EFFECTS OF INDUSTRIAL WASTEWATER ON WATER AND SEDIMENT QUALITIES AND EFFECTIVENESS OF BIOREMEDIATION METHODS OF INDUSTRIAL WASTEWATER TREATMENT, GEBENG, PAHANG, MALAYSIA

MD ABDUS SOBAHAN

Thesis submitted in fulfillment of the requirements For the award of the degree of Doctor of Philosophy (Environmental Management)

Faculty of Civil Engineering and Earth Resources UNIVERSITI MALAYSIA PAHANG

October 2015

ABSTRACT

Gebeng is a very important industrial estate of Pahang, Malaysia. A study was conducted in Gebeng industrial area in order to obtain the current status of industrial wastewater, surface water and sediments. Results of industrial wastewater and surface water were compared to Malaysian and different standards limits. Moreover, the industrial wastewater and surface water classification and contamination intensity were calculated. Sediment quality guidelines were used to compare the results of sediments. Some of water quality parameters such as BOD, COD, TSS, Pb, Cd, Cr and Hg were higher compared to standard limits in studied wastewater. BOD, COD, ammoniacal nitrogen, total nitrogen, total phosphorous, nitrate, phosphate, As, Hg, Co, Pb, Ni, Cr, Cd and Cu were higher in surface water compared to standard threshold. For sediments, Co, Hg, As, Pb and Cu concentrations were higher than those of permissible levels. In addition, wastewater treatments were done by bio-remediation methods. It was performed first by Pseudomonas aeruginosa and secondly by Vetiver grass, Cattails and Water hyacinth. From the treatments of Pseudomonas aeruginosa, the expected pollutants removal efficiency was found. Because of lower pollutants tolerant features vetiver grass and water hyacinth did not survive in 100 % wastewater while cattails were adapted to 100 % wastewater due higher contaminants tolerant characteristics. The 75 % wastewater with N-P-K mixed fertilizer treatment was found as the best treatments among vetiver grass and water hyacinth treatments. In case of cattails, 100 % wastewater with mixed fertilizer treatment showed the best performance. Statistical software (SPSS) was used to compute data and results. Least significance difference, first order kinetics, correlation analysis, principal component analysis, pollution load index, contamination factors, geo accumulation index and surface water enrichment factors were used to test the significance, validity of data, groupings of parameters and interpretation. In this study, a novel two steps technique was used which proven to give higher efficiency compared to direct treatments with plants. From this study, it could be concluded that the study area is moderately contaminated by industrial wastewater. Furthermore, the surface waters are classified as polluted (DOE-WQI) and sediments are very strongly and strongly polluted by Co and Hg respectively while Pb, Cd and As are found unpolluted to moderately polluted. So, recycling of wastewater, wastewater treatments by bioremediation techniques, close monitoring and supervision in every industry have to be introduced.

ABSTRAK

Gebeng merupakan sebuah kawasan industri penting di Pahang. Satu kajian telah dijalankan di kawasan perindustrian Gebeng untuk mengenal pasti status terkini sisa air, permukaan air dan mendapan industri. Hasil kajian sisa air dan permukaan air industri dibandingkan antara had piawaian Malaysia dan had-had lain. Tambahan klasifikasi dan tahap pencemaran sisa air dan permukaan air industri dikira. Tatacara kualiti mendapan digunakan untuk membandingkan hasil-hasil kajian mendapan. Beberapa parameter kualiti air seperti BOD, COD, TSS, Pb, Cd, Cr dan Hg didapati tinggi dibandingkan dengan had-had piawaian dalam sisa air yang dikaji. BOD, COD, nitrogen daripada ammonia, jumlah nitrogen, jumlah fosforus, nitrat, fosfat, As, Hg, Co, Pb, Ni, Cr, Cd dan Cu adalah tinggi dalam permukaan air dibandingkan dengan piwaian ambang. Untuk mendapan, kepekatan Co, Hg, As, Pb dan Cu adalah lebih tinggi daripada tahap-tahap yang dibenarkan itu. Disamping itu, rawatan-rawatan sisa air dilakukan dengan menggunakan kaedah-kaedah rawatan-bio. Ia pertamanya dilaksanakan dengan menggunakan Pseudomonas aeruginosa dan keduanya dengan menggunakan rumput Vetiver, Cattail dan keladi. Daripada rawatan-rawatan menggunakan Pseudomonas aeruginosa, kecekapan penyingkiran bahan cemar yang dijangka ditemui. Disebabkan sifat toleransi terhadap bahan cemar yang rendah, rumput vetiver dan keladi tidak boleh hidup dalam 100% sisa air tetapi Cattail boleh hidup dalam medium berkenaan disebabkan sifat toleransinya yang tinggi. Sisa air 75% dengan rawatan baja campuran N-P-K didapati merupakan rawatan terbaik di antara rawatan menggunakan rumput vetiver dan keladi. Dalam kes Cattail, sisa air 100% dengan rawatan baja campuran menunjukkan pencapaian yang terbaik. Perisian statistik (SPSS) digunakan untuk mengira data dan hasil ujikaji. Beza ketara terkecil, kinetik tertib pertama, analisa korelasi, analisa komponen asas, indeks beban pencemaran udara, faktor pencemaran air, indeks penumpukan-geo dan faktor-faktor pengkayaan permukaan air digunakan untuk menguji tahap signifikan (ketermaknaan), penerimaan terhadap data, pengumpulan parameter-parameter dan penterjemahan. Dalam kajian ini, dua teknik baharu digunakan yang terbukti memberi kecekapan yang lebih tinggi dibandingkan dengan rawatan secara langsung dengan menggunakan tumbuhtumbuhan. Daripada kajian ini, ia boleh dirumuskan bahawa kawasan kajian dicemari secara sederhana oleh sisa air industri. Malahan, permukaan air dikelaskan sebagai tercemar (DOE-WQI) dan mendapan adalah sangat kuat dan sangat dicemari masingmasing oleh Co dan Hg sedangkan Pb, Cd, dan As ditemui tidak tercemar kepada tercemar sederhana. Oleh itu, kitar semula sisa air, rawatan-rawatan sisa air oleh teknik rawatan-bio, pemantauan dan penyeliaan yang ketat dalam setiap industri patut diperkenalkan.

