BIOMASS THERMAL PRE-TREATMENT FOR CO-GASIFICATION: CO\textsubscript{2} TORREFACTION

MOHAMMAD HAFIZUDDIN BIN MOHD YUSOFF

Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical & Natural Resources Engineering
UNIVERSITI MALAYSIA PAHANG

JUNE 2015

©MOHAMMAD HAFIZUDDIN BIN MOHD YUSOFF (2015)
ABSTRACT

Biomass has been a very reliable alternative for renewable fuel to reduce the use of conventional fuel due to environmental concern and sustainability issue. In order to reduce the emission of the harmful greenhouse gases and to promote sustainable environment, the renewable energy is the perfect solution to achieve the targets. But there are some problems that needs to be overcome before the biomass can be utilised as biochar or biofuel through gasification by using the torrefaction method. Torrefaction of biomass is a pre-treatment process that aims to improve the fuel properties by lowering the moisture content and increasing the energy density at temperature between 200°C to 300°C in either inert or non-inert environment. The objective of this work is to study the effect of CO\textsubscript{2} concentration present during torrefaction at temperature 240°C and 280°C. In addition, the impact of torrefaction time was also evaluated at 15 and 30 minutes. In this study, the sample used is empty fruit bunches (EFB) from palm oil mills in Felda Lepar. The torrefaction reactor consists of a vertical stainless-steel tubular reactor equipped with an electrically heated furnace. The experimental apparatus is setup consist of gas tanks, N\textsubscript{2} and CO\textsubscript{2} that are controlled by regulators and furnace. The gas will be mixed at 0\%, 10\%, 15\%, and 21\% value of CO\textsubscript{2} while the rest is N\textsubscript{2}. It was determined that the mass yield is decreased with increased in the CO\textsubscript{2} concentration. This suggests the occurrence of oxidative reaction, for example the Boudouard reaction and an enhancement of volatile matter release. The heating value of the torrefied biomass shows an increasing trend, with temperature increased. This is consistent with the findings in the literature, which primarily indicates improved fuel properties. The comparable mass loss at lower temperatures improved fuel properties, makes utilization of carbon dioxide as a torrefaction medium for pre-treating biomass as an attractive technology.
ABSTRAK
TABLE OF CONTENTS

SUPERVISOR’S DECLARATION ... IV
STUDENT’S DECLARATION ... V
Dedication .. VI
ACKNOWLEDGEMENT .. VII
ABSTRACT ... VIII
ABSTRAK .. IX
TABLE OF CONTENTS .. X
LIST OF FIGURES .. XII
LIST OF TABLES ... XIII
LIST OF SYMBOL ... XIV
LIST OF ABBREVIATION .. XV

CHAPTER 1 .. 1
1 INTRODUCTION ... 1
 1.1 Background study .. 1
 1.2 Motivation and statement of problem .. 2
 1.3 Research objectives .. 3
 1.4 Scope of this research ... 3
 1.5 Organisation of this thesis .. 4

2 LITERATURE REVIEW .. 5
 2.1 Overview ... 5
 2.2 Biomass ... 5
 2.3 Torrefaction Process .. 6
 2.4 Previous work on Torrefaction Process .. 6
 2.5 Torrefaction Technologies in Industries .. 7
 2.6 Gasification of Biomass .. 9

3 MATERIALS AND METHODS ... 10
 3.1 Overview .. 10
 3.2 Preparation of biomass samples .. 10
 3.3 Torrefaction experiments .. 12
 3.4 Data Analysis ... 14
 3.4.1 Gas Pycnometer .. 14
3.4.2 Thermogravimetric analysis (TGA) .. 15
3.4.3 CHNS analyzer .. 16
3.4.4 Scanning Electron Microscopic (SEM) .. 16
3.4.5 Characterization of EFB samples .. 17

