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ABSTRACT 

 

In this study, electrochemical materials, namely MnO2, reduced graphene oxide 

(rGO), porous carbon nanoparticles (PCNs), and rGO/MnO2 nanocomposite, were 

prepared in diverse morphologies such as nanoflowers (MnO2), nanosheets (rGO), and 

nanoparticles (carbon). Different physical and chemical characterizations have been 

conducted to study the structural and morphological properties of the materials under 

study. Electrochemical properties of the above materials have been studied 

comprehensively using cyclic voltammetry (CV), galvanostatic charge–discharge (CDC) 

and electrochemical impedance spectroscopy (EIS) in order to evaluate their suitability 

as an electrode for supercapacitive energy storage. MnO2 nanoflowers was recovered 

from spent batteries by a combining leaching and electrowinning techniques. The 

recovered MnO2 nanoflowers exhibited high specific capacitance (Cs) (303 F g-1 at 5 mV 

s-1). Furthermore, MnO2 was electrodeposited by potentiostatic and galvanostatic 

conditions. Under similar electrodeposition conditions, MnO2 deposited by galvanostatic 

condition showed smaller particle size, less compact layered structure and wider band gap 

compared to potentiostatic deposition. The galvanostatic MnO2 rendered facile ions 

diffusion, low resistances and showed superior capacitive behavior. The rGO nanosheets 

were prepared by hydrazine reduction of graphene oxide and their electrochemical 

properties were studied. The rGO showed high Cs of 191 and 168 F g-1 at 5 mV s-1, in 5 

M KOH and 1 M Na2SO4, respectively and  high cycling stability > 96 % over 1000 

cycles. In addition, PCNs with fine particles size of 35 nm were prepared from oil palm 

leaves using a catalyst free process. The Cs of PCNs is 245 and 213 F g-1 at 5 mV s-1 in 5 

M KOH and 1 M Na2SO4, respectively. The PCNs showed high cycling stability of 95 %. 

Practical supercapacitors were developed using rGO and PCNs; the devices delivered 

energy densities ~18 and ~25 W h kg-1 at power densities 340 and 360 W kg-1, 

respectively, under wider operating voltage window of 2 V in neutral electrolyte. 

rGO/MnO2 nanocomposite has been prepared by simultaneous electrochemical 

conversion of GO and Mn3O4. The Cs of rGO/MnO2 is 457 F g-1 at 5 mV s-1, which are 

several folds higher compared to those for pure rGO and MnO2. Furthermore, rGO/MnO2 

showed high stability of 95 % over 2000 CDC cycles. Therefore, the present study 

identifies electrochemical materials with improved energy storage capabilities.  
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ABSTRAK 

 

Dalam kajian ini, bahan electrokimia iaitu MnO2, graphene oksida terturun (rGO), 

karbon nanopartikel berongga (PCNs), dan rGO/MnO2 nanokomposit telah disediakan in 

pelbagai morfologi, seperti nanobunga (MnO2), nanolembaran (rGO), dan nanopartikel 

(karbon). Pelbagai ujian sifat fizikal dan sifat kimia yang berbeza telah dijalankan untuk 

memahami struktur dan morfologi bahan yang dikaji. Sifat electrokimia telah dikaji 

secara menyeluruh dengan menggunakan kaedah siklik voltammetrik (CV), galvanostatik 

cas-discas (CDC) dan electrokimia impedans spektroskopi (EIS) demi menilai kesesuaian 

sebagai elektrod dalam penyimpanan tenaga superkapasitif. MnO2 nanobunga telah 

didapat kembali daripada bateri terpakai dengan kombinasi kaedah larut lesap dan 

electrowinning. MnO2 nanobunga yang didapat kembali menunjukkan kapasitans spesifik 