TABLE OF CONTENTS

Page

17

SUPE	ERVISOR'S DECLEARATION	II
STUI	DENT'S DECLEARATION	II
ACK	NOWLEDGEMENTS	v
ABS	TRACT	VI
ABS	TRAK	VII
TABI	LE OF CONTENTS	IX
LIST	OF TABLES	XX
LIST	OF FIGURES	XXII
LIST	OF ABBREVIATIONS	XXIX
CHA	PTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	3
1.3	Significance of The Study	5
1.4	Specific Objectives of The Research Work	6
1.5	Scope of The Study.	6
1.6	Outline of The Thesis	7
CHA	PTER 2 LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Industrial Wastewater Quality Studies	9
	 2.2.1 Temperature 2.2.2 pH 2.2.3 Dissolved Oxygen (DO) 2.2.4 Biochemical Oxygen Demand (BOD) 2.2.5 Chemical Oxygen Demand (COD) 2.2.6 Total Suspended Solids (TSS) 2.2.7 Total Dissolved Solids (TDS) 2.2.8 Ammoniacal Nitrogen, Total Nitrogen and Total Phosphorous 2.2.9 Heavy Metals 	9 10 11 11 12 12 13 13 13
2.3	Surface Water Quality	17

2.3.1 Dissolved Oxygen, Biochemical Oxygen Demand,	
Chemical Oxygen Demand	

	2.3.2 Temperature, pH, Electrical Conductivity, Salinity, Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Turbidity2.3.3 Ammoniacal-Nitrogen, Nitrate-Nitrogen, Sulfate, Phosphate,	19
	Total Nitrogen, Total Phosphorous	22
	2.3.4 Heavy Metals in Surface Water	25
2.4	Sediment Pollution Status	27
	2.4.1 Work on Sediments in Malaysia2.4.2 Works on Sediments in other Countries	27 28
2.5	Wastewater Treatment by Bioremediation Techniques	29
	2.5.1 Wastewater Treatment by <i>Pseudomonas aeruginosa</i>	30
	2.5.2 Wastewater Treatment by Plants	31
2.4	Conclusion	35
CHAI	PTER 3 MATERIALS AND METHODS	36
3.1	Introduction	36
3.2	Study Area	36
	3.2.1 Location and Geography3.2.2 Climatic Condition3.2.3 Geology of Gebeng Industrial Estate (GIE)	36 37 37
3.3	Selection of Monitoring Stations	38
	3.3.1 Industrial Wastewater Sampling Stations	38
	3.3.2 Surface Water and Sediment Sampling Stations	39
3.4	Sampling Methodology	42
	3.4.1 Wastewater sampling for monthly analysis	42
	3.4.2 Surface Water	42
	3.4.3 Sediment	43 43
	3.4.4 Collection and Descriptions of Plants (Vetiver Grass, Cattails and Water Hyacinth)	43
	3.4.5 Wastewater Sampling for Bioremediation Treatments	43
3.5	Bacterial Treatment	44
	3.5.1 Colony Counts and Serial Dilution	44
	3.5.2 Colony Count Equation	44 44
	3.5.3 Media Preparation3.5.5 Bioreactor	44 45
3.6	Primary Activities before Wastewater Treatment by Plants	46
	3.6.1 Cleaning of Young Plants	46

	3.6.2 Fungicides	46
	3.6.3 Adaptation	46
	3.6.4 Fertilizer Doses	47
	3.6.5 Sunlight and Evaporation Losses	47
~ -	3.6.6 Polystyrene and Black Polythene Use	47
3.7	Analytical Methodology	47
	3.7.1 In-Situ Measurements3.7.2 Laboratory Analysis	48 48
3.8	Sediment Analysis	40 51
5.0	3.8.1 Color of the Sediment	51
	3.8.2 Particle Density	51
	3.8.3 Particle Size Analysis	51
	3.8.4 Other Parameters	52
3.9	Statistical Analysis for all Data	52
	3.9.1 Least Significance Difference (LSD)	52
	3.9.2 Correlation Analysis	52
3.10	3.9.3 Principal Component Analyses (PCA) Contamination Intensity	53 53
	•	
3.11	Surface Water Enrichment Factors Modified (SWEFm)	54
3.12	Water Quality Index (WQI)	54
3.13	The Sediment Contamination Assessment	55
	3.14.1 Sediment Quality Guidelines (SQGs)	55
	3.14.2 Contamination Factor (CF)	55
	3.14.3 The Geo-accumulation Index3.14.4 Pollution load index	56
		56
3.14	Formula used for the Calculation of Removal Efficiency	57
3.15	Kinetics Study for the Data of Bacterial treatments	57
CHAI	PTER 4 INDUSTRIAL WASTEWATER QUALITY ASSESSMENT	58
4.1	Introduction	58
4.2	Physico-Chemical Parameters and Status of Wastewater	59
	4.2.1Temperature	59
	4.2.2 pH	62
	4.2.3 Dissolved Oxygen (DO)	65
	4.2.4 Biochemical Oxygen Demand (BOD)	68
	4.2.5 Chemical Oxygen Demand (COD)	71
	4.2.6 Total Suspended Solids (TSS)	74
	4.2.7 Total Dissolved Solids (TDS)	77
	4.2.8 Ammoniacal Nitrogen 4.2.9 Total Nitrogen	80 83
	4.2.10 Total Phosphorous	85 86
4.3	Heavy Metals Status	80 89
r.J	The fille status	07