4 RESULTS AND DISCUSSION .. 18
4.1 Overview .. 18
4.2 Analysis on raw EFB .. 18
4.3 Effect of temperature and CO₂ concentration on mass yield of EFB 19
4.4 Fuel Characteristic of torrefied biomass ... 22
4.5 Effect of temperature and concentration CO₂ on calorific value of biochar.... 23
4.6 The effect of temperature and CO₂ concentration on energy yield of EFB 24
4.7 SEM Analysis on torrefied biomass ... 24
4.8 Summary .. 24

5 CONCLUSION .. 33
5.1 Conclusion ... 33

6 REFERENCES .. 34

7 APPENDICES ... 37
LIST OF FIGURES

Figure 2-1-Auger screw type reactor ... 8

Figure 3-1 Raw Empty Fruit Bunches (EFB) ... 11

Figure 3-2 Flow Chart of Preparation of Samples ... 11

Figure 3-3 A schematic of the experimental setup ... 13

Figure 3-4 Flow Chart of torrefaction experiment .. 13

Figure 3-5 Mechanical Grinder in FKKSA Open Lab 14

Figure 3-6 Gas pycnometer ... 15

Figure 4-1 Graph of Mass yield and Temperature ... 20

Figure 4-2 Graph Mass yield vs concentration CO$_2$ in 15 min.................. 21

Figure 4-3 Graph Calorific Value vs concentration of CO$_2$ 23

Figure 4-4 Graph of energy yield vs temperature 24

Figure 4-5- Scanning Electron Microscopy (SEM) image for raw EFB at magnification (a)50x, (b)100x, (c)500x and (d)1000x. ... 25
LIST OF TABLES

Table 4-1 Proximate, heating value and particle density of the raw Empty Fruit Bunch
... 19

Table 4-2- Proximate Analysis of torrefied EFB.. 22

Table 4-3- SEM images of torrefied EFB at 240°C and 280°C, 10% CO₂ in 30 min 26

Table 4-4- SEM images of torrefied EFB at 240°C and 280°C, 15% CO₂ in 30 min 27

Table 4-5 - SEM images of torrefied EFB at 240°C and 280°C, 21% CO₂ in 30 min ... 28

Table 4-6 - SEM images of torrefied EFB at 240°C and 280°C, 10% CO₂ in 15 min 29

Table 4-7 - SEM images of torrefied EFB at 240°C and 280°C, 15% CO₂ in 15 min ... 30

Table 4-8 - SEM images of torrefied EFB at 240°C and 280°C, 21% CO₂ in 15 min ... 31
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFB</td>
<td>Empty Fruit Bunch</td>
</tr>
<tr>
<td>O/C</td>
<td>Oxygen-Carbon Ratio</td>
</tr>
<tr>
<td>γ_M</td>
<td>Mass yield</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>CV</td>
<td>Calorific value (MJ/kg)</td>
</tr>
<tr>
<td>γ_E</td>
<td>Energy yield</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>HHV</td>
<td>Higher heating value</td>
</tr>
</tbody>
</table>
CHAPTER 1

1 INTRODUCTION

1.1 Background study

Biomass has been known as a renewable fuel that can be used to produce heat and power. The increasing of world population and economic growth leads to increase in world energy demand and consumption especially in developing countries. Many of the renewable energies sources such as solar, wind, biomass, tide, wave and geothermal energy are being developed nowadays (Lund, 2007). Moreover, the depletion of conventional fuel over the years has urged scientists all over the world to think about the solution for this problem. Therefore, a reliable affordable and clean energy supply such as biomass as a substitute to fossil fuels has become more promising.

Renewable energy especially biomass seems to be most promising option for Malaysia. Malaysia was the second largest producer of palm oil, producing 18.9 million tonnes, or 38% of the total world supply in 2011 (PalmOilWorld.org 2011). There are many of waste products from the palm oil industry that can be used as a biomass. They include empty fruit bunches (EFB), mesocarp fiber, kernel shells, fronds and trunks (Uemura et al., 2013). Normally, biomass is burned to release the chemical energy in the material and convert it into heat energy and carbon dioxide (CO₂) produced is released into the atmosphere. It is considered a carbon-neutral fuel that is based on the cycle between carbon and the atmosphere (Chen and Wu, 2009). Even though there are some problems need to be overcome such as lower calorific value, high moisture content (Chen et al., 2011), low energy density and high ash content (Uemura et al., 2013), its potentials are limitless.

