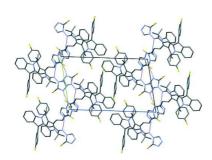


Crystal structure of $4-(\{(1E,2E)-3-[3-(4-fluorophenyl)-1-isopropyl-1H-indol-2-yl]allylidene amino)-1H-1,2,4-triazole-5(4H)-thione$

Ajaykumar D. Kulkarni, Md. Lutfor Rahman, Mashitah Mohd. Yusoff, Huey Chong Kwong and Ching Kheng Quah

Acta Cryst. (2015). E71, 1525-1527

This open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.


ISSN 2056-9890

Received 5 November 2015 Accepted 18 November 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; 1,2,4-triazole-3-thione; indole; Schiff base; N—H···N hydrogen bonds; C—H··· π interactions; π – π interactions

CCDC reference: 1437565
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN @ ACCESS

Crystal structure of 4-({(1*E*,2*E*)-3-[3-(4-fluorophen-yl)-1-isopropyl-1*H*-indol-2-yl]allylidene}amino)-1*H*-1,2,4-triazole-5(4*H*)-thione

Ajaykumar D. Kulkarni, Md. Lutfor Rahman, Mashitah Mohd. Yusoff, Huey Chong Kwong and Ching Kheng Quahd

^aDepartment of Chemistry, KLS's Gogte Institute of Technology, Jnana Ganga, Udyambag, Belagavi 590 008 Karnataka, India, ^bUniversity Malaysia Pahang, Faculty of Industrial Sciences and Technology, 26300 Gambang, Kuantan, Pahang, Malaysia, ^cSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. *Correspondence e-mail: lutfor73@gmail.com

The asymmetric unit of the titled compound, $C_{22}H_{20}FN_5S$, comprises two independent molecules (A and B), both of which have a *trans* conformation with respect to the methene C=C [1.342 (2) and 1.335 (2) Å] and the acyclic N=C [1.283 (2) and 1.281 (2) Å] bonds. In molecule A, the triazole ring makes dihedral angles of 55.01 (12) and 18.17 (9)° with the benzene and indole rings, respectively. The corresponding dihedral angles for molecule B are 54.54 (11) and 14.60 (10)°, respectively. In the crystal, molecules are consolidated into -A–B–A–B– chains along [010] via N $-H\cdots$ N hydrogen bonds. The chains are further linked into layers parallel to the ac plane via π – π interactions involving inversion-related triazole rings [centroid–centroid distances = 3.3436 (11)–3.4792 (13) Å].

1. Chemical context

The chemistry of 1,2,4-triazole derivatives has attracted widespread attention due to their diverse biological activities and because they are a new class of antimicrobial agents (Sun et al., 2004; Verreck et al., 2003); for example fluconazole and itraconazole are used as antimicrobial drugs. Hence, metal complexes of Schiff bases derived from 1,2,4-triazole derivatives have been the subject of considerable study (Ozarowski et al., 1991; Cornelissen et al., 1992; Varma et al., 1992; Mishra & Said, 1996). A number of metal complexes with 1,2,4-triazole Schiff bases have been reported from our laboratory (Yadawe & Patil, 1997; Avaji et al., 2006; Kulkarni et al., 2009, 2011). In addition to this isatin, which is an endogenous indole, and its derivatives have been shown to exhibit a wide range of biological activities (Daisley & Shah, 1984; Pandeya et al., 1999a,b; Cerchiaro & Ferreira, 2006; Sridhar et al., 2002).Since triazoles are heterocyclic compounds and Schiff bases derived from isatin often act as versatile chelating agents and exhibit promising bioactivities, it is likely that a Schiff base derived from fluvastatin-triazole might also exhibit useful biological activities. In this way, it was planned to prepare a Schiff base which possesses both nitrogen and sulfur coordination cites so that it might coordinate effectively to metal ions.

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1) is comprised of two independent molecules (A and B). Both molecules have a *trans* conformation with respect to the