	4.3.1 Arsenic	89
	4.3.2 Barium	93
	4.3.3 Cadmium	96
	4.3.4 Cobalt	99
	4.3.5 Chromium	102
	4.3.6 Copper	105
	4.3.7 Mercury	108
	4.3.8 Nickel	111
	4.3.9 Lead	114
	4.3.10 Zinc	118
4.4	Sources Apportionment of Physiochemical Parameters and Heavy Me	-
	ndustrial Wastewater	121
11		
	4.4.1 Multivariate Statistical Analysis of Measured Parameters	121
	4.4.2 Pearson's Correlation Coefficient	123 124
4.5	4.4.3 Principal Component Analysis Conclusion	124
CHA	PTER 5 SURFACE WATER QUALITY ASSESSMENT	129
5.1	Introduction	129
5.2	Physico-chemical Parameters and the Status of Surface Water	130
	5.2.1 Temperature	130
	5.2.2 pH	133
	5.2.3 Electrical Conductivity	136
	5.2.4 Turbidity	139
	5.2.5 Salinity	142
	5.2.6 Dissolved Oxygen	145
	5.2.7 Biochemical Oxygen Demand 5.2.8 Chemical Oxygen Demand	148 151
	5.2.9 Total Suspended Solids	151
	5.2.10 Total Dissolved Solids	157
	5.2.11 Ammoniacal Nitrogen	160
	5.2.12 Nitrate	163
	5.2.12 Sulfate	166
	5.2.13 Phosphate	169
	5.2.14 Total Nitrogen	172
5 2	5.2.15 Total Phosphorous	175
5.3	Heavy Metals Contamination	178
	5.3.1 Arsenic 5.3.2 Barium	178 181

xii

5.4	 5.3.3 Cadmium 5.3.4 Cobalt 5.3.5 Chromium 5.3.6 Copper 5.3.7 Mercury 5.3.8 Nickel 5.3.9 Lead 5.3.10 Zinc Detection of Different Sources of Contaminants in Studied Surface Water 	184 187 190 193 196 199 202 205 208
5.5	 5.4.1 Average Data for Different Techniques and the Interpretations of Contaminants Distribution 5.4.2 Water Quality Calculations in Accordance with DOE-WQI 5.4.3 Pearson's Correlation Coefficient and one sample t-test 5.4.4 Surface Water Enrichment Factors Modified (SWEFm) 5.4.5 Principal Component Analysis Conclusion 	208 210 212 214 215 218
CHAI	PTER 6 SEDIMENT CONTAMINATION ASSESSMENT	219
6.1	Introduction	219
6.2	Morphological Properties of Studied Sediment	220
6.3	Physico-Chemical Properties of Sediments	222
	 6.3.1 Particle Density 6.3.2 pH 6.3.3 Electrical Conductivity 6.3.4 Organic Matter 6.3.5 Particle Size Distributions 	222 223 224 224 225
6.4	Heavy Metals Concentrations in the Studied Surface Sediment	227
	 6.4.1 Arsenic 6.4.2 Barium 6.4.3 Cadmium 6.4.4 Cobalt 6.4.5 Chromium 6.4.6 Copper 6.4.7 Mercury 6.4.8 Nickel 6.4.9 Lead 6.4.10 Zinc 	228 229 230 231 232 234 235 236 237 239
6.5	Pollutants Distribution, Pollution Loading and Sources of	
	Heavy Metals in Studied Sediments	240
	6.5.1 Descriptive Statistics and Heavy Metals Distributions	240
	6.5.2 Geo accumulation index and degree of pollution	242

	6.5.3 Calculation of Contamination Factors (CF), Pollution	
	Load Index (PLI) and the Level of Pollution	243
	6.5.4 Pearson Correlation Coefficient	244
	6.5.5 Principal Component Analysis (PCA)	245
6.6	Conclusion	248
CHA	PTER 7 BIO-REMEDIATION OF INDUSTRIAL WASTEWATER	249
7.1	Introduction	249
7.2	Industrial Wastewater Treatments and Physicochemical Characteristics	
	of the Wastewater	250
7.3	Wastewater Treatment by Bacteria	251
7.4	 7.3.1 Isolation of <i>Pseudomonas aeruginosa</i> 7.3.2 Colony Count 7.3.3 Bacterial Growth Curve 7.3.4 Wastewater Treatment in Bioreactor 7.3.5 Heavy Metals Determination in Treated Wastewater 7.3.6 Kinetics Study Wastewater Treatment by Plants 	251 252 253 254 255 258 258 259
	 7.4.1 Plants Collection and Primary Activities 7.4.2 Treatments for Wastewater by Plants 7.4.3 BOD, COD, TSS and EC Removal Efficiency 7.4.4 Heavy Metals Removal from Wastewater by Plants 	259 260 261 273
7.5	Bacteria-treated Wastewater Treatment with Plants	283
7.6	Novelty	284
	7.6.1 Comparison VS Two-step and Single-step Process in Metal Removal	284
7.7	Conclusion	286
CHA	PTER 8 CONCLUSION AND RECOMMENDATIONS	287
8.1	Conclusions	287
8.2	 8.1.1 Industrial Wastewater in Gebeng Industrial Estate 8.1.2 Surface Water Quality in the Surroundings of Gebeng Industrial Area 8.1.3 Surface Sediment Quality 8.1.4 Wastewater Treatment Recommendations 	287 288 288 289 290
	8.2.1 Wastewater 8.2.2 Wastes	290 290

	 8.2.3 Surface Water 8.2.4 Sediment Quality 8.2.5 Disposal of Plants/Bacteria after Bioremediation 8.2.6 Pollution Monitoring and Supervision 8.2.7 Protected Area Design and Management 8.2.8 Cross-sectorial Management 8.2.9 Afforestation Activities 8.2.10 Zoning of the Area 8.2.11 Effluents Throwing Bindings 8.2.12 Prohibition of Effluents Dumping and the Alternatives 8.2.13 Further Studies 	 290 291 291 291 292 292 292 292 292 292 293
REFE	RENCES	294
APPE	NDICES	326
А	Acceptable Limits for Discharge of Industrial Effluent or	
	Mixed Effluent of Standards A & B Parameter	326
В	Standard Values for Others Parameters	326
С	Monthly Average Temperature and Precipitation data of Gebeng,	
	Kuantan, Pahang, Malaysia, During the March, 2013 – February, 2014	327
D	List of Best-fit Equations of the Various	
	Sub-index Values of Water Quality Index (WQI)	327
Е	Interim National Water Quality Standards, Malaysia (INWQS)	
	for following Parameters	328
F	Interim National Water Quality Standards, Malaysia (INWQS)	
	for Heavy Metals	329
G	Standard Values for Others Parameters	329
H1	Mean, Standard Deviation and Ranges of Physico-chemical Parameters	
	of Industrial Wastewater at Site 1 (WWS1)	330
H2	Mean, Standard Deviation and Ranges of Physico-chemical	
	Parameters of Industrial Wastewater at Site 2 (WWS 2)	331
H3	Mean, Standard Deviation and Ranges of Physico-chemical	
	Parameters of Industrial Wastewater at Site 3 (WWS 3)	332
H4	Mean, Standard Deviation and Ranges of Physico-chemical	
	Parameters of Industrial Wastewater at Site 4 (WWS 4)	333
H5	Mean, Standard Deviation and Ranges of Physico-chemical Parameters of	
	Industrial Wastewater at Site 5 (WWS 5)	334

