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ABSTRACT

The problem of boundary layer flow has many applications in industries and
engineering field. Some of these applications are drawing of plastic films, glass fiber
production, hot rolling and many others in industrial manufacturing processes. The final
product characteristics requested depends on the cooling liquid used and the rate of
stretching. Four common boundary conditions are used in modelling of convective
boundary layer flow problems, which are constant or prescribed wall temperature,
constant or prescribed surface heat flux, Newtonian heating and convective boundary
conditions. In this thesis, the mathematical modelling for the effects of radiation and
MHD on stagnation point flow and heat transfer over an exponentially
stretching/shrinking sheet is investigated. In this study, the governing boundary layer
equations are first transformed using an appropriate similarity transformation, which are
then solved numerically by using Keller-box method. MATLAB software is used as a
tool in order to obtain the numerical solution. Five parameters are investigated in this
problem, which are Prandtl number Pr , velocity ratio parameter  , conjugate parameter
 , magnetic parameter M and thermal radiation parameter RN . In conclusion, there

are dual solution when velocity ratio parameter  satisfies 1.487068 0.9734    ,
unique solution for 0.9734   and no solution exist for 1.487068   . To get a
physically acceptable value in second solution, the value of Prandtl number Pr must be
smaller than a critical value Prc . It depends on conjugate parameter  . While, the values

of conjugate parameter  must be greater than some critical values c which also

depends on the Prandtl number Pr . Furthermore, increasing values of Prandtl number
Pr and velocity ratio parameter  has led to decrease in temperature profile while the
increasing in radiation parameter RN and magnetic parameter M has enhanced the
temperature profiles.



vii

ABSTRAK

Permasalahan aliran lapisan sempadan banyak diaplikasikan dalam industri dan
kejuruteraan. Aplikasi ini adalah pelakaran filem plastik, penghasilan gentian kaca,
penggelekan panas dan pelbagai proses dalam industri pembuatan. Ciri-ciri produk
akhir bergantung kepada cecair pendingin yang digunakan dan kadar perengangan.
Kebiasaannya, terdapat empat syarat sempadan digunakan untuk pemodelan olakan
aliran lapisan sempadan, antaranya adalah suhu dinding malar atau tetap, fluks haba
malar atau tetap, pemanasan Newtonian dan syarat sempadan olakan. Dalam tesis ini,
pemodelan matematik bagi kesan-kesan sinaran termal dan MHD ke atas aliran titik
genangan pemindahan haba melepasi lapisan meregang/mengecut secara eksponen
dikaji. Dalam kajian ini, persamaan menakluk lapisan sempadan pertama sekali
dijelmakan dengan menggunakan kaedah penjelmaan setara yang sesuai, kemudiannya
diselesaikan secara berangka dengan menggunakan kaedah kotak Keller. Perisian
MATLAB digunakan sebagai program komputer untuk pengekodan berangka. Lima
parameter digunakan dalam permasalahan ini, iaitu nombor Prandtl Pr, parameter nisbah
halaju  , parameter konjugat  , parameter magnetik M dan parameter sinaran terma

RN . Kesimpulannya, permasalahan ini mempunyai dwi penyelesaian iaitu apabila

parameter nisbah halaju  memenuhi ketaksamaan 1.487068 0.9734,   
penyelesaian unik bagi 0.9734   dan ketidakwujudan penyelesaian persamaan bagi

1.487068   . Bagi memperoleh nilai fizikal yang boleh diterima untuk penyelesaian
kedua, nilai Pr mestilah lebih kecil daripada nilai kritikal Prc dan ia bergantung kepada

nilai  , manakala nilai parameter konjugat  mestilah lebih besar daripada nilai

kritikal c , yang juga bergantung kepada nilai Pr. Tambahan lagi, peningkatan nombor

Prandtl Pr dan parameter nisbah halaju  memberi kesan kepada penyusutan suhu
profil manakala peningkatan parameter sinaran terma RN and parameter magnetik M

meningkatkan suhu profil.
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CHAPTER 1

PRELIMINARIES

1.1 INTRODUCTION

Heat transfer is defined as the thermal energy transfer from a hotter object to a

cooler object. The transition can be made by conduction, radiation and convection. Heat

transfer by direct molecular contact which takes place without significant molecules

being moved in solids is called conduction. Conduction heat transfer can also take place

through direct contact of two bodies with different temperatures. Radiation heat transfer

takes place by the transition of heat through electromagnetic waves. Electromagnetic

waves can pass through a vacuum and also go through materials. In this study,

convection heat transfer will be considered. The transition of heat from one place to

another, through the physical movement of fluids and which, usually takes place

between a solid surface and fluid molecules through physical contact. Liquids and gases

are fervently used for dominant form of heat transfer. The convective mode of heat

transfer basically occurs into three elementary processes, which are free, forced and

mixed convection (Baehr and Stephan, 1994).

Forced convection happens when fluid motion is generated mechanically by

external forced like a fan, blower, nozzle or jet. Fluid motion related to a surface can be

generated by moving an object, such as a missile, through a fluid. Otherwise, the free

convection happens when the fluid motion is generated by gravitational field.

Occurrence of free convection requires fluid density change. In free convection,

temperature changes are primarily due to variations in density. Fluid flow and heat

transfer link to each other because of this continuity process from buoyancy to a

difference in temperature. An increase in the rate of heat exchange normally uses forced
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convection. Heat radiator systems and regulatory temperature systems in the body’s

circulatory system, are examples of forced convection (Merkin and Pop, 2011).

