

GLOBAL HIGHER EDUCATION FORUM 2016

The Role of Higher Education In Developing Societal Resilience & Sustainability

THE ROLE OF HIGHER EDUCATION IN MANAGING CONFLICT SITUATIONS IN SOCIETY FOR SUSTAINABLE DEVELOPMENT:

A CASE STUDY OF UMP'S CONTRIBUTION IN THE CONTROVERSIAL LYNAS RARE EARTH PROJECT

Universiti

Malaysia

Badhrulhisham Bin Abdul Aziz 5th April 2016

KNOWLEDGE & UNIVERSITY IN SOCIETY

Drew Faust, President Harvard Univ (2010)

"...university's place as a paramount player in a global system increasingly driven by knowledge, information and ideas. Knowledge is replacing other resources as the main driver of economic growth and education has increasingly become the foundation for individual prosperity and social mobility"

KNOWLEDGE & UNIVERSITY IN SOCIETY

Hiroshi Matsumoto, President Kyoto University [2012]

"...universities are unique communities within society; and therefore the university perpetually integrates with society, shaping its future."

LYNAS Issues: 'Big' Questions

- * Acceptance; to be developed (but not in my backyard?)
 - * Social, Economics & Politics (merits and interests?)
- * Health, Safety & Environment (risks and concerns?)

INVESTMENT: MERITS & RISKS

TECHNICAL

FINANCIAL

POLITICAL

OPERATIONAL

SOCIO ECONOMICS

INVESTMENT IN MALAYSIA

systems and procedures in place;

not as easy as several quarters claimed;

All related agencies has their own respective rules and regulations;

In LYNAS's case, it took ~ 6 years before approval was secured.

Perception (or Politics?) vs Science

"Science may be vital, but the people with scientific knowledge seem less connected than ever to the people with power"

The Guardian (2012)

STEM CELL RESEARCH, BIRTH CONTROL AND GLOBAL WARMING

USA Today (2007)

ACID RAIN SCIENCE AND POLITICS IN JAPAN

Kenneth E. Wilkening (2011)

LYNAS (Gebeng) and RAPID (Pengerang)

Parliament Hansard on PSC Lynas (2012)

INTRODUCING RARE EARTH

ABOUT RARE EARTH MINERALS

ARE NOT REALLY RARE;

WIDELY SPREAD THROUGH OUT THE EARTH'S CRUST IN SMALL CONCENTRATIONS;

CANNOT BE MINED ECONOMICALLY.

Why Rare Earth?

Green Economy – Climate Change, Alternative and Conservative Energy

Strategic – "Middle East has Oil, China has Rare Earth" (Deng Xiao Peng 1987)

Human Capital Development – High Technology Experts

Rare Earths cannot be substituted in many applications

- Chemical
 - ➤ Unique electron configuration
- Catalytic
 - Oxygen storage and release
- Magnetic
 - High magnetic anisotropy and large magnetic moment
- Optical
 - > Fluorescence, high refractive index
- Electrical
 - ➤ High conductivity
- Metallurgical
 - Efficient hydrogen storage in rare earths alloys

Rare Earths underpin new materials technology required to sustain the needs of today's society

Energy efficiency through lower consumption Environmental protection through lower emissions Smaller yet more powerful digital technology

- Compact Fluorescent Lights
- Hybrid vehicle
- Weight reduction in cars

- · Wind turbine
- Auto catalytic converter
- Diesel additives

- Flat panel displays
- Disk drives
- Digital cameras

Superconductor Materials Optical Glass&Polishing Hydrogen Storage Rare Earth Advanced Materials Magneto-optical storage Laser Materials Phosphor magnetoresistance Giant (colossal) **Optical Fiber** catalysts Dielectric Materials Magnetic Cooling Magnets

medical equipment Importance of REES to Modern Industry **Energy and** aviation industry

Consumer Electronics

MARKET DEMAND: SALES OF RE

Rare Earth Demand

The world rare earth resource distribution (USGS 2010)

21

The world rare earth supply in 2009 (USGS 2010)

REE Process

CONTRIBUTING FACTORS TO OPPOSITION OF THE PROJECT

FUKUSHIMA TRAGEDY

EXPERIENCE OF A.R.E BUKIT MERAH

MISLEADING AND CONFUSION ON THE REAL ISSUE

COMPARISONS

A.R.E. BUKIT MERAH,
PERAK
&
L.A.M.P. [LYNAS] GEBENG,
PAHANG

A.R.E. BUKIT MERAH CHRONOLOGY

(based on Dr Meor Yusoff's presentation captured in PSC Report)