H6	Mean, Standard Deviation and Ranges of Physico-chemical Parameters of	
	Industrial Wastewater at Site 6 (WWS 6)	335
H7	Heavy Metals Status of the Wastewater of Station 1 (WWS 1)	336
H8	Heavy Metals Status of the Wastewater of Station 2 (WWS 2)	337
H9	Heavy Metals Status of the Wastewater of Station 3 (WWS 3)	338
H10	Heavy Metals Status of the Wastewater of Station 4 (WWS 4)	339
H11	Heavy Metals Status of the Wastewater of Station 5 (WWS 5)	340
H12	Heavy Metals Status of the Wastewater of Station 6 (WWS 6)	341
Ι	Pearson's Correlation Coefficient of the Parameters of the Studied	
	Industrial Wastewater	342
IA J1	Total Variance of Studied Wastewater General Status of the Surface Water of Station 1 (US1)	343 344
J2	General Status of the Surface Water of Station 1 (US1)	345
J3	General Status of the Surface Water of Station 2 (US2)	346
J4	General Status of the Surface Water of Station 2 (US2)	347
J5	General Status of the Surface Water of Station 3 (US3)	348
J6	General Status of the Surface Water of Station 3 (US3)	349
J7	General Status of the Surface Water of Station 4 (US4)	350
J8	General Status of the Surface Water of Station 4 (US4)	351
J9	General Status of the Surface Water of Station 5 (US5)	352
J10	General Status of the Surface Water of Station 5 (US5)	353
J11	General Status of the Surface Water of Station 6 (DS 1)	354
J12	General Status of the Surface Water of Station 6 (DS 1)	355
J13	General Status of the Surface Water of Station 7 (DS 2)	356
J14	General Status of the Surface Water of Station 7 (DS 2)	357
J15	General Status of the Surface Water of Station 8 (DS 3)	358
J16	General Status of the Surface Water of Station 8 (DS 3)	359
J17	General Status of the Surface Water of Station 9 (DS 4)	360
J18	General Status of the Surface Water of Station 9 (DS 4)	361
J19	General Status of the Surface Water of Station 10 (NS1)	362
J20	General Status of the Surface Water of Station 10 (NS1)	363
J21	General Status of the Surface Water of Station 11(NS2)	364
J22	General Status of the Surface Water of Station 11 (NS2)	365

100		0
J23	General Status of the Surface Water of Station 12 (NS1)	366
J24	General Status of the Surface Water of Station 12(NS1)	367
J25	Heavy Metals Status of the Surface Water of Station 1 (US1)	368
J26	Heavy Metals Status of the Surface Water of Station 2 (US2)	369
J27	Heavy Metals Status of the Surface Water of Station 3 (US3)	370
J28	Heavy Metals Status of the Surface Water of Station 4 (US4)	371
J29	Heavy Metals Status of the Surface Water of Station 5 (US5)	372
J30	Heavy Metals Status of the Surface Water of Station 6 (DS1)	373
J31	Heavy Metals Status of the Surface Water of Station 7 (DS2)	374
J32	Heavy Metals Status of the Surface Water of Station 8 (DS3)	375
J33	Heavy Metals Status of the Surface Water of Station 9 (DS4)	376
J34	Heavy Metals Status of the Surface Water of Station 10 (NS1)	377
J35	Heavy Metals Status of the Surface Water of Station 11 (NS2)	378
J36	Heavy Metals Status of the Surface Water of Station 12(NS3)	379
K1	Correlation Coefficient among the Surface Water Quality	
	Parameters (Physico-chemical) in the Study Area	380
K2	Correlation Coefficient among the Temperature, pH and	
	Heavy Metals of Surface water in the Study Area	380
K3	One-sample Test between Mean of US and DS Stations	381
K4	One-sample Test between Mean of US and NS Stations	382
K5	One-sample Test between Mean of DS and NS Stations	383
K6	One-sample Test between Mean of US and DS Stations	384
K7	One-sample Test between Mean of US and NS Stations	384
K8	One-sample Test between Mean of DS and NS Stations	385
K9	Total Variance Explained (Extraction Method: Principal	
	Component Analysis) for Physico-chemical Parameters	386
K10	Rotated Component Matrix for Physico-chemical Parameters	387
K11	Total Variance Explained (Extraction Method:	
	Principal Component Analysis) for Heavy Metals	388
K12	Rotated Component Matrix for Heavy Metals	388
L1	General Parameters of Sediment at Dry Season in the Study Area	389
L2	General Parameters of Sediment at Wet Season in the Study Area	390
L3	Heavy Metals Concentrations of Sediment at Dry Season	391
	-	

L4	Heavy Metals Concentrations of Sediment at WET Season	392
L5	Sediment Quality Guidelines (SQGS) and Sediment	
	Contamination Assessment	393
L6	Certified Values of Selected Heavy Metals in Standard Reference	
	Material® 1646A Estuarine Sediment	393
L7	Geo-accumulation Index for Sediment of 12	
	Monitoring Stations in Dry Season	394
L8	Geo-accumulation Index for Sediment of 12	
	Monitoring Stations in Wet Season	394
L9	Contamination Factors and Pollution Load Index for the Sediment of 12	
	Monitoring Stations in Dry Season	395
L10	Contamination Factors and Pollution Load Index for the	
	Sediment of 12 Monitoring Stations in Wet Season	395
L11	Average Values of Physico-chemical Parameters in Dry and	
	Wet Seasons, of Sediment	396
L12	Average Values of Heavy Metals in Dry and Wet Seasons,	
	of the Sediment	396
L13	Average Values of Contamination Factors of the Heavy Metals at 12	
	Monitoring Stations in Dry and Wet Seasons, in Sediment	397
L14	Pearson Correlation Coefficient Matrix of Studied Parameters	
	in Sediment	397
L15	Total Variance of Studied Sediment	398
M1	LSD Test Results of 10 Heavy Metals in Different Time Intervals	399
M2	Kinetics Study of Heavy Metals Removal by Bacteria	400
M3	Kinetics Study of Heavy Metals Removal by Bacteria	401
M4	Data from LSD Test for Vetiver Treatments	402
M5	Data from LSD Test for Cattails Treatments	402
M6	Data from LSD Test for Cattails Treatments	403
M7	Data from LSD Test for Water hyacinth Treatments	403
M8	LSD Values for Removal of Heavy Metals by Vetiver Grass	404
M9	LSD Values for Removal of Heavy Metals by Cattails Treatments	405
M10	LSD Values for Removal of Heavy Metals by Cattails Treatments	405
M11	LSD Values for Removal of Heavy Metals by Cattails Treatments	406