(Cs) (303 F g-1 at 5 mV s-1). Tambahan, MnO2 juga dielektrodeposit dengan kaedah 

potentiostatik dan galvanostatik. Untuk keadaan proses electrodeposit yang sama, MnO2 

yang dideposit dengan kaedah galvanostatik menunjukkan partikel saiz yang lebih kecil, 

kepadatan struktur yang rendah dan jurang jalur yang lebih lebar berbading dengan 

kaedah potentiostatik. MnO2 yang dihasilkan melalui kaedah galvanostatik membenarkan 

resapan ion yang mudah, rintangan yang rendah dan menunjukkan sifat kapasiti yang 

lebih baik. rGO nanolembaran telah disediakan melalui penurunan graphene oksida 

dengan hydrazine dan sifat electrokimia telah dikaji. rGO menunjukkan Cs yang tinggi 

iaitu 191 dan 168 F g-1 pada 5 mV s-1, di dalam 5 M KOH dan 1 M Na2SO4, masing-

masing dan kestabilan kitaran yang tinggi > 96 % untuk 1000 kitaran. Tambahan, PCNs 

dengan partikel saiz yang halus 35 nm turut disediakan dengan daun kelapa sawit tanpa 

menggunakan pemangkin. Cs untuk PCNs adalah 245 dan 213 F g-1 pada 5 mV s-1 di 

dalam 5 M KOH dan 1 M Na2SO4, masing-masing. PCNs menunjukkan kestabilan kitaran 

yang tinggi 95%. Superkapasitor praktikal telah disediakan dengan menggunakan rGO 

dan PCNs dan peranti tersebut menghasilkan tenaga ~18 dan ~25 W h kg-1 pada kuasa 

340 and 360 W kg-1, masing-masing, di bawah operasi voltan 2 V di dalam neutral 

elektrolit. rGO/MnO2 nanokomposit telah disediakan dengan kaedah pertukaran 

electrokimia GO dan Mn3O4. Cs untuk rGO/MnO2 adalah 457 F g-1 pada 5 mV s-1 dan 

nilai ini adalah beberapa kali ganda lebih tinggi berbanding dengan rGO dan MnO2 tulen. 

Tambahan, rGO/MnO2 menunjukkan kestabilan tinggi 95 % untuk 2000 kitaran CDC. 

Oleh demikian, kajian ini menunjukkan bahan electrokimia yang mempunyai keupayaan 

simpan tenaga yang ditambahbaikkan.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 CHAPTER OVERVIEW 

 

This chapter introduces the basic aspects about the materials used in this study 

and background for the energy storage properties of the materials. Motivation of the 

research, problem statement, research objectives and scope of work are also presented in 

this chapter. 

 

1.2 BACKGROUND AND MOTIVATIONS 

 

Electrochemical capacitors (ECs) are also known as ultracapacitors or 

supercapacitors. It can be classified into two main categories based on energy storage 

mechanism, pseudocapacitors (PCs) and electrochemical double–layer capacitors 

(EDLCs). PCs store electrical energy faradically by electron charge transfer between 

electrode and electrolyte. Metal oxides and conducting polymers are used as electrode 

materials for PCs. In EDLCs, a double layer of electrolyte ions is formed on the surface 

of an electrode material, which arises from the potential–dependence of the surface 

density of charges stored electrostatically. The electrode materials for EDLCs include all 

carbon–based materials. Supercapacitors could be used in many applications because of 
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their higher energy output as compared to conventional capacitors and higher power than 

batteries, in addition to their miniature size. Various types of electrode materials can be 

used in supercapacitors, including carbon‒based materials, conducting polymers and 

metal oxides.  In addition, the electrolyte could be an aqueous, organic or an ionic liquid. 

In case of an aqueous electrolyte, the operating voltage is limited to 1 V (due to the 

electrochemical decomposition of water at 1.23 V), whereas an organic electrolyte can 

achieve a voltage range of 2.5 to 3.5 V (Syzdek et al., 2014). A higher voltage of up to 

4.0 V can be achieved for the ionic liquid. Supercapacitors have many advantages, for 

example, long life cycles, fast charging time, low impedance and high energy and power 

density, environmental friendly, and also can be operated in a wide temperature range.  

This study aims to investigate different materials for supercapacitor applications with 

high power and long life criteria for better energy storage devices. The energy storage 

properties are directly depending on the structure and morphology of the electrode 

materials.  

 

In recent years, manganese dioxide (MnO2) has drawn increasing attention for 

supercapacitors application, mainly due to the high abundancy of manganese (Jang et al., 

2012) that contributes to low material cost as compared to the expensive ruthenium metal. 