Establishment and Objecti ASIAN RARE I

was incorporated, the company a joint venture between the Japanese (Mitsubishi Chemicals Ltd) and Malaysian (BEH minerals, Tabung Haji and individuals) investors to recover rare earth compounds from local monazite

operating ASIAN RARE EARTH (ARE) license

- Apr 1982 ARE started its operation at 7.2 km Jalan Lahat in Bukit Merah Industrial Estate with initial license issued by Health Ministry
- operation order by the AELB as the company operate without license.
- 16 Jan 1987 AELB issued a Class A license (interim operation) to the ARE

ARE: Public Protests

- 1984: residents of Papan and nearby towns sign a protest letter and send it to the Prime Minister, Perak Menteri Besar, the Minister of Health and the Minister of Science, Technology and Environment
- 1986: Representatives from seven areas (Bukit Merah, Lahat, Taman Badri Shah, Menglembu, Papan, Falim and Cuntong) form the Perak Anti-radioactive Committee (PARC)
- 1987: About 10,000 people participated in a rally condemning the ARE for its operation

ARE - COURT CASES

Feb 1985 - Residents of Bukit Merah sued the ARE claiming its operation endangered their life. The case was heard at the Ipoh High Court.

ARE to stop operation and transferred all wastes

Dec 1993 - The Supreme Court overturned the h Court decision on 2 grounds. The Court was of opinion that ARE's experts were more believable terms of the results of the tests conducted by oower to do so under the Atomic Energy Licensing that it revoke ARE's licence, because AELB has nat radiation was within

14 Jan 1994: ARE announce its closure; citing the low price of rare earth as the main reason

Source: Geoscience Australia 2011

LYNAS ADVANCED MATERIALS PLANT [L.A.M.P]

LYNAS CORPORATION

Gebeng, Malaysia, has exceptional infrastructure required for a Rare Earths separation facility

PROCESSING HUB WITH EXCEPTIONAL INFRASTRUCTURE

INDUSTRIAL INFRASTRUCTURE

> Energy, chemicals, water, industrial land

KNOWLEDGE INFRASTRUCTURE

Engineering, trade skills and services

GOVERNMENT INFRASTRUCTURE

Including FDI incentives

(12 years tax exemption for pioneer status)

The products are set for Phase 1; Lynas has product flexibility in Phase 2

PHASE 1 - 11,000t REO PRODUCTS	ANTICIPATED VOLUMES (tpa)
Ce carbonate	2,600
La carbonate	1,350
Ce / La carbonate	4,000
Nd / Pr oxide	2,700
SEG + Heavy Rare Earths	480
PHASE 2 — ADDITIONAL 11,000t REO PRODUCTS. Phase 2 will provide additional flexibility, with capacity to produce up to the following approximate volumes:	
Ce carbonate, oxide	5,200
La carbonate, oxide	2,700
Nd oxide and Pr oxide	2,700

The Lynas Advanced Materials Plant (LAMP) is built to international environmental performance standards – gas, water and solids manangement

Chemical plant vs nuclear power plant;

LYNAS, Gebeng is not the same as Asian Rare Earth, Bukit Merah;

Radioactivity of Raw Material (Mount Weld vs Bukit Merah) ~ 30 – 40 x

COMPARISON ON RAW MATERIAL AND RESIDUES ASIAN RARE EAERTH [ARE] VS LYNAS PLANT

Plant	ARE		Lynas	
Mineral	Monazite		Carbonatites	
Radioactive content	Uranium ppm	Thorium ppm	Uranium ppm	Thorium ppm
	5,000	80,000	29	1,600
Residue	Thoria		Synthetic Gypsum	
Radioactive content	Uranium ppm	Thorium ppm	Uranium ppm	Thorium ppm
	7,000	360,000	22.5	1,614

Low socio economy benefits (~ 350 employees vs thousands employees)

Tax incentive (12 years vs typical 10 years)

Raw material and WLP (classified as low level NORM)

Avoid building the plant in Australia and came to Malaysia (feasibility);

Chased out from China & Terengganu (market control & time);

WLP commercialization (6 Bq/g to 1 Bq/g → UK's Health Protection Agency : road construction)

Radioactivity of Residue (Lynas vs ARE: 60x);

Radioactivity Rain from Stack (0.002 mSv/yr vs permissible 1 mSv/yr);

Traveling of Radon and Thoron gases (very short half life);

The PSC Conclusion

L.A.M.P is a chemical plant; not a nuclear power plant or a mine.

Has fulfilled all the standards and regulation in Malaysia.

Has put in place the necessary control system.