M12	LSD Values for Removal of Heavy Metals by Cattails Treatments	406
M13	LSD for Removal of Heavy Metals by Cattails Treatments	407
M14	LSD Data for Removal of Heavy Metals by Water hyacinth Treatments	408
M15	Heavy Metals Concentrations of Bacterial Treatment	409
M16	Heavy Metals Concentrations in Single Step Process	409
M17	Heavy Metals Concentrations in Two Step Process	410
M18	LSD Test for Heavy Metals between Single and Two-step Process	410
N1	Pictures of Bioreactors, Bacterial Treatment and Plants Collection	411
N2	Pictures of Young Plants and Treated Plants	412
N3	Pictures of Colony Count and Petri dishes	413
0	List of Publications	414

LIST OF TABLES

Table	No. Title	Page
3.1:	Description of the Wastewater Sampling Points with Coordinates	39
3.2:	Descriptions of the Study area for Surface water and Sediment sampling	41
3.3:	Instruments Used for the Physical and Chemical Parameters in -situ	48
3.4:	Total Suspended Solids and Total Dissolved Solids	
	Determination Methods	49
3.5:	Methods of Chemical Properties for Wastewater and Surface water	49
3.6:	Methods for determination of heavy metals	50
3.7:	Methods for the Measurement of pH, EC and Organic Matter	52
4.1:	Mean and Standard Deviations of Selected Physiochemical	
	Parameters in studied Wastewater	122
4.2:	Mean and Standard Deviations of Heavy Metals in Studied Wastewater	123
4.3:	Rotated Component Matrix	
	(Extraction Method: Principal Component Analysis)	126
4.4:	The dimension reductions of contaminants based on	
	loading strength of the studied samples	127
5.1:	The average values of physico-chemical parameters	209
5.2:	The average values of heavy metals	210
5.3:	Water quality index of studied surface water based on DOE-WQI	211
5.4:	P values between upstream, downstream and non-disturbed	
	stations of physico-chemical parameters	212
5.5.	P values between upstream, downstream and non-disturbed	
	stations of heavy metals	213
5.6:	Surface water enrichment factors among upstream, downstream	
	and non-disturbed stations of physico-chemical parameters	214
5.7:	Surface water enrichment factors among up-stream, down-stream	
	and non-disturbed stations of heavy metals	215
5.8:	The dimension reductions of pollutants based on	
	loadings strength of physico-chemical parameters	217
5.9:	The dimension reductions of pollutants based on loading	
	strength of heavy metals	218

6.1:	Morphological properties of studied sediment	221
6.2:	Concentrations of heavy metals in studied sediments collected	
	from different stations in dry season	241
6.3:	Concentrations of heavy metals in studied sediments collected	
	from different stations in wet season	241
6.4:	Varimax rotation component matrix for sediment samples	247
7.1:	Characteristics of the industrial wastewater	251
7.2:	Data on CFU achieved per dilution	253
7.3:	K values and R2 values extracted from the Figure (7.3 to 7.4)	259
7.4:	Treatments of vetiver grass, cattails and water hyacinth	261
7.5:	Heavy metals removals by Vetiver grass	276
7.6:	Heavy metals removals by Cattails	279
7.7:	Heavy metals removals by water hyacinth	282
7.8:	Heavy metals removals from bacteria-treated wastewater	
	by Vetiver grass (V8), Cattails (C8) and Water hyacinth (WH8)	283
7.9:	Comparative efficiencies (%) between two steps process	
	and the single step process	285

LIST OF FIGURES

Figure	No. Title	Page
3.1:	Map of the study area showing industrial wastewater sampling stations	38
3.2:	Map of the study area presenting surface water and sediment sampling stations	40
3.3:	Design of the bioreactor	45
4.1:	Average temperature of the industrial wastewater	
	for 6 monitoring stations	60
4.2:	Monthly variations of temperature at 6 different monitoring stations	
	of industrial wastewater in Gebeng area	61
4.3:	Average pH of the industrial wastewater at 6 monitoring stations	63
4.4:	Monthly variations of pH value at 6 different monitoring stations	
	in studied industrial wastewater	64
4.5:	Average DO of the industrial wastewater at 6 monitoring stations	66
4.6:	Monthly variations of DO at 6 different monitoring stations	
	in studied industrial wastewater	67
4.7:	Average BOD of the industrial wastewater at 6 monitoring stations	69
4.8:	Monthly variations of BOD at 6 different	
	monitoring stations in studied industrial wastewater	70
4.9:	Average COD of the industrial wastewater at 6 monitoring stations	72
4.10:	Monthly variations of COD at 6 different	
	monitoring stations in studied industrial wastewater	73
4.11:	Average TSS of the industrial wastewater at 6 monitoring stations	75
4.12:	Monthly variations of TSS at 6 different monitoring stations	
	in studied industrial wastewater	76
4.13:	Average TDS value of the industrial wastewater at 6	
	monitoring stations	78
4.14:	Monthly variations of TDS at 6 different monitoring stations	
	in studied industrial wastewater	79
4.15:	Average ammoniacal nitrogen of the industrial wastewater	
	at 6 monitoring stations	81
4.16:	Monthly variations of ammoniacal nitrogen at 6 different	
	monitoring stations in studied industrial wastewater	82