Convective heat transfer can also be classified as having either internal or

external flow. Free, forced and mixed convection processes may be divided into having

an external flow over immersed body such as flat plates, cylinder, sphere or an internal

flow in ducts such as pipes, channels and enclosures. The resultant flow can further be

categorized as laminar (stable) or turbulent (unstable) flow. Laminar flow is smooth,

with a particle of fluid moving steadily in a smooth line parallel to a surface, while on

the other hand, turbulent flow is described as chaotic of fluid moving unsteadily

(Incropera, 2011).

1.2 BOUNDARY LAYER THEORY

The Ludwig Prandtl (1875-1953) on August 1904, introduced and developed the

boundary layer theory which states that a thin layer (region) sticks to a surface that is

embedded in a fluid motion field. This region (thin layer) near the surface is called the

boundary layer (Schlichting, 1979). Figure 1.1 considers the fluid flow on a flat plate

which introduces the concept of the boundary layer which states that the boundary layer

is the thin layer near the flat plate surface where its viscosity should not be neglected.

Also, in the boundary layer, the frictional force must be considered while outside the

boundary layer, the frictional force is too small and can be neglected (Schlichting,

1979).

Figure 1.1: Velocity and thermal boundary (Mohamed, 2013)

T

yU U

T

fT

( )T y

( )u y

h
T
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Boundary layer equations can be derived by setting a few assumptions on the

boundary layer flow which are (Ahmad, 2009);

(i) The viscous effects are limited in a boundary layer only.  The viscous effects

outside of the boundary layer are not important.

(ii) The boundary layer is smaller than the flat plate surface. If  is the boundary

layer thickness and L is the length of flat plate surface, then 1L  . Also,

 x O L and  y O  .

(iii) The fluid obeys the no slip condition on a plate surface while the free stream

velocity at the outside of the boundary, when

 , 0 0, ( ,0) 0, ( , )u x v x u x U    and ( , ) 0v x   where u and v are

velocity component in x and y direction, respectively, also U is free stream

velocity.

(iv) In the boundary layer, let ( )u O U .

1.3 BOUNDARY CONDITIONS

Generally, there are four common heating processes specifying the wall-to-

ambient temperature distributions (Merkin, 1994). These are the constant/prescribed

wall temperature (CWT/PWT), the constant/prescribed surface heat flux (CHF/PHF),

the Newtonian heating (NH) and the convective boundary conditions (CBC). In this

research, three types of boundary conditions are considered namely the prescribed wall

temperature (PWT), the prescribed surface heat flux (PHF) and the convective boundary

conditions (CBC). The precise mathematical form of the boundary conditions depends

on the specific problem.

1.3.1 Constant/Prescribed Wall Temperature

Usually, constant wall temperature and prescribed surface heat flux are applied

as boundary conditions in modelling natural convection flow. A constant wall

temperature is the thermal boundary condition which can be imposed at the inside wall
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of the duct. For constant wall temperature, the temperature wT is constant, and boundary

condition is

 2
0 ,        1.1

x

L
wT T T e 

where T is the stream temperature assumed to be constant, 0T is a constant

which measures the rate of temperature increase along the sheet, L is the reference

length, In addition, the heat transfer coefficient in the laminar flow is strongly

dependent on the thermal boundary conditions. In laminar flow, the thermal boundary

layer has the biggest effects on the heat transfer coefficient. This boundary condition is

approximated in condensers, evaporators and liquids to the gas heat exchangers with

high velocity liquid flows (Kakac et al., 2013).

A number of researches on the boundary layer flow on exponentially stretching

with constant wall temperature have been done. For example, Sajid and Hayat (2008)

and Bidin and Nazar (2009) have solved analytically and numerically the effect of

radiation on the boundary layer flow  and heat transfer over an exponentially stretching

sheet, respectively. Moreover, the effect of radiation on MHD flow and heat transfer on

an exponentially stretching sheet with constant wall temperature was solved

numerically and analytically by Ishak (2011) and Mabood et al. (2014), respectively.

Further, Ishak (2011) studied MHD flow and heat transfer over an exponentially

stretching sheet with radiation effects with constant wall temperature.

1.3.2 Constant/Prescribed Surface Heat Flux

For constant surface heat flux wq we first note that it is a simple matter to

determine the heat transfer coefficient and the boundary condition is

 ,             1.2w

T
k q

y


 


where
0

( ) 2 x L
w wq x q a vLe is the variable surface heat flux and k is thermal

conductivity in the laminar flow over a flat plate, the heat transfer coefficient on a plate
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is constantly maintained. There are many practical applications of constant surface heat

flux over the surface, for example; electric resistance heating, nuclear heating and in a

counter flows heat exchanger with equal thermal capacity rates. It is well-established

that convective heat transfer depends on the form of the thermal boundary conditions

imposed, with it being usual to take either a prescribed temperature or a prescribed

surface heat flux on the boundary surface. However, in many problems, particularly

those involving the cooling of electrical and nuclear components, the wall heat flux is

known (Shu and Pop, 1998).

In addition, heat transfer from a stretching surface with constant surface heat

flux is investigated by Shu and Pop (1998). Kumari et al. (1990) studied MHD flow

and heat transfer over a stretching sheet with prescribed wall temperature and heat flux.

Elbashbeshy and Aldawody (2010) studied the unsteady boundary layer flow and heat

transfer on a stretching sheet with heat flux in the presence of a heat source or sink.