CO₂ is one of the greenhouse gases that is released into the environment during combustion of fossil and renewable sources. Hot gases produced from boiler exhaust that have higher percentage of CO₂ in it that easy to obtain makes it an alternative option to be used as the biomass pre-treatment medium.
Among technologies developed to improve these problems is the torrefaction process, in which the biomass are thermally treated in temperature between 200 to 300°C under atmospheric conditions without the presence of any types of oxidizer (Peng et al., 2012). Recently, it was found that the presence of a small quantity of oxidizer at the torrefaction condition has the potential to improve the properties of torrefied biomass (Thanapal et al., 2014, Uemura et al., 2013).

As for this research, the study will be concerning on the investigation of the optimum temperature and the effectiveness of carbon dioxide in the torrefaction process that will help to increase the fuel properties of biomass using empty fruit bunches. Therefore, the study will be the seed of hope for the solution to our global energy problem besides promoting the potential of local agricultural waste.

1.2 Motivation and statement of problem

There are many reports about global warming and changing of earth’s climate that is a big threat and challenge in our era. The main factor that causes this kind of disaster is the release of greenhouse gases to the environment. So, to reduce the emission of these greenhouse gases and to promote sustainable environment, the renewable energy is the perfect solution to achieve the targets. On the other hand, Malaysia also one of the biggest producer of palm oil in the world. There are a lot of biomass feedstock that can be used to produce many type of products such as bio-based value added products, bio-fuel and direct fuel for power generation.

Basically for this study, the aim is to improve the fuel properties for the biomass so that the gasification process that takes place after torrefaction will be more efficient. Mainly the biomass has low energy density in combination with its high moisture content result that uses more energy in the gasification process. This is because higher gasification efficiencies can be achieved for fuels with low O/C ratios, such as coal, than for fuels with high O/C ratios such as biomass (Prins et al., 2003).
Using raw biomass for the gasification process will result in poor syngas production and will result in high tar concentration. Thermal pre-treatment or torrefaction of biomass is a promising method to convert biomass to high energy density hence a superior biomass in the form of biochar. So, under certain torrefaction conditions, the torrefied biomass can have properties comparable to low rank coals that may be used for heat and power generation (Chen and Kuo, 2010).

In this study, torrefaction of empty fruit bunches was carried out in a fixed tubular reactor in the presence of carbon dioxide ranging from 0% to 21%. The effects of carbon dioxide, temperature and torrefaction time on the mass and energy yields were investigated. The EFB was dried, ground and sieved before torrefaction.

1.3 Research objectives

This research project aims to investigate the effectiveness of CO\textsubscript{2} in enhancing the torrefaction process in producing biochar with properties compatible to coal. Moreover, this study aims to improve the torrefaction process by using different concentration of carbon dioxide, CO\textsubscript{2} as an enhancer. The optimum temperature to be used in this process will also be determined. This is then followed by the characterization of the properties of biomass based on the analysis that will be conducted.

1.4 Scope of this research

The following are the scope of this research:

a) To study the effect of temperature at 240°C and 280°C on the biomass samples in the torrefaction process.

b) To study the effect of concentration of CO\textsubscript{2} at 10%, 15% and 21% in enhancing the torrefaction process.

c) To investigate the effect of torrefaction time in the torrefaction process.
1.5 Organisation of this thesis

The structure of the reminder of the thesis is outlined as follows:

Chapter 2 provides a description of the torrefaction process that is the important theory in this study. Also, there are general description on the condition of the torrefaction process and why this process is suitable to change the properties of biomass that will be used in the gasification process. This chapter also provides a brief discussion of previous study conducted in the torrefaction process.