xxiii

4.17:	Average total value of nitrogen in the industrial wastewater	
	at 6 monitoring stations	84
4.18:	Monthly variations of total nitrogen at different monitoring stations	
	in studied industrial wastewater	85
4.19:	Average total phosphorous of the industrial wastewater	
	at 6 monitoring stations	87
4.20:	Monthly variations of total phosphorous at 6 different	
	monitoring stations in studied industrial wastewater	88
4.21:	Average arsenic of the industrial wastewater	
	at 6 monitoring stations	90
4.22:	Monthly variations of arsenic at 6 different monitoring stations	
	in studied industrial wastewater	91
4.23:	Average barium of the industrial wastewater	
	at 6 monitoring stations	94
4.24:	Monthly variations of barium at 6 different monitoring stations	
	in studied industrial wastewater	95
4.25:	Average cadmium concentration in industrial wastewater	
	at 6 monitoring stations	97
4.26:	Monthly variations of cadmium at 6 different monitoring	
	stations in studied industrial wastewater	98
4.27:	Average cobalt concentration in the industrial wastewater	
	at 6 monitoring stations	100
4.28:	Monthly variations of cobalt at 6 different monitoring stations	
	in industrial wastewater in Gebeng area	101
4.29:	Average chromium concentration in the industrial wastewater	
	at 6 monitoring stations	103
4.30:	Monthly variations of chromium at 6 different monitoring	
	stations in industrial wastewater of Gebeng area	104
4.31:	Average copper concentration in the industrial	
	wastewater at 6 monitoring stations	106
4.32:	Monthly variations of copper at 6 different monitoring stations	
	in industrial wastewater in Gebeng area	107

4.33:	Average mercury concentration in the industrial wastewater	
	at 6 monitoring stations	109
4.34:	Monthly variations of mercury at 6 different monitoring stations	
	in industrial wastewater of Gebeng area	110
4.35:	Average content of nickel in the industrial wastewater	
	at 6 monitoring stations	112
4.36:	Monthly variations of nickel at 6 different monitoring stations in industri	al
	wastewater of Gebeng area	113
4.37:	Average lead of industrial wastewater at 6 monitoring station	115
4.38:	Monthly variations of lead at 6 different monitoring stations	
	in industrial wastewater in Gebeng area	116
4.39:	Average zinc concentration in the industrial wastewater	
	at 6 monitoring stations	118
4.40:	Monthly variations of zinc at 6 different monitoring stations	
	in industrial wastewater of Gebeng area	119
5.1:	Average temperature of the surface water at 12 monitoring stations	131
5.2:	Monthly variations of temperature at 12 different monitoring stations	
	of surface water in Gebeng area	132
5.3:	Average pH of the surface water at 12 monitoring stations	134
5.4:	Monthly variations of pH at 12 different monitoring stations	
	of surface water in Gebeng area	135
5.5:	Average EC of the surface water at 12 monitoring stations	137
5.6:	Monthly variations of EC at 12 different monitoring stations	
	of surface water in Gebeng area	138
5.7:	Average turbidity of the surface water at 12 monitoring stations	140
5.8:	Monthly variations of turbidity at 12 different monitoring stations	
	of surface water in Gebeng area	141
5.9:	Average salinity of the surface water at 12 monitoring stations	143
5.10:	Monthly variations of salinity at 12 different monitoring stations	
	of surface water in Gebeng area	144
5.11:	Average dissolved oxygen of the surface water	
	at 12 monitoring stations	146

5.12:	Monthly variations of dissolved oxygen at 12 different monitoring	
	Stations of surface water in Gebeng area	147
5.13:	Average BOD of the surface water at 12 monitoring stations	149
5.14:	Monthly variations of BOD at 12 different monitoring stations	
	of surface water in Gebeng area	150
5.15:	Average COD of the surface water in the 12 monitoring stations	152
5.16:	Monthly variations of COD at 12 different monitoring stations	
	of surface water in Gebeng area	153
5.17:	Average TSS of the surface water of the 12 monitoring stations	155
5.18:	Monthly variations of TSS at 12 different monitoring stations	
	of surface water in Gebeng area	156
5.19:	Average TDS of the surface water at the 12 monitoring stations	158
5.20:	Monthly variations of TDS at 12 different monitoring stations of	
	surface water in Gebeng area	159
5.21:	Average ammoniacal nitrogen of the surface water	
	at 12 monitoring stations	161
5.22:	Monthly variations of ammoniacal nitrogen at 12	
	different monitoring stations of surface water in Gebeng area	162
5.23:	Average nitrate of the surface water in 12 monitoring stations	164
5.24:	Monthly variations of nitrate at 12 different monitoring stations	
	of the surface water in Gebeng area	165
5.25:	Average sulfate of the surface water at 12 monitoring stations	167
5.26:	Monthly variations of sulfate at 12 different monitoring stations	
	of surface water in Gebeng area	168
5.27:	Average phosphate of the surface water of 12 monitoring stations	170
5.28:	Monthly variations of phosphate at 12 different monitoring stations	
	of surface water in Gebeng area	171
5.29:	Average total nitrogen of surface water at 12 monitoring stations	173
5.30:	Monthly variations of total nitrogen at 12 different monitoring stations	
	of surface water in Gebeng area	174
5.31:	Average total phosphorous of the surface water	
	in 12 monitoring stations	176

5.32:	Monthly variations of total phosphorous at 12 different monitoring	
	stations of surface water in Gebeng area	177
5.33:	Average arsenic of the surface water at 12 monitoring stations	179
5.34:	Monthly variations of arsenic at 12 different monitoring stations	
	of surface water in Gebeng area	180
5.35:	Average barium of the surface water at 12 monitoring stations	182
5.36:	Monthly variations of barium at 12 different monitoring stations	
	of surface water in Gebeng area	183
5.37:	Average cadmium of the surface water at 12 monitoring stations	185
5.38:	Monthly variations of cadmium at 12 different monitoring stations	
	of surface water in Gebeng area	186
5.39:	Average cobalt content of surface water at 12 monitoring stations	188
5.40:	Monthly variations of cobalt at 12 different monitoring stations	
	of surface water in Gebeng area	189
5.41:	Average chromium of the surface water at 12 monitoring stations	191
5.42:	Monthly variations of chromium at 12 monitoring stations	
	of surface water in Gebeng area	192
5.43:	Average copper of the surface water at 12 monitoring stations	194
5.44:	Monthly variations of copper at12 different monitoring stations	
	of surface water in Gebeng area	195
5.45:	Average mercury concentrations of the surface water	
	at 12 monitoring stations	197
5.46:	Monthly variations of mercury at 12 different monitoring stations	
	of surface water in Gebeng area	198
5.47:	Average nickel of the surface water of the 12 monitoring stations	200
5.48:	Monthly variations of nickel at 12 different monitoring stations	
	of surface water in Gebeng area	201
5.49:	Average lead of the surface water in 12 monitoring stations	203
5.50:	Monthly variations of lead at 12 different monitoring stations	
	of surface water in Gebeng area	204
5.51:	Average zinc of the surface water of the 12 monitoring stations	206
5.52:	Monthly variations of zinc at 12 different monitoring stations	
	of surface water in Gebeng area	207