Some other researchers also drew attention to investigate the boundary layer problem

with the case of constant surface heat flux. For example; Pavithra and Gireesha (2014)

numerically studied the unsteady boundary layer flow and heat transfer of a quiescent

fluid over an exponentially stretching sheet. Boundary layer flow and heat transfer over

an exponentially stretching porous sheet with the surface heat flux was investigated by

Mandal and Mukhopadhyay (2013).

1.3.3 Convective Boundary Conditions

Recent trends and demands in heat transfer engineering have forced researchers

to develop various new types of compact and light-weight heat transfer equipment with

superior performance and efficiency. Consider a fluid over a sheet along the x-axis. The

lower face of the sheet is in contact with another fluid a temperature fT . The sheet is

stretched and the fluid starts moving, this situation is called convective boundary

condition and the boundary condition is,

   ,                                        1.3f f

T
k h T T

y


  

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where fT is the temperature of the hot fluid and fh is the heat transfer

coefficient. Due to the increase in the need for small-size units, the focus has been

casted on the effects of the interaction between developments of the thermal boundary

layer in both fluid streams, and of axial wall conduction, which usually affects  heat

exchange performance (Salleh et al., 2010a, 2010b).

Since an early paper written by Luikov et al. (1971), many researchers have

studied the topics of conjugate heat transfer. In addition, the laminar flow and thermal

boundary layer over the flat plate in a uniform stream of fluid with convective boundary

condition was studied by Aziz (2009). Recently, Makinde and Aziz (2010) and Ishak

(2010) investigated the MHD mixed convection flow and steady laminar boundary layer

flow over a flat plate and vertical plate with convective boundary conditions,

respectively. Furthermore, the stagnation point flow and heat transfer over a

stretching/shrinking sheet with convective boundary condition was studied by Bachok

et al. (2013).

1.4 KELLER-BOX METHOD

Keller (1970) introduced the Keller-box to solve differential equation problems.

This method is implicit finite difference method used with Newton’s method for

linearization. It is suitable to solve parabolic partial differential equations and can also

be modified to solve a problem in any order. This method has been used widely since it

is flexible, fast, and easy to be programmed (Keller and Cebeci, 1972). The Keller-box

that is used in this study is based on the explanation by Na (1979) and Cebeci and

Cousteix (2005).

Kumari and Nath (1989), Nazar et al. (2002) and Ishak et al. (2008b) solved

boundary layer problems using the Keller-box method. Recently, other researchers had

used the Keller-box in solving the boundary layer problems including Salleh et al.

(2010a), Anwar et al. (2012) and Mohamed et al. (2013). A solution by the Keller-box

method involves the following four steps:

(i) The ordinary differential equation in reducing to a first-order system.

(ii) Writing the differential equations using the central differences.
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(iii) The resulting algebraic equations from step 2 are linearised using Newton’s

method and rewritten in matrix-vector form.

(iv) The linear system is solved by using the block triadiagonal elimination

technique.

The detailed procedure for the Keller-box method will be discussed in Section 2.7.

1.5 STAGNATION POINT

Throughout the past decades, many researchers have been interested to

investigate the stagnation point flow because of the industrial scientific applicability.

For example, its application in the cooling of fans electronic devices, the cooling of

nuclear reactors during emergency shutdowns, the solar central receivers exposed to

wind currents, and hydrodynamic processes. At a stagnation point the speed of the fluid

is zero and all of the kinetic energy has been converted to internal energy and is added

to the local static enthalpy. In problems of fluid mechanics, the point in the flow field

where the local velocity of the fluid becomes zero is called a stagnation-point. This

point exists at the surface of the object where the fluid is brought to be at rest because of

a force exerted by the object. The Bernoulli equation shows that the total pressure in

terms of static pressure is called stagnation where the pressure is at maximum value

when the fluid velocity is zero (Jafar et al., 2011).

The stagnation point marks the location in the fluid flow where the approaching

flow divides and passes on both sides along a surface. The stagnation point flow exists

everywhere in the sense that, it certainly appears as a component of more complicated

flow fields. For example, in some situations, the flow is stagnated by a solid wall while

in others, there is a line interior to a homogeneous fluid domain or the interface between

two immiscible fluids (Tilley and Weidman, 1998). There are several types of

stagnations-point flows such as viscous or inviscid, steady or unsteady, two-

dimensional or three dimensional, orthogonal or oblique, and forward or rear (Lok,

2008). The two dimensional stagnation point which flows moving towards a stationary

plate was first studied by Hiemenz (1911), using similarity transformation to reduce the

Navier-Stokes equations to nonlinear ordinary differential equations.
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1.6 RESEARCH OBJECTIVE

This research embarks on the following objectives:

(i) To analyse the mathematical models for the following problems:

a. The boundary layer stagnation point boundary layer flow and heat transfer

towards an exponentially stretching/shrinking sheet.

b. Effects of radiation on MHD boundary layer stagnation point flow towards

and exponentially stretching/shrinking sheet.

(ii) To carry out mathematical formulation and analyses of these problems.

(iii) To develop numerical algorithms for the computations of these problems.

(iv) To provide theoretical predictions and mathematical formulations that will help

to explain and verify experimental results in the future.

1.7 RESEARCH SCOPE

The flow is considered to be two-dimensional, Newtonian, incompressible and

laminar. The boundary conditions are prescribed wall temperature, prescribed surface

heat flux and convective boundary conditions. The Keller-box method with appropriate

numerical algorithm is used to solve the set of ordinary differential equations in related

problems.