Pang et al. reported high specific capacitance (Cs) (700 F g-1) for MnO2 thin films in year 

2000 and their findings had sparked strong interest among energy research community 

for its application in supercapacitor electrode (Pang and Anderson, 2000, Pang et al., 

2000). Such high capacitance value arises from the ions insertion/desertion within MnO2 

structure and it depends crucially on the particle size, surface area and porosity. Since 

then, in achieving optimized condition for the aforementioned properties, MnO2 with 

different morphologies have been developed, such as nanoflakes (Chou et al., 2006), 

nanorods (Yousefi et al., 2012a), nanowires (Yousefi et al., 2013), nanopetals (Yang et 

al., 2012) and nanosheets (Yan et al., 2012). The synthesis route plays a vital role in 

determining its morphology. The most common synthesis route for MnO2 is chemical 

coprecipitation method (Deng et al., 2013, Jiang et al., 2009) involving dissolved Mn4+ 

precursor. However, instability of Mn4+ precursor in the aqueous solution as well as the 

contact resistance between synthesized MnO2 and current collectors have hindered its 

wider use in electrochemical applications (Xu et al., 2008, Prasad and Miura, 2004). 
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Electrochemical deposition is proven to be an effective method to prepare MnO2 

nanostructures (Hu et al., 2014, Yousefi et al., 2013).  

 

On the other hand, carbon–based materials possessing high surface area as the 

electrode material, and the capacitive originates from the charge accumulation at the 

interface between electrode and electrolyte (Portet et al., 2005). Pseudocapacitors employ 

transition metal oxides or conductive polymers (Patil et al., 2013, Song et al., 2013, Xie 

et al., 2012) as the electrode material. Though the energy densities in pseudocapacitors 

are higher than that of EDLCs, the faradic reactions within pseudocapacitors could lead 

to phase changes and limit their life time (Compton and Nguyen, 2010). Graphene with 

its high surface area and nanosheets morphology and carbon nanoparticles with porous 

structure are a promising materials from energy storage applications. 

 

1.3 PROBLEM STATEMENT 

 

The need for the development of efficient energy storage systems is paramount in 

meeting the world’s future energy targets, especially when the energy costs are on the 

increase in addition to the escalating demand. Energy storage technologies can improve 

efficiencies in supply systems by storing the energy when it is in excess, and then release 

it timely. Nowadays, batteries are slowly becoming obsolete due to their poor cycleability 

(limited to a few thousands) and long charge time (tens of minutes) in comparison to 

supercapacitors. On the other hand, supercapacitors have long life time and fast charging 

times (Vangari et al., 2013). Nowadays the research focus on developed suitable electrode 

materials which directly reflect in supercapacitor technology enhancement. 

 

MnO2 has been identified as a promising pseudocapacitive material to replace 

toxic and costly materials especially ruthenium oxide. Though manganese source can be 

found abundantly in nature, it is imperative to stop exploiting nature for the advancement 

of technology. Instead, recovery of manganese from waste sources could be an alternative 

to obtain MnO2. According to United States Environmental Protection Agency (USEPA) 

analysis, an average of 8 disposable batteries are consumed by an individual annually. 
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Annually, around 160 000 tonnes of batteries are placed on the market and around 20 

000 tonnes per year of manganese could be recovered (Gallegos et al., 2013). Thus figures 

raise an alarm on the disposal issue where the common practice in handling spent batteries 

is landfill which could potentially harm the environment. Furthermore, high percentage 

of manganese in spent batteries could be a motivation in manganese recovery from 

batteries to be used as supercapacitor electrode (Sayilgan et al., 2009).  

 

Carbon‒based materials are the most widely used materials in commercial 

supercapacitor. However, activated carbon possesses the problem of achieving high Cs 

and thus limiting its wide application in supercapacitor. Graphene possesses high surface 

area, stable structure and exhibits many interesting electronic, optical and mechanical 

properties due to its 2D crystal structure. Graphene could be the solution for this problem. 

On the other hand, as a move to preserve the environment as well as maintain low cost 

material, waste precursors could be the potential source for the production of carbon‒

based materials. This include with oil palm biomass residues (leaves, fronds, trunks, 

empty fruit bunches, shells and fibers) constitute biomass waste produced from oil palm 

industries which is in abundance in south‒east Asia (Chavalparit et al., 2006) (around 

73.74 million tonnes per year in Malaysia (Rafatullah et al., 2013). A common practice 

in managing oil palm residues is burning which give rise to environmental issues. 

Furthermore, it is composed of high carbon content (about 18 wt %) (Rafatullah et al., 2013), 

and could be the potential source for the production of carbon‒based material for 

supercapacitor electrode construction.  