Chapter 3 gives a review of the procedure be conducted for the experiment. First, the preparation of samples was explained before proceed to the experiment. In this chapter, we explained about how to prepare the samples and the initial drying before the EFB can be torrefied. Also, there are explanation about the procedure to conduct the torrefaction experiment whether for inert torrefaction gas or the mixture between nitrogen and oxygen.

Chapter 4 gives the results for preparation of samples and the expected result obtained from the journal. In this chapter, some of graph was plotted to shown the trend of mass yield over the temperature as well as the concentration of CO₂. Some of discussion also presented to support the result from the previous works.

Chapter 5 draws together a summary of the full thesis and outlines the future work which might be derived from this work.
2 LITERATURE REVIEW

2.1 Overview

This chapter presents the basic principles of torrefaction process that will be conducted in this study. It also contains the general knowledge about the torrefaction process and the way to conduct the experiment regarding this process. Moreover, the extensive review from selected journals with the citation is also included in this chapter. Some of the findings in the review and method of previous works also included.

2.2 Biomass

Biomass is organic material from recently living things, including plant matter from trees, grasses, and agricultural crops. The chemical composition of biomass varies among species, but basically consists of high, but variable moisture content, a fibrous structure consisting of lignin, carbohydrates or sugars, and ash.

Common sources of biomass are included agricultural which varies from food grain, bagasse, corn stalk, straw, seed hulls, nutshells and manure from cattle. In Malaysia, the biomass from oil palm wastes such as mesocarp fibre, kernel shell, empty fruit bunch, fronds and trunk are mostly available. Some disadvantages of biomass are it cannot be stored or transport for a long shipping because of the hygroscopic nature (Chen and Kuo 2010).

The hydrophilic nature of biomass is related to the presence of OH groups in biomass. Hemicellulose was found to have the highest potential to adsorb water, followed by cellulose and lignin. Those structure are contain in the biomass that will increase the moisture content of it. Hence, the reason of the hydrophobic nature of torrefied biomass can be recognized to reduce amount of hemicellulose and OH groups in the biomass (Thanapal, et al. 2014).
2.3 Torrefaction Process

Torrefaction is one of the thermal pre-treatment techniques used to improve the properties of biomass (Deng et al., 2009). In this process, the raw biomass is heated in an inert or nitrogen atmosphere at temperatures between 200 - 300°C (Uemura et al., 2013, Deng et al., 2009). It is based on the removal of oxygen from biomass which aims to produce a fuel with increased energy density. A fraction of the volatile matter of the dry biomass is removed as well as the moisture. In the torrefaction process, the properties of biomass can be altered depending on its hydrophilic, fibrous and severity so that the product is brittle and easy to grind (Koppejan et al., 2012). There are studies that proved that characteristic of lignocellulosic can be improved into a useful biofuel.

There are many advantages of torrefaction process such as (1) reduce the moisture content and O/C ratio (Couhert et al., 2009), (2) increase the higher heating value (HHV) or energy density (Yan et al., 2009) of biomass. Also, the torrefied biomass shows more uniform properties such as moisture content compared to the raw biomass (Chen Hsu et al., 2011).

Torrefied biomass mainly used as a renewable fuel for combustion or gasification (Prins, et al., 2003). Torrefaction process is one of best pre-treatment method for biomass before the gasification process take place. Torrefaction studies involving biomass have mostly been conducted on woody (Lauan) blocks (Chen Hsu et al., 2011), pine chips and logging residue chips (Phanphanich and Mani, 2011), rice straw and rape stalk (Deng et al., 2009), empty fruit bunches (EFB) (Uemura et al., 2013), bamboo (Chen et al., 2011), mesocarp fiber, kernel shell, beech wood (Couhert et al., 2009) and willow.