1.8 LITERATURE REVIEW

1.8.1 Boundary Layer Stagnation Point Flow over a Stretching/Shrinking Sheet

During the last few decades, the viscous flow and heat transfer in the boundary

layer region due to a stretching sheet has attracted a considerable attention for many

researchers. In fact, it has several theoretical and technical applications in industrial

manufacturing processes. Some of the applications are the aerodynamic extrusion of

plastic sheets, hot rolling, wire drawing, glass-fibre production, the cooling and drying

of paper and textiles (Nadeem and Lee, 2012). The two-dimensional flow of a fluid near

a stagnation point is a classical problem in fluid mechanics. It was first examined by
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Hiemenz (1911), who demonstrated that the Navier-Stokes equations governing flow

can be reduced to an ordinary differential equation using similarity transformation.

Later, Sakiadis (1961) introduced the concept of the boundary layer flow due to ambient

fluid on a continuous moving surface with a constant speed.

Then, Tsou et al. (1967) certified that the Sakiadis’s theoretical predictions for

Newtonian fluids by means of experimental studies. In this problem, the analytical and

experimental nature of the laminar and turbulent boundary layer flow and heat transfer

on a continuous moving surface was investigated. An exact solution of a steady two-

dimensional boundary layer flow over  a linearly stretching surface was first considered

by Crane (1970). Gupta and Gupta (1977) investigated two-dimensional heat and mass

transfer over a stretching sheet subject to suction or blowing. In the same way, Chen

and Char (1988) studied the laminar boundary layer heat transfer flow over a linearly

stretching and moving plate with suction consideration, blowing and constant surface

heat flux. It was found that the thermal boundary layer thickness and wall temperature

reduces with increase in values of Prandtl number. The work of Hiemenz (1911) and

Crane (1970) was developed by Chiam (1994), who studied the stagnation point flow

towards a stretching surface.

The stagnation point flows have many applications in industrial science and

engineering. Because of that many researchers have examined the two-dimensional

stagnation point flow. Such as, Wang (2008) was the first to investigate the two-

dimensional and axisymmetric stagnation flow towards a shrinking sheet and analysed

using similarity transformation which reduces the Navier-Stokes equations to a set of

nonlinear ordinary differential equations. The results of this problem showed that the

unique solution exists for stretching/shrinking ( 1   ), as well as that the boundary

layer thickness becomes thinner as shrinking is decreased. Ishak et al. (2006) studied the

steady mixed convection boundary layer flow near the stagnation point flow over a

stretching vertical sheet immersed in an incompressible viscous fluid. In this study, the

Keller-box method was used to solve for the nonlinear ordinary differential. For

assisting flow, it showed that the value of the skin friction coefficient and the local

Nusselt number were increasing when the buoyancy parameter increases. Meanwhile,

by increasing the values of Pr, the local Nusselt number increases but the skin friction
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coefficient decreases. For opposing flow, by increasing the values of the Prandtl

number, both of the skin friction coefficient and the local Nusselt number have

increased, but by increasing the values of the buoyancy parameter, both led decreased.

Nazar et al. (2004) studied the unsteady boundary layer on stagnation point over

a stretching sheet. The governing equations were solved numerically using the Keller-

box method. The numerical solutions were compared with analytical solutions, small

and large time solution. Salleh et al. (2009) considered the forced convection boundary

layer flow near the stagnation point with Newtonian heating. The transformed

governing equations were solved by using the Keller-box method. The results showed

increase in the values of Prandtl number has led to increase the temperature distribution

in all cases constant wall temperature (CWT), constant surface heat flux (CHF) and

Newtonian heating (NH). An increment of Prandtl number enhanced the heat transfer in

case of CHF, while the wall temperature and heat transfer were decreased in both cases

of CHF and NH, respectively.

In addition, there are some references of stagnation point flow that has dual

solution. Ishak et al. (2010) investigated the problem of steady two-dimensional

stagnation point flow of an incompressible micropolar fluid flow towards a shrinking

sheet. The dual solutions were found for the shrinking sheet. In another study,

Bhattacharyya (2011b) studied the similarity solutions of mass transfer and chemical

reactions in the boundary layer stagnation point flows on stretching/shrinking. The

results revealed the effects of the velocity ratio parameter of the dual solution for

velocity field and concentration distribution. The boundary thickness for the second

solution was always thicker than the first solution. Moreover, the steady two-

dimensional stagnation point and heat transfer flow over a linearly stretching/shrinking

sheet in a porous medium was investigated by Rosali et al. (2011). The governing

equations were solved by using the Keller-box method. The solution is unique and

exists for all values of the stretching/shrinking parameter for the stretching case.

However, for the shrinking case, the solution is dual and exists only for the critical

values of the stretching/shrinking parameter.
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Recently, Bhattacharyya (2013) studied the numerical solutions of heat transfer

in unsteady boundary layer stagnation point flow over a stretching/shrinking sheet. The

problem was solved numerically by using the shooting method. The results showed the

lower branch and upper branch. Bachok et al. (2013) investigated the dual similarity of

solutions of the boundary layer stagnation point flow of nanofluid, namely, copper-

water over a permeable stretching/shrinking sheet. It was found that the unique solution

exists for the stretching case and dual solution for the shrinking case. Furthermore,

steady axisymmetric stagnation point flows and heat transfer of an incompressible fluid

over a non-linearly moving flat plate in a parallel free stream with partial slip velocity

was discussed by Roşca et al. (2014). The bvp4c Matlab program was used to solve the

transformed self-similar equations. In this work, a two branch solution was found for

the suction and opposing flow, an upper branch and lower branch solution.