 

EDLCs materials possess good stability but provide with the limited specific 

capacitance. On the other hand, PCs materials possess good capacitive storage but at a 

cost of low stability.  It is timely to develop a hybrid energy system comprising of both 

materials and investigating their synergetic effect towards capacitive storage.  
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1.4 OBJECTIVES OF RESEARCH 

 

The objectives of this research are: 

1. To determine the physical and chemical characteristics of supercapacitor electrode 

materials such as MnO2, reduced graphene oxide, carbon nanoparticles and reduced 

graphene oxide/MnO2 nanocomposite. 

2. To evaluate the electrochemical characteristics of MnO2 recovered from spent 

batteries as supercapacitor electrode. 

3. To evaluate the electrochemical characteristics of reduced graphene oxide from 

graphite source and porous carbon nanoparticles from biowaste (oil palm leaves) as 

supercapacitor electrodes. 

4. To investigate the synergetic effect of carbon‒based nanomaterials and MnO2 

towards enhanced energy storage properties. 

 

1.5 SCOPE OF THE THESIS 

 

The following research activities are required to achieve the mentioned objectives: 

1. Recover MnO2 from spent batteries through electrochemical method and produce 

MnO2 with different electrochemical approaches. 

2. Synthesize reduced graphene oxide nanosheets via modified Hummers’ method and 

produce carbon nanoparticles from oil palm leaves via thermal annealing. 

3. Synthesize reduced graphene oxide/MnO2 nanocomposite through electrochemical 

method. 

4. Study the structural properties of the synthesized materials with X‒ray diffraction, 

UV spectroscopy, infrared spectroscopy, electron microscopy, N2 adsorption‒

desorption and Raman spectroscopy.  

5. Study the electrochemical properties of the synthesized materials with cyclic 

voltammetry, galvanostatic charge discharge and electrochemical impedance 

spectroscopy.  

6. Fabricate the supercapacitor device with the synthesized materials and evaluate 

its long term stability.  



 

 

 

 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 CHAPTER OVERVIEW 

 

This chapter introduces the basic aspects about the materials used in this study 

and background for the energy storage properties of the materials. Motivation of the 

research, problem statement, research objectives and scope of work are also presented in 

this chapter. 

 

1.2 BACKGROUND AND MOTIVATIONS 

 

Electrochemical capacitors (ECs) are also known as ultracapacitors or 

supercapacitors. It can be classified into two main categories based on energy storage 

mechanism, pseudocapacitors (PCs) and electrochemical double–layer capacitors 

(EDLCs). PCs store electrical energy faradically by electron charge transfer between 

electrode and electrolyte. Metal oxides and conducting polymers are used as electrode 

materials for PCs. In EDLCs, a double layer of electrolyte ions is formed on the surface 

of an electrode material, which arises from the potential–dependence of the surface 

density of charges stored electrostatically. The electrode materials for EDLCs include all 

carbon–based materials. Supercapacitors could be used in many applications because of 
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their higher energy output as compared to conventional capacitors and higher power than 

batteries, in addition to their miniature size. Various types of electrode materials can be 

used in supercapacitors, including carbon‒based materials, conducting polymers and 

metal oxides.  In addition, the electrolyte could be an aqueous, organic or an ionic liquid. 

In case of an aqueous electrolyte, the operating voltage is limited to 1 V (due to the 

electrochemical decomposition of water at 1.23 V), whereas an organic electrolyte can 

achieve a voltage range of 2.5 to 3.5 V (Syzdek et al., 2014). A higher voltage of up to 

4.0 V can be achieved for the ionic liquid. Supercapacitors have many advantages, for 

example, long life cycles, fast charging time, low impedance and high energy and power 

density, environmental friendly, and also can be operated in a wide temperature range.  

This study aims to investigate different materials for supercapacitor applications with 

high power and long life criteria for better energy storage devices. The energy storage 

properties are directly depending on the structure and morphology of the electrode 

materials.  

 

In recent years, manganese dioxide (MnO2) has drawn increasing attention for 

supercapacitors application, mainly due to the high abundancy of manganese (Jang et al., 

2012) that contributes to low material cost as compared to the expensive ruthenium metal. 