Chen et al., (2011) torrefied the woody biomass (Lauan) blocks and recommended that the operation should be conducted at the temperature of 250°C and time longer than 1 hour. Deng et al. (2009) studied the yields of solid and liquid product of rice straw and rape stalk at temperature 200°C, 250°C and 300°C. The result showed that as the temperature increases, the yield of solid decreases. Couhert et al. (2009) stated that the energy density increases with torrefaction temperature and found an increase of 20% at a torrefaction temperature of 280°C.
2.4 Previous work on Torrefaction Process

One of the previous study of the torrefaction process using the CO$_2$ as the enhancer used woody biomass which are mesquite and juniper as their samples (Thanapal, et al. 2014). The higher mass loss at the temperature range for torrefaction was obtained by using the CO$_2$ compared to the inert atmosphere. Other than that, by comparing the mass and energy yield of the torrefaction of mesquite and juniper, the optimum temperature seems to be at 240°C. The use of CO$_2$ as the torrefaction medium was found to improve the grindability of the biomass because of the increased surface area of biomass samples.

Research done by Arias et al. (2008) on the torrefaction of eucalyptus showed that torrefaction of raw biomass increases the grindability of the biomass. The samples (eucalyptus) were torrefied between 240°C and 280°C with varying residence times between 15 minutes to 3 hours. The size distribution analysis showed an increase in the residence time at a given temperature resulted in smaller particle sizes, indicating easier grindability.

Some of the previous work is mostly discussed on the effect of temperature and residence time on different biomass but most of them are not focused about the effect of biomass in non-inert atmosphere for torrefaction. The uses of CO$_2$ in torrefaction process will provide an opportunity for a lower pretreatment cost of biomass.

2.5 Torrefaction Technologies in Industries

Some torrefaction technologies are proficient of handling feedstock with small particles such as sawdust and other are capable of processing large particles. Example of torrefaction technologies that can be found in industries nowadays such as rotating drum, screw reactor, torbed reactor and fixed bed. The most important reactor technologies are briefly described below according to their advantages.

The rotating drum is a continuous reactor and can be regarded as proven technology for various application (Koppejan, et al., 2012). For torrefaction applications, the biomass in the reactor can be either directly or indirectly heated using superheated steam of flue gas resulting from the combustion of volatiles.
Besides that, screw type reactor also being used in torrefaction process. It is a continuous reactor, consisting of one or multiple auger screws that transport the biomass through the reactor (Junsatien, et al., 2013). A disadvantage of screw reactor is the formation of char on the hot zones that caused limited mixing of the biomass. A screw reactor is relatively inexpensive, however the scaleability is limited because the ratio of screw surface area to reactor volume decreases for larger reactors.

![Auger screw type reactor](image)

Figure 2-1-Auger screw type reactor

The torbed reactor basically are proven technology for various applications, including combustion. Recently, torrefaction process are done in torbed technology only in batchwise that is very small scale (2 kg/h). In a torbed reactor, a heat carrying medium is blown from the bottom of the bed with high velocity that gives biomass particles inside the reactor both a vertical and horizontal movement (Harrison 2014). It can heat up to 380°C that resulting in higher loss of volatiles.
2.6 Gasification of Biomass

Gasification is the conversion of raw materials into solid or liquid fuel gas that is valuable and convenient or chemical raw materials that can be burned to release energy or used for production of high-value added chemicals (Prabir, 2013). The low moisture content and good ratios of C/H/O in the biomass samples after torrefaction is excellent for gasification. Meanwhile, gasification that involved biomass is the conversion of an organically derived, carbonaceous feedstock by partial oxidation into a gaseous product, synthesis gas or “syngas” consisting primarily of hydrogen (H₂) and carbon monoxide (CO), with lesser amounts of carbon dioxide (CO₂), water (H₂O), methane (CH₄), higher hydrocarbons and nitrogen (N₂) (Jared P., 2002).