The heat flux is one of the heating processes which are being considered in this

study. Besides other investigations, Lin and Chen (1998) introduced an exact solution of

heat transfer from a continuously stretching surface with constant temperature heat flux.

The steady mixed convection boundary layer flow of incompressible and electrically

conducting fluid on a vertical plate with variable continuously surface heat flux fixed in

a porous medium was investigated by Elbashbeshy and Bazid (2002). The method used

in this study is called the implicit finite difference method. The velocity and temperature

increases with a mixed convection parameter, while they decrease with an exponent of

temperature. The heat transfer and liminar flow of an incompressible micropolar fluid

over a stretching surface with heat flux was examined by Ishak et al. (2008a). It was

found that, with increasing values of the Prandtl number, the Nusselt number also

increased.

Lastly, Elbashbeshy and Aldawody (2010) have reported the unsteady two-

dimensional laminar boundary layer flow of incompressible fluid over an usteady

stretching surface with variable flux in the presence of a heat source or sink. Suali et al.

(2012) have analysed the numerical solutions of the unsteady two-dimensional

stagnation point flow and heat transfer towards a stretching/shrinking sheet with

prescribed surface heat flux. They used the shooting method to solve the transformed

nonlinear ordinary differential equations. This leads to an increase in the Prandtl
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number and stretching/shrinking parameter as the values of velocity and temperature

increase, but the surface temperature is reduced.

1.8.2 Boundary Layer Stagnation Point Flow over an exponentially

Stretching/Shrinking Sheet

Much research has been done in the boundary layer flow over a linear

stretching/shrinking sheet, but not more research was done in boundary layer flow over

an exponentially stretching/shrinking sheet. There are some references about the

exponentially stretching surface that have been done by researchers. Firstly, Magyari

and Keller (1999) investigated the similarity in the solutions of the flow and thermal

boundary layer over an exponentially stretching surface.  Moreover, Elbashbeshy (2001)

investigated the laminar boundary layer flow and heat transfer towards an exponentially

stretching continuous surface subject to suction. The exact solution of ordinary

differential equations was found in this problem. This shows that increasing the values

of the Prandtl number can reduce the thermal boundary layer thickness. The skin

friction coefficient increases as the values of the suction parameter decreases.

In addition, the heat transfer and boundary layer flow over an exponentially

stretching surface immersed in viscoelastic fluid was analysed by Khan and

Sanjayanand (2005). The problem was solved analytically and numerically by

employing the Runge-Kutta fourth order method with the shooting technique. The skin

friction coefficient reduces by increasing the values of viscoelastic parameter and

Reynolds number.  The temperature distribution in the flow region reduces as Prandtl

number increases, but it increases with viscoelastic parameter. Bhattacharyya (2011a)

has analysed the numerical solution of the boundary layer flow and heat transfer

towards an exponentially shrinking sheet. He used the shooting method to solve non-

linear ordinary differential equations. The dual solutions were obtained for the velocity

profile and temperature distributions. The temperature and thermal boundary layer

thickness were reduced by increasing the values of the Prandtl number in both solutions.

Furthermore, Bhattacharyya (2012) investigated the steady two-dimensional

boundary layer and reaction of mass transfer towards an exponentially stretching
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continuous surface with an exponential stream. Fourth order Runge-Kutta method was

used to solve ordinary differential equations numerically. The thickness of the viscous

boundary layer in this type of flow was significantly thinner than the linear stagnation

point flow over a linearly stretching sheet, due to an increase in the velocity ratio

parameter where, the mass transfer enhances from the sheet, but the viscous and solute

boundary layer thicknesses are reduced. Nadeem and Lee (2012) performed the steady

boundary layer flow over an exponentially stretching surface in nanofluid by using a

homotopy analysis method.

Bachok et al. (2012) investigated the steady two-dimensional stagnation point

and heat transfer flow of nanofluid past an exponentially stretching/shrinking sheet. In

this study, three nanofluids, namely Cu-water, Al2O3-water, and Tio2-water were

discussed. It was also found that, when the range of the shrinking/stretching parameter

in the similar solution of exponentially stretching/shrinking sheets exists was larger than

the linear stretching/shrinking case, that for the Cu-water nanofluid, the skin friction

coefficient and local Nusselt number are higher than for the others. The two-

dimensional stagnation point flow and heat transfer towards an exponentially shrinking

sheet was studied by Bhattacharyya and Vajravelu (2012). The dual solution exists for

shrinking sheet case. The boundary layer thickness for the second solution was always

thicker than the first solution.

Recently, the analytical solutions of the boundary layer stagnation point flow

past an exponentially stretching sheet with nonuniform heat generation/absorption in

nanofluid was investigated by Malvandi et al. (2013). The ordinary differential

equations were solved analytically by using the homotopy analysis method. Pramanik

(2014) studied the boundary layer flow of a non-Newtonian fluid accompanied by heat

transfer toward an exponentially stretching surface in the presence of suction or blowing

at the surface. The thermal boundary layer thickness increases as the Casson parameter

increases, but the momentum boundary layer thickness deceases. The dimensionless

skin friction was lower for blowing then for that of suction. Also, the radiation

parameter increases as the temperature increased.
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In this thesis, the two-dimensional stagnation point flow over an exponentially

stretching/shrinking sheet is considered. Three boundary conditions are considered

namely prescribed wall temperature, prescribed surface heat flux and convective

boundary conditions. This problem has not been presented and published previously.

