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ABSTRACT

In this thesis, the mathematical modelling for the six main problems on convection
boundary layer flows over a solid sphere has been considered. The first two problems
on the effect of radiation on magnetohydrodynamic for steady free convection boundary
layer flows in a viscous and micropolar fluid have been investigated. Further, the other
four problems were mixed convection boundary layer flows in a viscous, micropolar,
nanofluid and a porous medium filled with a nanofluid, respectively. All these problems
focused on the solid sphere with convective boundary conditions in which the heat is
supplied through a bounding surface of finite thickness and finite heat capacity. In order
to solve these problems, the dimensional equations that governed the fluid flow and heat
transfer were transformed into dimensionless equations by using appropriate
dimensionless variables. Stream functions were introduced, yielding a function
representing velocities. Similarity variables were used to deduce the dimensionless
governing equations into a system of nonlinear partial differential equations. This
system was solved numerically by using the numerical scheme, namely as Keller-box
method. Numerical solutions were obtained for the local heat transfer coefficient, the
local wall temperature, the local Nusselt number and the local skin friction coefficient,
as well as the velocity, temperature and angular velocity profiles. The features of the
fluid flow and heat transfer characteristics for different values of the Prandtl number Pr,
magnetic parameter, radiation parameter, micropolar parameter, nanoparticle volume
fraction, mixed convection parameter conjugate parameter and coordinate running along
the surface of the sphere x, were analyzed and discussed. In conclusion, when the
radiation parameter increased, the values of the temperature, velocity and skin friction
coefficient decreased while the heat transfer coefficient increased. Next, as magnetic
parameter increased the temperature increased but the velocity, skin friction coefficient
and heat transfer coefficient decreased. Furthermore, the conjugate parameter increased
the values of the local heat transfer coefficient and thus, the local skin friction
coefficient increased. Additionally, the mixed convection parameter increased the
values of the local heat transfer coefficient and hence the local skin friction coefficient
also increased. On the other hand, the copper nanoparticles have the highest local heat
transfer coefficient compared to aluminum oxide and titanium dioxide nanoparticles.
Moreover, the copper nanoparticles also have the highest the local skin friction
coefficient, followed by titanium dioxide and aluminum oxide nanoparticles.



ABSTRAK

Dalam tesis ini, pemodelan matematik bagi enam masalah pada aliran lapisan sempadan
olakan terhadap sfera pejal telah dipertimbangkan. Dua masalah pertama adalah
berkenaan kesan radiasi ke atas hydrodinamik magnet bagi aliran lapisan sempadan
olakan bebas dalam bendalir likat dan mikrokutub telah dikaji. Di samping itu, empat
masalah aliran lapisan sempadan olakan campuran yang terbenam masing-masing
dalam bendalir likat, mikrokutub, bendalir nano dan medium berliang yang dipenuhi
dengan bendalir nano turut diberi perhatian. Semua masalah ini memberi tumpuan
kepada sfera pejal dengan syarat sempadan olakan di mana haba dibekalkan melalui
permukaan dengan ketebalan dan muatan haba yang terbatas. Bagi menyelesaikan
masalah ini, persamaan dimensi yang merupakan persamaan menakluk bagi aliran dan
pemindahan haba dijelmakan menjadi persamaan tak berdimensi dengan menggunakan
pemboleh ubah tak berdimensi yang sesuai. Fungsi aliran diperkenalkan bagi
menghasilkan fungsi yang mewakili halaju. Pembolehubah keserupaan digunakan untuk
menurunkan persamaan tertakluk tak berdimensi kepada sistem persamaan pembezaan
separa tak linear. Sistem ini telah diselesaikan secara berangka dengan menggunakan
kaedah berangka yang dikenali sebagai kaedah kotak Keller. Penyelesaian berangka
diperoleh bagi pekali pemindahan haba setempat, suhu dinding setempat, nombor
Nusselt setempat dan pekali geseran kulit setempat, serta profil halaju, suhu dan halaju
sudut. Ciri-ciri aliran dan pemindahan haba untuk nilai yang berbeza bagi parameter-
parameter seperti nombor Prandtl Pr, magnet, radiasi, mikrokutub, jumlah pecahan
nanopartikel, olakan campuran konjugat dan koordinat di sepanjang permukaan sfera x,
dianalisis dan dibincangkan. Kesimpulannya, apabila radiasi meningkat, nilai bagi suhu,
halaju dan pekali geseran permukaan berkurangan manakala pekali pemindahan haba
meningkat. Seterusnya, apabila parameter magnet meningkat, suhu meningkat tetapi
halaju, pekali geseran permukaan dan pekali pemindahan haba menurun. Sebagai
tambahan, parameter konjugat meningkatkan nilai pekali pemindahan haba setempat
dan dengan itu, pekali geseren permukaan setempat meningkat. Selain itu, parameter
olakan campuran meningkatkan nilai pekali pemindahan haba setempat dan dengan itu
pekali geseran permukaan setempat juga meningkat. Manakala, nanopartikel tembaga
mempunyai pekali pemindahan haba setempat yang paling tinggi berbanding aluminium
oksida dan titanium dioksida. Selain itu juga, nanopartikel tembaga mempunyai pekali
geseran permukaan setempat yang paling tinggi, diikuti dengan nanopartikel titanium
dioksida dan oksida aluminium.
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CHAPTER 1