Sometimes pyrolysis, which takes place in higher temperatures and produces a mixture of gases with hydrogen content can be considered as biomass gasification. Gasification of biomass is generally observed to follow these reaction:

\[
\text{Biomass} + \text{Heat} \xrightarrow{\text{yields}} \text{CO, CO}_2, \text{H}_2\text{O, H}_2, \text{CH}_4 \text{ and other CH}_n, +\text{ash} + \text{char}
\]

In the gasification process, the particle size and moisture contents are the crucial factor for operation. Hence, the smaller particle size gives additional surface area to react in the gasification process and there is more energy is required at the high operating temperature to break the complex long chain of lignin-cellulosic biomass into simplest carbon chain of syngas. Gasification using torrefied biomass could potentially benefit from improved flow properties of the feedstock, increased levels of H₂ and CO₂ in the resulting syngas, and improved overall process efficiencies (Koppejan, Sokhansanj, et al., 2012). The grindability could be considered positive aspect in the case of entrained flow gasifier. As of yet, there is hardly any practical knowledge available on the options and limitations of torrefied biomass for gasification. Gasification of low quality biomass results in poor synthetic gas quality and high tar concentration.
3 MATERIALS AND METHODS

3.1 Overview

This chapter presents a methodology to conduct the torrefaction experiment by using certain raw materials and experiment setup. Preparation of EFB samples and procedure for torrefaction experiment is included here. Several characterization tests are done to determine the characteristic of EFB and the effectiveness of torrefaction process.

3.2 Preparation of biomass samples

The raw materials that will be used in this study is the Empty Fruit Bunches (EFB) shown in Figure 3-1. EFB is the residue generated at the thresher, where fruits are removed from fresh fruit bunches. EFB were collected from an oil palm plantation in Lepar, Pahang. About 5 kg EFB samples were collected from the site. The raw EFB is dried in the sun before proper drying process. For the drying process, a bunch of EFB samples is weighed and then placed in a tray. Then, the EFB samples were dried in an oven at the temperature of 65°C for 24 hours to provide a basis for experiments. The step was repeated until 500 gram of the EFB samples was accumulated. For this, the raw EFB samples were further ground using the mechanical grinder and sieved using sieve shaker. From the sieved samples it was determined that the largest particle size that would allow for an adequate sample amount during torrefaction experiment were samples below 1 mm size. The ground samples were removed and placed in airtight plastic bags and stored until needed.

For the initial analysis, the samples will be analysed for proximate, elemental (ultimate) analyses as well as the calorific value (CV). For further preparation that is required for use in TGA experiment, the EFB will be chopped into small pieces by using a chopper and grounded using a laboratory grade blender. The Figure 3-2 shows the flow chart of preparation of samples.
The EFB samples are collected from the oil palm plantation in Felda Lepar.

Then, the EFB samples is dried in an oven with the temperature of 65°C for 24 hours.

After that, the EFB samples are grinded into a mechanical grinder to get about 8 mm to 5 mm in the range of size.

EFB samples is blended inside the laboratory blender to minimise the size into 2mm and below.

Next, the samples are sieved into different range of size such as 2 mm-1 mm, 0.99 mm to 0.5 mm and 0.49 mm to 0.25 mm.

The sample is analyzed to get the proximate, ultimate and particle density for initial analysis.

The samples are cooled and stored in the airtight plastic bags until further use.

Figure 3-1 Raw Empty Fruit Bunches (EFB)

Figure 3-2 Flow Chart of Preparation of Samples
3.3 Torrefaction experiments

The experimental setup consists of a N\textsubscript{2} cylinder tank, CO\textsubscript{2} cylinder tank, and a vertical stainless-steel tubular reactor equipped with an electrically heated furnace and a liquid/gas collection unit. The experiment consists of two parts; the first part is inert torrefaction that only nitrogen gas flowed into the reactor. The second part is carbon dioxide and nitrogen that co-feed flowed into the reactor. The nitrogen and carbon dioxide tank was used to supply nitrogen and carbon dioxide as a carrier gas for providing an inert environment in the torrefaction experiment. The volumetric flow rate of nitrogen was controlled by an electronic mass flow controller. A schematic diagram of the experiments is shown in Figure 3-3.