1.8.3 Radiation Effects on Magnetohydrodynamic of the Boundary Layer

Stagnation Point Flow over an Exponentially Stretching/Shrinking Sheet

The thermal radiation or radiation on heat transfer has been used for a long time

and in many ways.  The most important result of the study of radiation heat transfer is

the black body radiation spectral relationship that was a useful tool for analysing of

radiation heat transfer, which was first presented by Max Planck in year 1900.  The

transfer of heat from one surface to another through an intervening space is called

thermal radiation. Thermal radiation is the energy associated with photons emitted from,

or absorbed by, a material (Rolle, 2014; Makinde, 2010).

Sajid and Hayat (2008) studied the exact solution for two dimensional boundary

layer flow over an exponentially stretching sheet with the effect of radiation and Bidin

and Nazar (2009) investigated this problem numerically. The thermal boundary layer

thickness decreases by increasing the values of the Prandtl number, but the values of the

Eskert number and radiation parameter decreases. The problem of the radiation effect

on unsteady mixed convection boundary layer flow and heat transfer of viscous fluids in

the presence of a magnetic field and internal heat generation or absorption over an

exponentially stretching sheet was considered by Elbashbeshy et al. (2012). For a

solution to this problem, the authors used NDSolve subroutine in Mathematica. The

values of the skin friction coefficient decreased by increasing in values of the Prandtl

number, the unsteadiness, the section and the magnetic parameters. While, when

increasing the values of the dimensionless coordinate, the thermal radiation, the heat

generation/absorption, and the permeability parameters, the value of skin friction

coefficient also had increased.

In 1918, the MHD flow gained interest, when the electromagnetic pump was

invented by Hartmann. In recent years, many researchers studied the non-uniform
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transverse magnetic field because of its applications in the loads of engineering systems

(Davidson, 2001). For example, its application in the polymer industry using hydro

magnetic techniques was employed by the cooling of continuous strips or filaments by

drawing them through a quiescent fluid (Hamad, 2011).

There are some literatures about the MHD flows. Mahapatra and Gupta (2001)

studied numerically the steady two-dimensional MHD stagnation point flow of

incompressible viscoelastic fluids over a stretched surface. The MHD boundary layer

stagnation point flow of a micropolar fluid due to a nonlinear stretching surface was

investigated by Hayat et al. (2009) using Homotopy analysis method. It was found that,

when the stretching/shrinking parameter increases the momentum boundary layer

thickness decreases.

In addition, Aman et al. (2013) investigated the effects of slip on the MHD

stagnation point flow due to a stretching/shrinking sheet. The two dimensional MHD

stagnation point flow over a linear stretching surface was investigated by Ishak et al.

(2009). Abd El-Aziz (2009) studied the boundary layer flow of micropolar fluid over an

exponentially stretching sheet with cooling by mixed convection flow. The coupled

differential equations were solved numerically using the shooting technique with the

fifth-order Runge-Kutta-Fehlberg integration scheme. Mukhopadhyay (2013) studied

the MHD flow and heat transfer over an exponentially stretching sheet embedded in a

thermally stratified medium and solved numerically using the shooting method. The

heat transfer coefficient increases with increasing in the values of the stratification

parameter, while, it decreases with the section parameter. One more important result is

that, with a stronger magnetic field, fluid velocity is reduced.

Ishak (2011) investigated the effect of radiation on the MHD flow over an

exponentially stretching sheet. The results showed that by increasing the values of the

magnetic parameter, the temperature increases, while the velocity profile decreases.

Moreover, the temperature increases as increasing the values of radiation parameter,

meanwhile, the values of Prandtl number decreases. This problem was also solved

analytically using Homotopy analysis method by Mabood et al. (2014).
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In this thesis, the radiation effects on MHD stagnation point flow over an

exponentially stretching/shrinking sheet are considered. Three boundary conditions are

considered namely prescribed wall temperature, prescribed surface heat flux and

convective boundary conditions. This problem was solved numerically using the Keller-

box method. This problem has not been solved before.

1.9 SIGNIFICANCE OF THE RESEARCH

This thesis depicts the stagnation point flow over an exponentially

stretching/shrinking sheet. A stagnation flow explains that the fluid motion near the

stagnation region exists on a solid body where the fluid moves towards it. The

stagnation region encounters the highest pressure and the highest heat transfer. It has

several theoretical and technical applications in industrial manufacturing processes such

as the aerodynamic extrusion of plastic sheets, hot rolling, wire drawing, glass-fiber

production, and the cooling and drying of paper and textiles. Such types of flow are

quite important in polymer extrusion, stretching of plastic films, cable coating, cooling

of plastic strips and filaments.

The thermal radiation effect with MHD is significant in processes involving high

temperature such as gas turbines, thermal energy storage and nuclear power plants. This

effect is also important with power generators, MHD accelerators, the design of heat

exchanges and electrostatic filters. In this thesis the radiation effects and MHD

stagnation point flow are solved theoretically and numerically. Hope that our theoretical

prediction and mathematical formulation will help to explain and verify experiments.