PRELIMINARIES

1.1  INTRODUCTION

The convective mode of heat transfer is generally divided into two basic
processes. If the motion of the fluid arises from an external agent then the process is
termed forced convection. On the other hand, no such externally induced flow is
provided and the flow arises from the effect of a density difference, resulting from a
temperature or concentration difference, in a body force field such as the gravitational
field, then the process is termed natural or free convection. The density difference gives
rise to buoyancy forces which drive the flow and the main difference between free and
forced convection lies in the nature of the fluid flow generation. In forced convection,
the externally imposed flow is generally known, whereas in free convection it results
from an interaction between the density difference and the graviational field (or some
other body force) and is therefore invariably linked with, and is dependent on, the
temperature field. Thus, the motion that arises is not known at the onset and has to be
determined from a consideration of the heat (or mass) transfer process coupled with a
fluid flow mechanism. However, the effect of the buoyancy force in forced convection,
or the effect of forced flow in free convection, becomes significant then the process is
called mixed convection flows, or combined forced and free convection flows. The
effect is especially pronounced in situations where the forced fluid flow velocity is low

and/or the temperature difference is large (Ingham and Pop, 2001).

The mixed convection flows are characterized by the buoyancy or mixed
convection parameter A=Gr/Re" where Gr is the Grashof number, Re is the

Reynolds number and n is a positive constant, which depends on the fluid flow

configuration and the surface heating conditions. The mixed convection regime is

where A,

n

generally defined in the range of 4, <A< A

‘max °

and A_, is the lower and

X

the upper bounds of the regime of mixed convection flow respectively. The parameter

A provides a measure of the influence of free convection in comparison with that of



forced convection on the flow. Outside the mixed convection regime, 4, <A< A4

‘max °
either the forced convection or the free convection analysis can be used to describe

accurately the flow or the temperature field. Forced convection is the dominant mode of

transport when Gr/ Re” — 0, whereas free convection is the dominant mode when

Gr/ Re" — oo (Chen and Armaly, 1987). For detail explanations of Grashof, Prandtl

and Reynolds number, see Appendix A.

1.2 BOUNDARY LAYER THEORY

The boundary layer theory was first introduced by Ludwig Prandtl, in his lecture
on “Fluid motion with very small friction” at the Heidelberg Mathematical Congress in
August 1904 (Schlichting, 1979). Using theoretical considerations together with some
simple experiments, Prandtl showed that the flow past a body can be divided into two
main parts. The larger part concerns on a free stream of fluid, far from any solid surface,
which is considered to be inviscid. The smaller part is a thin layer adjacent to the solid
surface in which the effects of viscosity are felt. This thin layer where friction effects

cannot be ignored is called the boundary layer (Burmeister, 1993; Acheson, 1990).