The PSC Conclusion

Operation licenses issued for Lynas to operate in stages and at certain limit.

A continuous monitoring committee will be established.

All 31 recommendations should be implemented.

31 PSC Recommendations

18

HEALTH, SAFETY &
ENVIRONMENT;
RESIDUAL

LICENSE AND
PERMITTING
PROCESS

4
STRENGTHENING
ENFORCEMENT
AGENCIES

5
INVESTMENT AND SOCIO-ECONOMY

COMMUNICATION
AND INFORMATION
DISSEMINATION

GENERAL LESSONS LEARNT

High level of awareness of public on HS&E;

Risks are real, need to be understood and can be managed;

Scientific-based facts vs. emotions / perceptions;

The synergy of science and politics – maturity & complementary;

GENERAL LESSONS LEARNT

Community engagement is very important;

Malaysia HS&E standards comparable to the world standard;

Can be a model country where risks can be managed efficiently, reliably and with integrity.

UMP'S ROLES

PARLIAMENT SELECT COMMITTEE L.A.M.P

ASM COMMITTEE ON RARE EARTH

AWARENESS SESSIONS FOR IPT'S STUDENTS

UMP'S ROLES

PROFESSORIAL TALK WITH **COMMUNITY**

EUASTAS IS No. - Alasheni Jamin Majarin GUASTAS IS No. - Alasheni Jamin Majarin Majari

control das Traumori II priliprati del control del control l'acuto de l'experient l'acuto de l'experient l'acuto de l'experient l'experien

MEDIA ENGAGEMENT

INTELLECTUAL DISCOURSE

UMP'S ROLES RARE EARTH RESEARCH CENTERS, UMP

- 2 AMS stations
- AELB
- Karlsruhe Institute
 Tech

RARE EARTH RESEARCH CENTER

- UMP-LYNAS Chair
- Peking Univ; local universities
- Nuclear Malaysia

RARE EARTH R&D AREAS AT UMP

Rare Earth Processing

Rare Earth Process
Plant Scale up and
Design

Rare Earth
Application in
Petrochemical,
Manufacturing and
Automotive Industry

Rare Earth
Metallurgy and
Science

Safety and
Environmental
Management on
Rare Earth
Processes/Plants

Responsible and
Sustainable Mineral
Mining and
Production

BLUEPRINT OF MALAYSIAN RARE EARTH INDUSTRIES [2015]

MALAYSIAN RARE EARTH BLUEPRINT

Main Objective:

to provide the necessary information for the policy makers or investors to make an informed decision on establishing industries in mining, in processing or in downstream industries using rare earths metals.

What Next?

All relevant parties need to work closely and put the national agenda above all interests in investment decision;

Public understanding, awareness and engagement are vital in minimizing conflicts;

Higher education institution can play significant roles in educating the public research and dissemination of knowledge, without fear or favour.

REFERENCES

- 1) Drew Faust (2010) "The Role of the University in a Changing World" Speech at the Royal Irish Academy, Trinity College, Dublin.
- 2) Hiroshi Matsumoto (2012) "The Roles of Universities for the 21st Century" STS Forum 2012, Session 204A.
- 3) Abdul Aziz, B. (2013) "Integrity, Science and Perception: Lessons Learnt from Lynas Issue" Professorial Talk, UMP, Kuantan.
- 4) Abdul Aziz, B. (2014) "Future Direction of Malaysian Rare Earth Industry: From Establishing R&D to Human Capital Development", Keynote Speaker, The 5th International Workshop on Industrial Technology of Rare Metals, Incheon, Korea.
- 5) Abdul Aziz, B. (2015) "A Perspective on Rare Earth Research and Development in Malaysia", Keynote Speaker, National Conference on Malaysian Rare Earth Technology 2015, Kuantan, Pahang.

REFERENCES

- 6) Laporan Jawatankuasa Pilihan Khas Mengenai Projek Lynas Advanced Materials Plant (LAMP); Dewan Rakyat, Ke 12, Penggal ke 5, 2012.
- 7) Proceedings International Symposium on Rare Earth; Akademi Sains Malaysia & National Professors' Council, 2012.
- 8) ASM Report on Rare Earth Industries: Moving Malaysia's Green Economy Forward, August 2011.
- 9) Malaysian Parliament Hansard, 2012.
- 10) LYNAS Investor Presentation; May 2011.
- 11) StarBizWeek, The STAR, 2nd March, 2013.
- 12) USA Today, 5th August 2007.
- 13) The Guardian, 4th May 2012.
- 14) ProEdgeWire Online, 16th October, 2012.