A total of 3 g of EFB sample was weighed and put in a tubular reactor. The reactor was placed at the center of the furnace. When the EFB samples were in the furnace, they are heated in the furnace at a heating rate of 10 °C/min until the desired torrefaction temperature is reached at 200 - 300°C. N\textsubscript{2}/CO\textsubscript{2} was used to purge the reactor depending on the medium used for torrefaction.

A constant flow of 50 mL/min of N\textsubscript{2}/CO\textsubscript{2} was set using variable area mass flow controller to maintain inert/non reacting environment during the process. After flushing the reactor with torrefaction gas and different concentration of CO\textsubscript{2}, the temperature is set at 240°C and 280°C. The samples were heated from room temperature to the desired temperature and kept constant within 30 minutes. After being torrefied for 30 minutes, the furnace is turn off and the reactor is left to cool to ambient temperature. Then the torrefied sample is recovered, weighed and kept in airtight plastic bags prior to further analysis. The gas product from the decomposition reaction of biomass is channelled to the bottom of reactor, passed through a condenser at room temperature. The concentration of carbon dioxide in the gas stream is also adjusted to 0%, 10%, 15% and 21vol% to investigate the effect of carbon dioxide concentration on torrefaction. The torrefaction gas is prepared by mixing the nitrogen with carbon dioxide under ambient temperature. Figure 3-4 summarizes the work flow of experiments after 30 minutes in the furnace.
An amount of EFB is weigh and place into the center of the reactor

After flushing the reactor with torrefaction gas and different concentration of CO\textsubscript{2}, the temperature is set at 240°C, and 280°C.

After being torrefied for 30 min, the furnace is turn off and the reactor is left to cool to ambient temperature.

The torrefied sample is recover, weigh and store in an airtight plastic bags.

The samples are being analyze by specific method to obtain the final analysis.

The concentration of carbon dioxide in the gas is adjusted to 0%, 10%, 15% and 21% and being tested in two residence time; 15 min and 30 min.

Repeat the step 5 and 6 to get the analysis of torrefied samples

Figure 3-3 A schematic of the experimental setup

Figure 3-4 Flow Chart of torrefaction experiment
Grinder is used to shred or grind the EFB into small, about 8 to 10 mm in length is shown in Figure 3-5.

![Figure 3-5 Mechanical Grinder in FKKSA Open Lab](image)

3.4 Data Analysis

3.4.1 Gas Pycnometer

A pycnometer shown in Figure 3-6 is a device used to determine the density of a material. A pycnometer is usually made of glass, with a close-fitting ground glass stopper with a capillary tube through it, so that air bubbles may escape from the apparatus. The particle density of a powder, to which the usual method of weighing cannot be applied, can also be determined with a pycnometer.
3.4.2 Thermogravimetric analysis (TGA)

The samples are also tested by using a thermogravimetric analyzer (TGA) to obtain the proximate analysis. TGA is a thermal analysis technique performed to determine the changes in the weight of a sample as a function of temperature. TGA of the raw samples is carried out using PerkinElmer Pyris 1 TGA. The sample (5mg) is loaded into a sample pan, and 100 mL/min of nitrogen is used to maintain inert environment. The samples are heated at a constant rate of 10°C/min from room temperature to 900°C. The results from TGA will be displayed in term of decomposition graph and used to determine moisture content, volatile matter, fixed carbon and ash content in the EFB. The increased mass loss showed when using the CO₂ as purge gas when tested with TGA (Eseltine, 2011).

The the heating rate of 10°C /min was executed by a thermogravimetry where the temperature ranged from 25 to 600°C. In TGA, 5 mg of sample was tested where the flow rate of carried gas was 40ml/min. The data collected by the TGA can be analyzed in a many ways. The most basic analysis of TGA data is in the creation of thermograms which plot the weight loss of the substance being tested versus temperature (time can also be used as the x-axis). Thermograms give a basic picture of the thermal breakdown of a substance over a given temperature range.