xxvii

6.1:	Average particle density of the studied sediment at different stations	
	in dry and wet seasons	222
6.2:	Average pH at different stations in dry and wet seasons	223
6.3:	Average EC at different stations in dry and wet seasons	224
6.4:	Average organic matter percentage of the studied sediment	
	at 12 different stations in dry and wet seasons	225
6.5:	Average sand percentage in the studied sediment	
	at different stations in dry and wet seasons	226
6.6:	Average silt percentage in the studied sediment	
	at 12 different stations in dry and wet seasons	226
6.7:	Average clay percentage in the studied sediment	
	at 12 different stations in dry and wet seasons	227
6.8:	Average As concentration in the studied sediment	
	at different stations in dry and wet seasons	229
6.9:	Average Ba concentrations in the studied sediment	
	at different sampling stations in dry and wet seasons	230
6.10:	Average Cd concentrations of the studied sediment	
	of 12 different stations in dry and wet seasons	231
6.11:	Average Co concentrations of the studied sediment	
	at 12 different stations in dry and wet seasons	232
6.12:	Average Cr concentrations in the studied sediment	
	at 12 different stations in dry and wet seasons	233
6.13:	Average Cu concentrations of the studied sediment	
	at 12 different stations in dry and wet seasons	234
6.14:	Average Hg concentrations in the studied sediment	
	at 12 different stations in dry and wet seasons	236
6.15:	Average Ni concentrations in the studied sediment	
	at 12 different stations in dry and wet seasons	237
6.16:	Average Pb concentrations in the studied sediment	
	at 12 different stations in dry and wet seasons	238
6.17:	Average Zn concentrations in the studied sediment	
	at 12 different stations in dry and wet seasons	239

xxviii

7.1:	acterial growth curve (where, C= Culture, LB= Liquid broth	
	and WW= Wastewater)	254
7.2:	Heavy metal uptake by Pseudomonas aeruginosa at different time	257
7.3:	BOD reduction by vetiver grass treatments	262
7.4:	BOD reduction by cattails treatments	263
7.5:	BOD reduction by water hyacinth treatments	264
7.6:	COD reduction by vetiver grass treatments	265
7.7:	COD reduction by cattails treatments	266
7.8:	COD reduction by water hyacinth treatments	267
7.9:	TSS removal by vetiver grass treatments	268
7.10:	TSS removal by cattails treatments	269
7.11:	TSS removal by water hyacinth treatments	270
7.12:	EC reduction by Vetiver grass treatments	271
7.13:	EC reduction by Cattails treatments	272
7.13:	EC reduction by Water hyacinth treatments	273

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

At the beginning of civilization, human interferences induced changes in nature and environment. The industrial revolution and its negative impact expedite the global environmental degradation. Large scale environmental changes are found in recent years. These alterations on temperature, water, soil, sediment, air and plants are enormous, creating adverse effects on ecosystem. The human footprints are touching the continents, oceans and even outer space. The increasing trend of anthropogenic activities like rapid industrialization is a great threat in this millennium and that could destroy the green planet (Dong et al., 2014; Bedewi, 2010).

In the present world, industrialization could fulfill all the socio-economic objectives such as to alleviate poverty, creating employment for generations, to promote gender equality, to get health care, shelter and education. Nevertheless, the industrial activities may contribute a substantial negative impact on the environment. It promotes climate changes, water, air, soil pollution and extinction of various indigenous species including flora and fauna. Therefore, the economic, socio-cultural welfare and the global environment are now very much of concern. In industrialized countries, although the new technologies and recycling of wastes minimize the environmental effects but it depletes the natural resources. On the other hand, in the developing countries, chemical pollution, air, water and sediment pollution, deforestation, soil degradation and greenhouse gas productions are the general plight by the industrial activities.

The environmental sustainability might be achieved through the initiation of green economy and eco-friendly products, services, technology, treatments methods and management phenomenon (UNEP, 2013). Today, the earth is facing natural disasters each and every year. The improper industrial development and industrialization is the main cause behind the environmental imbalance. The industrial wastewater disposal is a great problem in the world. It has been thrown mostly to the surrounding watersheds. The surface water is one of the most valuable resources in this earth but it is mostly affected by the industrial processes. Industrial practices have made a huge impact on surface water in the world. The industrial dumping causes a lot of harms for the adjacent areas and it is the drawbacks of sustainable industrialization (Changhao and Zhans, 2013).

Sediments are also being contaminated throughout the world by anthropogenic activities. Generally, sediments are being contaminated through industrial activities (EPA, 2014; Wang et al., 2012). The main problem behind sediment pollution is the entry of metals in food cycles. As they are chemically and biologically not degradable, they pose major pollution factors and ultimately make a great harm for animals (Singare et al., 2011). Malaysia is a rapidly growing industrial country and her economy is mainly dependent on the industrial sectors. Gebeng, one of the industrial clusters in Pahang, Malaysia consists of a large number of petrochemicals, chemicals, metal builders, polymer and other industries. It was found a higher percentage of industrial pollution in Malaysia by industries (Chan, 2012). Moreover, it is reported that the surface water and the sediments are being contaminated in the Gebeng industrial area by industrial dumping. It is well known that the chemical treatment methods and procedures have many adverse, lethal and permanent effects on environments. So the environmental friendly alternative treatment measures are needed to combat the challenges of environmental pollution. Use of bioreactor is an environmental friendly and cost effective procedure. At present, treatment through bioreactor is regarded as an advanced technology and significant in environmental protection (Latif et al., 2011). Bacteria play an important role in removing heavy metals as well as contaminants from wastewater (Kumaran et al., 2011).