The boundary layer can be divided into two types, which are velocity boundary
layer and thermal boundary layer (Ozisik, 1985). To introduce the concept of boundary
layer, fluid flow over a flat plate is considered. Interaction between the fluid and the

surface of the flat plate will produce a region in the fluid where the y-component
velocity u rises from zero at the surface (no slip condition) to an asymptotic value U .
This region is known as the velocity boundary layer where &, is the velocity boundary

layer thickness as shown in Figure 1.1. This layer is characterized by the velocity
gradient and the shear stress. On the other hand, the existence of temperature
differences between the fluid and the surface area resulted in the formation of a region
in the fluid where its temperature changes from the surface value 7, aty =0to 7, at
the outer flow. This region is called the thermal boundary layer where its thickness is
represented by o, (Incropera et al., 2006). This thermal boundary layer is characterized

by the temperature gradient and the heat transfer.
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Figure 1.1: The velocity and thermal boundary layers

The boundary layer theory is used very frequently in solving fluid flow and heat
transfer problems, see (Bejan, 1984; Cebeci and Bradshaw, 1988). This is because the
boundary layer equations are parabolic and therefore, it can be solved much easier
compared to the elliptic or sometimes, hyperbolic Navier-Stokes equations. However,

the boundary layer equations are valid only up to the separation point (Ahmad, 2009).

1.3  VISCOUS FLUID

Fluids can be characterized as Newtonian or non-Newtonian fluids. Newtonian
fluid is a fluid in which shear stress is linearly proportional to the velocity gradient in

the direction of perpendicular to the plane of shear, i.e.

T‘ﬂd—u (L.1)
dy i '

where 4 is a property of the fluid, and also known as the coefficient of dynamic

viscosity (Acheson, 1990). Viscous fluid such as air and water are Newtonian fluid,
while other fluids, which do not behave according to 7 such as paints and polymers are
called non-Newtonian fluids (Tanner, 1988). A key feature of a viscous fluid is that
molecules of the fluid in contact with a solid surface remain bound to the surface.
Hence, the appropriate condition at a boundary is the ‘no slip condition’, where the

velocity of the fluid in contact with the solid boundary is the same as that of the



boundary (Acheson, 1990). This ‘no slip condition’ is an important boundary condition

in viscous fluid mechanics (Ahmad, 2009).

1.4  MICROPOLAR FLUID

The essence of the micropolar fluid flow theory lies in the extension of the
constitutive equations for Newtonian fluid, so that more complex fluids such as particle
suspensions, animal blood, liquid crystal, turbulent shear flows and lubrication can be
described by this theory. The theory of micropolar fluid was first proposed by Eringen
(1965). This theory has generated much interest and many classical flows are being re-
examined to determine the effects of the fluid microstructure. This theory is a special
class in the theory of microfluids, in which the elements are allowed to undergo only
rigid rotations without stretch. The theory of micropolar fluid requires that one must add
a transport equation representing the principle of conservation of local angular
momentum to the usual transport equations for the conservation of mass and

momentum, and also additional local constitutive parameters are introduced.

Such applications include the extrusion of polymer liquids, solidification of
liquid crystals, animal blood, etc., for which the classical Navier-Stokes theory is
inadequate. The key points to note in the development of Eringen’s microcontinuum
mechanics are the introduction of new kinematic variables, the gyration tensor and
microinertia moment tensor. The addition of concept of body moments, stress moments,
and micropolar fluids were discussed in a comprehensive review paper of the subject
and application of micropolar fluid mechanics by Ariman et al. (1973). The recent
books by Lukaszewicz (1999) and Eringen (2001) presented a useful account of the

theory and extensive surveys of literature of micropolar fluid theory.

1.5 NANOFLUID

Nanofluids are solid-liquid composite materials consisting of solid