH in fluxes 

 

 

 

The kinetic interaction of V_SDH in metabolites 
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The kinetic interaction of V_SDH in fluxes 

 

 

 

The kinetic interaction of V_FUM in metabolites 

 

 

 

The kinetic interaction of V_FUM in fluxes 

 

 

 

The kinetic interaction of V_ICL in metabolites 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

G
LC

e
x

G
6

P

F6
P

FD
P

G
A

P
D

H
A

P

P
EP P
YR

A
C

C
O

A

IS
O

-C
IT

R
A

TE 2K
G

SU
C

C
IN

A
TE

FU
M

A
R

A
TE

M
A

LA
TE

O
XA

LA
C
ET
…

G
LY

O
X

Y
LA

T
E

A
C

P

A
C

ET
A

TE 6P
G

R
U

5P

R
5

P

X
U

5P S7
P

E4
P

C
o

n
ce

n
tr

at
io

n
 g

/l

Metabolites 

-0.1

-0.05

0

0.05

P
TS P
G

I

P
FK

A
LD

O

G
A

P
D

H

P
YK

P
D

H C
S

IC
D

H

IC
L

M
S

SD
H

FU
M

M
D

H

P
TA

A
C

K

A
C

S

P
C

K

P
PC

M
EZ

G
6

P
D

H

6P
G

D
H

R
P

E

R
P

I

TK
TA

TK
TB TA

L

C
o

n
ce

n
tr

at
io

n
 g

/ 

Fluxes 

-0.2

-0.1

0

0.1

0.2

G
LC

ex

G
6

P

F6
P

FD
P

G
A

P
D

H
A

P

P
EP P
YR

A
C

C
O

A

IS
O

-C
IT

R
A

TE 2K
G

SU
C

C
IN

A
TE

FU
M

A
R

A
TE

M
A

LA
TE

O
X
A
LA

C
ET
…

G
LY

O
X

YL
A

TE A
C

P

A
C

ET
A

TE 6
P

G

R
U

5P

R
5

P

X
U

5P S7
P

E4
P

C
o

n
ce

n
tr

at
io

n
 

Metabolites



91 

 

 

The kinetic interaction of V_ICL in fluxes 
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