Now a day, phytoremediation is being used for the industrial wastewater treatment and environmental cleansing. It has been regarded as the latest biotechnology and endeavor to decontaminate environment through phyto extraction of pollutants (Ziarati, 2014). Vetiver grass has large rooting systems and could grow rapidly as well as found potentiality to remove heavy metals (Roongtanakiat et al., 2014; Ho et al., 2013). The best species for the phytoremediation of industrial wastewater are the water hyacinth (*Eichhornia crassipes*) and cattails (*Typha latifolia*) (Sukumaran, 2013). Industry discharges hot water, wastes, various organic, inorganic substances and heavy metals. So, surface and sub-surface water, soils, sediments, plants, fishes, flora and fauna as well as all lives are being contaminated by these types of industrial activities. Today, the planners and policy makers are thinking about recycling and sustainable management of the wastewater. Pollution free water, plant and sediment are indispensable for life. Congenial atmosphere is needed for the existence of human being. So, it is high time for taking measures to save the Gebeng industrial area as well as the surrounding environment.

1.2 PROBLEM STATEMENT

The United Nations estimates that 1.8 billion people will suffer from water scarcity over the world by 2025 (Shuster, 2012). In Malaysia, a severe water crisis happened in 1997-1998. Malaysians usually overuse water and has poor management of water resources. Owing to less rainfall and no rainfall in Putrajaya and some parts of the country in the last couple of years, water rationing has already started. The water demands are increasing many folds day by day in Malaysia (DOE, 2014). The real scenario is the rapid developments including the metal, wood processing, polymer, chemicals, petro-chemical industries that is deteriorating the environmental quality in the Gebeng industrial estate (Sujaul et al., 2012). In previous times, the study area was included into the reserve forest before industrial development. After forest cleaning, the industry started its journey. So, the surface water and studied catchment area is being contaminated due to industrialization. The surface water in the study area contains high BOD, COD, TSS and heavy metals.

CHAPTER 3

MATERIALS AND METHODS

3.1 INTRODUCTION

In this chapter, the location, geography, geology, the climatic conditions of the study area and the methodologies of wastewater, surface water, sediments and water quality index are described. Moreover, it also includes the methodologies of wastewater treatment by bioremediation. In addition, the selection of monitoring stations, parameters measured, planning of sampling methodology and sampling frequencies, methods of laboratory analysis, statistical analysis, contamination intensity, different procedures, formulas, guidelines to evaluate pollution and kinetics study also discussed.

3.2 STUDY AREA

3.2.1 Location and Geography

Gebeng industrial estate is the study area of this research. It is one of the potential industrial areas of Malaysia. The industrial park is situated between the coordinates of 03 ° 59 ' 12 " N and 103 ° 22 ' 32 " E. Gebeng town is about 20 km far from Kuantan city and near Kuantan port. The two rivers namely Bhalok and Tungguk are flowing through the industrial area which ended into the South China Sea (Sujaul et al., 2013). It prevailed that before industrialization Gebeng was a green valley included into Paya Tanah Merah forest. Now the forests are very much vulnerable and located in the coastal areas.

Industrial development in Gebeng area has been started since 1970s. Initially the small scale industries like wood processing, metal ducting, concrete ducting, pipe coating facility, detergent etc were the main industries. But since 1990s the medium and large scale industries started their journey those are petrochemicals, chemicals, metal builders, polymers, metal works factories, steel industries, air products, energy, oil and gas industries. The heavy industries are active in Gebeng area such as Lynas, MTBE-Petronas, Polyplastics Asia Pacific Sdn. Bhd, BP chemicals, Kaneka, Asturi metal builders, Eastman chemicals, Kertih, Palm oil factories etc (Hossain et al. 2013).

3.2.2 Climatic Condition

Malaysia is located near the equator. So, its climate is equatorial as well as hot and humid around the year (Swee-Hock, 2007). As Gebeng industrial estate is located adjacent to coast, therefore it belongs to sunny climate (Marshall Cavendish Corporation, 2008). There are two seasons dry (summer) and wet (rainy); dry season extended from April to September, while the wet season extended from October to March. At summer season the high temperature is observed whereas the high rain fall found in wet season. Sometimes the high rainfall has been found that causes surface runoff and the surface soils are washed away and mixed with surrounding watersheds. The average temperature and precipitation of the study area are presented by (Appendix C).

3.2.3 Geology of Gebeng Industrial Estate (GIE)

The soil of GIE is formed with the Quaternary alluvium and peat. Granites are found in bed rock formation in some areas, basalts also found in south west Balok area. Furthermore, sedimentary rocks are reported in Bukit Balok area. In accordance with Quaternary Geological Map the GIE is formed by the alluvium, peat and silts of Beruas and Simpang Formation. The upper parts of the soils are comprised of gravels, clayey sandy gravel, clayey sandy, organic clay and peat. It is reported that the upper alluvium posses very soft and medium plasticity (Lynas, 2008).

3.3 SELECTION OF MONITORING STATIONS

3.3.1 Industrial Wastewater Sampling Stations

The studied wastewater was collected from the point sources. A survey was conducted to select the monitoring stations for industrial wastewater sampling. It was made on the basis of point and non-point sources, location of the industries, type of industries, channel of wastewater discharging and by using GPS. To cover the whole industrial area, the six technical points were selected for wastewater sampling (Figure 3.1).

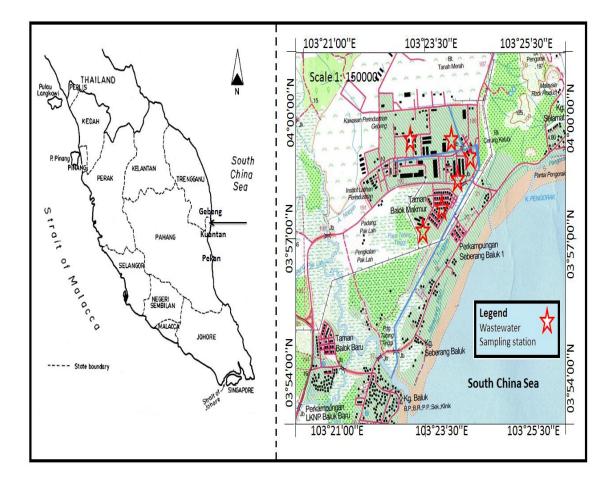


Figure 3.1: Map of the study area showing industrial wastewater sampling stations