Pang et al. reported high specific capacitance (Cs) (700 F g-1) for MnO2 thin films in year 

2000 and their findings had sparked strong interest among energy research community 

for its application in supercapacitor electrode (Pang and Anderson, 2000, Pang et al., 

2000). Such high capacitance value arises from the ions insertion/desertion within MnO2 

structure and it depends crucially on the particle size, surface area and porosity. Since 

then, in achieving optimized condition for the aforementioned properties, MnO2 with 

different morphologies have been developed, such as nanoflakes (Chou et al., 2006), 

nanorods (Yousefi et al., 2012a), nanowires (Yousefi et al., 2013), nanopetals (Yang et 

al., 2012) and nanosheets (Yan et al., 2012). The synthesis route plays a vital role in 

determining its morphology. The most common synthesis route for MnO2 is chemical 

coprecipitation method (Deng et al., 2013, Jiang et al., 2009) involving dissolved Mn4+ 

precursor. However, instability of Mn4+ precursor in the aqueous solution as well as the 

contact resistance between synthesized MnO2 and current collectors have hindered its 

wider use in electrochemical applications (Xu et al., 2008, Prasad and Miura, 2004). 
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Electrochemical deposition is proven to be an effective method to prepare MnO2 

nanostructures (Hu et al., 2014, Yousefi et al., 2013).  

 

On the other hand, carbon–based materials possessing high surface area as the 

electrode material, and the capacitive originates from the charge accumulation at the 

interface between electrode and electrolyte (Portet et al., 2005). Pseudocapacitors employ 

transition metal oxides or conductive polymers (Patil et al., 2013, Song et al., 2013, Xie 

et al., 2012) as the electrode material. Though the energy densities in pseudocapacitors 

are higher than that of EDLCs, the faradic reactions within pseudocapacitors could lead 

to phase changes and limit their life time (Compton and Nguyen, 2010). Graphene with 

its high surface area and nanosheets morphology and carbon nanoparticles with porous 

structure are a promising materials from energy storage applications. 

 

1.3 PROBLEM STATEMENT 

 

The need for the development of efficient energy storage systems is paramount in 

meeting the world’s future energy targets, especially when the energy costs are on the 

increase in addition to the escalating demand. Energy storage technologies can improve 

efficiencies in supply systems by storing the energy when it is in excess, and then release 

it timely. Nowadays, batteries are slowly becoming obsolete due to their poor cycleability 

(limited to a few thousands) and long charge time (tens of minutes) in comparison to 

supercapacitors. On the other hand, supercapacitors have long life time and fast charging 

times (Vangari et al., 2013). Nowadays the research focus on developed suitable electrode 

materials which directly reflect in supercapacitor technology enhancement. 

 

MnO2 has been identified as a promising pseudocapacitive material to replace 

toxic and costly materials especially ruthenium oxide. Though manganese source can be 

found abundantly in nature, it is imperative to stop exploiting nature for the advancement 

of technology. Instead, recovery of manganese from waste sources could be an alternative 

to obtain MnO2. According to United States Environmental Protection Agency (USEPA) 

analysis, an average of 8 disposable batteries are consumed by an individual annually. 



   

 

 

 

CHAPTER 3 

 

 

EXPERIMENTAL PROCEDURES AND TECHNIQUES 

 

 

3.1 CHAPTER OVERVIEW 

 

Detailed information about samples preparation for the present research are given 

in this chapter. The prepared materials for this study are MnO2, reduced graphene oxide, 

carbon nanoparticles and reduced graphene oxide/MnO2 nanocomposite. In addition, this 

chapter shows a background about chemical and physical characterization techniques, in 

order to study the properties of the prepared materials such as XRD, FTIR, TGA/DTA, 

FESEM, TEM, Raman, UV–Vis and N2 adsorption–desorption techniques. Finally, the 

electrodes preparation and cells setup used for supercapacitive testing are mentioned in 

details. 

 

3.2 SAMPLES PREPARATION PROCEDURES 

 

3.2.1 Preparation of MnO2 from Recycling of Spent Batteries 

 

A spent Zn–C battery (EVEREADY® D cell) was disassembled and the cathode 

black paste was taken and used for the subsequent process. The cathode black paste was 

dried at 130 °C for 24 hours, ground well in a mortar, and then was sieved using 200 μm 
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mesh. The sieved powder was later washed with deionized water (solid to liquid ratio 

1:10) in order to remove NH4Cl electrolyte from the cathode past in the battery and finally 

dried at 105 °C for 24 hours. The dried powder (20 g) was subsequently dissolved in 