For example, the engineers need some theoretical results in the form of correlation for

better measure and compare their experimental data. This will consequently helps in the

improvement of the existing labs and experimental facilities in the industries and will

eventually increase efficiency.
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1.10 THESIS OUTLINE

This thesis has five (5) chapters. Chapter 1 should be regarded as preliminaries

with a general introduction, the boundary layer theory, boundary conditions, stagnation

point, research objective, research scope, literature review and significance of the

studies.

The methodology is discussed in Chapter 2, which is the derivation of governing

equations, similarity transformation and the numerical method used to solve the

problem of boundary layer stagnation point flows and heat transfer over an

exponentially stretching/shrinking sheet with a prescribed wall temperature. This

chapter will be divided into three sections. Introduction is considered in section one.

The derivation of governing equation is discussed in section two. In section three, the

details of the numerical method namely Keller-box are discussed. This section concerns

the finite difference method, Newton’s method and the block elimination technique. The

Keller-box method is a suitable method to solve the problem of ordinary differential

equations numerically and MATLAB software is used in order to solve using the

Keller-box method.

The first problem in the stagnation point flow and heat transfer towards an

exponentially stretching/shrinking sheet is discussed in Chapter 3. This problem is

studied with three boundary conditions, namely prescribed wall temperature, prescribed

surface heat flux and convection boundary conditions. In addition, this chapter includes

four sections introduction, mathematical formulation, result and discussion and the

conclusion.

Chapter 4 discusses about the second problem which is the

magnetohydrodynamic stagnation point flow and heat transfer over an exponentially

stretching sheet with radiation effects. This problem is also discussed with prescribed

wall temperature, prescribed surface heat flux and convective boundary conditions. This

chapter consists of four sections which are introduction, mathematical formulation with

derivation of governing equation for second problem and derivation of reduced skin

friction coefficient and reduced local Nusselt number, result and discussion and finally
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conclusion. Similar to Chapter 3, this problem also considered three cases of boundary

conditions.

Chapter 5 contains a summary of research and some suggestions for future

research. Figures and tables discussed in previous chapter will be used in order to make

comparisons in extended research by either numerical calculation or experimental study.



CHAPTER 2

METHODOLOGY

2.1 INTRODUCTION

This chapter discusses the derivation of boundary layer equations for first

problem, similarity transformation and the Keller-box as the numerical method to solve

the problem. This chapter begins with a detailed discussion on the governing equations

including thee derivation of governing equation and the similarity in transformation.

The formulation of the governing equation of the boundary layer stagnation point flow

and heat transfer towards an exponentially stretching sheet with prescribed wall

temperature, prescribed surface heat flux and convective boundary conditions are

considered. Lastly, a detailed discussion on the algorithm of a numerical method, which

is known as the Keller-box method and it used to solve all the problems in this study.

2.2 GOVERNING EQUATIONS / PROBLEM FORMULATION

Consider the problem of stagnation point boundary layer flow and heat transfer

over an exponentially stretching/shrinking sheet as shown in Figure 2.1. The Cartesian

coordinate system is used in such a way that the x-axis is along the surface of the sheet

and the y-axis is normal to it. It is assumed that  expeU a x L is the free stream

velocity and 0a  is the straining velocity rate, the velocity stretching/shrinking sheet is

 expwU b x L , b is the stretching/shrinking velocity rate with 0b  for stretching and

0b  shrinking and  0 exp 2wT T T x L  is the surface temperature, T is the stream

temperature assumed to be constant, 0T is a constant which measures the rate of temperature

increase along the sheet and L is the reference length. (Yacob et al., 2011).
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Figure 2.1: Physical model and coordinate system

The boundary layer equations are written as
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u v U

x y dx y


 
 

 

  
  

  
2

2

         (2.2)

.    (2.3)
T T T

u v
x y y


  
 

  

where u and v are the components of velocity in x- and y- axes, respectively. T is the

temperature,  is the kinematic fluid viscosity and  is the thermal diffusivity of the

fluid. The boundary conditions are given by:

 

 2
0

( ),   0,  at  0,  2.4

+  (PWT), at 0,                           2.5

w

x

L
w

u U x v y

T T T T e y

  

  

     

  (PHF)   at 0,                                       (2.6)

CBC ,  at 0,                       2.7

( ),     as .

w

f

e

qT
y

y k

T
k h T T y

y

u U x T T y


  




   


                    2.8
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where
0

( ) 2 x L
w wq x q a vLe is the variable surface heat flux.

2.2.1 Similarity Transformation

We consider the stream function  ,x y  related to the velocities u and v ,

according to the equations,

 ,                 2.9

.

u
y

v
x










 


      2.10

A particularly useful similarity transformation is adopted from Sajid and Hayat (2008);

   2

2

2 ,                                    (2.11)

,   (2.12)
2

(

x

L

x

L

avL e f

a
y e

vL

 



 



   
 

     2

)    (PWT),  (2.13)

 (PHF),             2.14
2

( ) (CB

w

x

l

w

f

T T

T T

k a
T T e

q vl

T T

T T

 

 















       
  





 C),                                   2.15

where  is the similarity variable,  f  is the dimensionless stream function and

   is the dimensionless temperature. Using Eq. (2.9), the velocity component u

derives as

   

   

2

2 2

2 e ,

  2 e e ,
2

x

L

x x

L L

u avL f
y

a
avL f

vL





 
    

  
      
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     e .         2.16
x

La f 

By using Eq. (2.10) the velocity component v derives as

   

     

 

2

2 2

2

2 e ,

1
  2 e e ,

2 2

e { ( ) ( )}.                               2.17
2

x

L

x x

L L

x

L

v avL f
x

avL f f
L L

va
v f f

L




 