H2SO4 (200 mL, 2 M, Friendemann Schmidt), followed by addition of H2C2O4 (14.5 g, 

Aldrich) which act as reducing agent. The leaching process was continued with 

continuous stirring for 5 hours at 80 °C (Rácz and Ilea, 2013, Ferella et al., 2008). The 

reactions which were involved in this preparation are summarized as shown below: 

 

𝑀𝑛2𝑂3 + 𝐻2𝑆𝑂4  →  𝑀𝑛𝑂2 + 𝑀𝑛𝑆𝑂4 + 𝐻2𝑂                                      (3.1) 

 

𝑀𝑛3𝑂4 + 2𝐻2𝑆𝑂4  →  𝑀𝑛𝑂2 + 2𝑀𝑛𝑆𝑂4 + 2𝐻2𝑂                               (3.2) 

 

𝑀𝑛𝑂2 + 𝐻2𝐶2𝑂4 + 𝐻2𝑆𝑂4 → 𝑀𝑛𝑆𝑂4  +  2𝐶𝑂2 + 2𝐻2𝑂                   (3.3) 

 

The leached solution was filtered prior to electrowinning. For electrowinning, two 

stainless steel plates were set up as electrodes and the distance between electrodes was 

kept at 20 mm. Electrowinning was carried out in 50 mL of leached solution with current 

density of 0.15 A cm-2 for 1 hour at room temperature. Electrowinning involves Mn(II) 

oxidation to Mn(III) and followed by disproportionation to Mn(II) and Mn(IV). MnO2 

was then formed as dark precipitate at the bottom of the cell. MnO2(Bt) was used as a 

code for the prepared material. The reaction mechanism can be described as follows 

(Souza and Tenório, 2004): 

 

2𝑀𝑛+2 →  2𝑀𝑛+3 +  2𝑒−                                                         (3.4) 

 

2𝑀𝑛+3 +  2𝐻2𝑂 → 𝑀𝑛
+2 +𝑀𝑛𝑂2 +  4𝐻

+                                  (3.5) 
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3.2.2 Preparation of MnO2 by Potentiostatic and Galvanostatic Electrodeposition  

 

MnO2 was electrodeposited from KMnO4 solution (0.5 M, Aldrich) by 

potentiostatic and galvanostatic techniques by applying 10 V and 0.165 A cm‒2 for 30 

minutes at room temperature, respectively. Two pre–treated stainless steel plates were 

used as electrodes. The distance between two electrodes was kept constant at 20 mm 

throughout the electrodeposition process. For both electrodeposition techniques, black 

films were obtained on the cathode and the mass was recorded after drying. MnO2(PS) 

and MnO2(GS) were used as codes for the prepared materials by potentiostatic and 

galvanostatic techniques, respectively. 

 

3.2.3 Preparation of Reduced Graphene Oxide Nanosheets 

 

Graphene oxide (GO) was prepared from graphite by Hummers’ method 

(Hummers and Offeman, 1958). In order to prevent incomplete oxidation, graphite 

powder was pre–oxidized by slowly mixed and stirred with graphite (20 g, Merck), 

K2S2O8 (10 g, Aldrich) and P2O5 (10 g, Aldrich) into concentrated H2SO4 (30 mL). 

The reaction mixture was heated up to 80 C using an oil bath and continuous 

stirring for 6 hours. The mixture was then diluted with distilled water, filtered and 

washed until the filtrate became neutral in pH condition. The washed powder was 

dried for 8 h in a vacuum oven at 60 C. The pre–oxidized graphite powder was 

oxidized as follows: the pre–oxidized graphite powder was added to concentrated 

H2SO4 (460 mL) cooling in an ice bath. KMnO4 (60 g) was added to the pre-

oxidized solution and continuously stirred over 30 minutes. The mixture was then 

heated up to 35 C for 2 hours before distilled water (1 L) was added. The stirring 

was continued for 15 minutes and additional distilled water (3 L) and 30 % H2O2 

(50 mL, Merck) were added onto the mixture. The mixture was then filtered, 

washed with aqueous HCl (1:10, Merck) and dried in vacuum oven at 60 C in 

order to obtain dry graphite oxide. Exfoliation of graphite oxide was done by 

sonicating graphite oxide dispersion (2 g L-1) at 200 W for 30 minutes. The 

dispersion was later centrifuged at 6000 rpm for 10 minutes to remove the 