  

 
     

 
   

 

  

Using the similarity variable (2.12) and the velocity components Eqs. (2.16) and (2.17)

can be written as

 

 2

2

( ) ( ) ,                         2.18
2

2 ( ) ( ) ,
2

,
2

x x

L L

x

L

x

L

u a a
e f e f

x L L

v va
e f f

L

a
e

y vL

v v

y


 

  






   

    







 


 
   = 2 ( ) ( ) .             2.19

2

x

L
a

e f f
y vL


  

  


Substituting  Eqs.(2.18) and (2.19) into Eq. (2.1), the continuity equation can be derives

as

 

 

2 2( ) ( ) 2 ( ) ( ) 0,
2 2 2

( ) ( ) 2 ( ) ( ) 0,
2 2

x x x x

L L L L

x x x

L L L

a a va a
e f e f e f f e

L L L vL

a a a
e f e f e f f

L L L


    


    

      

      

( ) ( ) ( ) ( ) 0.
2 2

x x x x

L L L L
a a a a

e f e f e f e f
L L L L

 
         

This proves that the continuity equation is satisfied. For the derivation of momentum

equation, the stretching velocity wU and straining velocity eU are written as
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 ,              2.20

,

x

L
w

x

L
e

U be

U ae



       2.21

By using the similarity transformation from Eqs. (2.12), (2.16) and the straining

velocity Eq. (2.21), the results are as follows,

 

 

e

2

2

U
,           2.22

( ) ,                   2.23
2

x

L

x x

L L

d a
e

dx L
u u a

ae f e
y y vl
u








    
  


2
2

2 2

22

( ) ,
2

       ( ) ,
2 2

       ( ),
2

x x

L L

x x x

L L L

x

L

u a
ae f e

y y y vl y

a a
ae f e e

vl vl
a

e f
vl










                  
  

     
  

       2.24

By substituting the Eqs. (2.16), (2.17) and Eqs. (2.22) to (2.24) into momentum Eq.

(2.2), then

 

 

2

22
2

2 2 2 22 2 2 2
2

( ) ( ) ( ) ( ) ( )
2 2

"( ). ( ),
2 2

2 ( ) ( ) "( ) 2 ( ),
2 2 2 2

x x x x

L L L L

x x x x x

L L L L L

x x x x

L L L L

a a va
ae f e f e f e f f

L L L

a a a
ae f e ae e e f

vl L vl

a a a a
e f e f f e e f

L L L L


     

  

   

 
      
 

 
   

 

   

 

2

2

2 2 ,

2 2 0,                                     2.25

f ff f

f f f f

    

     

From combine the boundary conditions (2.5) and Eq. (2.13) for case prescribed wall

temperature,

   2
0 ( ) PWT ,                                  2.26

x

LT T T e   
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Using the similarity variable Eq. (2.12) to Eq. (2.15), the results are,

a. Prescribed wall temperature (PWT)

0

2 2
0

2
2 2

02

( ),
2

( ) ,
2
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2

x x
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x x

L L
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T e e

y vL

 
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 
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
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b. Prescribed surface heat flux (PHF)
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c. Convective boundary condition (CBC)
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By substituting velocity components equations and Eqs. (2.27) to (2.29) into Eq. (2.3),

the energy equation for cases of prescribed wall temperature (PWT), prescribed surface

heat flux and convective boundary condition respectively , can be derives as,

a. Prescribed wall temperature

 

 

0 2

3
02 2 2
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( ) ( ),             2.30
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 

b. Prescribed surface heat flux

 
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0 0

2 2
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1
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c. Convective boundary condition

   
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2
0 0

( ) ( ) ( )
2 2
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The energy equation from Eqs. (2.30) to (2.32) is yield,

 Pr 0.                                     (2.33)f f      

where Pr
v


 is the Prandtl number.

From the boundary conditions (2.4) and similarity transformation (2.17), the results are

    2 0,
2

x

L
va

e f f
L

    
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   
   
0 0 0 0,

0 0.                  2.34

f f

f

 



By substituting Eq. (2.20) into the boundary conditions (2.4), then compares with Eq.

(2.16), the boundary condition becomes

 

 

 

,

,

0 .               (2.35)

x x

L Lbe ae f
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f

a
f
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
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

 

 

By using the similarity transformations (2.13) to (2.15), the thermal boundary condition

Eq. (2.5) to (2.7) yields

 
 
   

2 2
0 0 ,

1,

0 1 PWT .             (2.36)
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 
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



   
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0 0
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(0) 1 PHF .             2.37
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e e
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e e
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0 1 0  CBC .                                 2.38
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where 1 2
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L
vL

hk e
a


 is the conjugate parameter.
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By substituting Eq. (2.21) into the boundary conditions (2.8), then compares with Eq.

(2.16), the boundary condition becomes

 

 

   

,

,

1,              2.39

x x

L La e f a e

a
f

a
f





 

 

  

where b a  is the stretching/shrinking parameter, can be noted that 0  is for

shrinking, 0  is valid for stretching. By using the similarity transformation Eqs.

(2.13) to (2.15), the thermal boundary condition Eq. (2.8) yields,

   

     

   

 
   

0

2
0

 PWT ,

exp   PHF ,
2

 CBC ,

0,

0.             2.40
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L

T T

T T

k x
T T

q L

T T

T e
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 

 

 



 



 

 





           






 

The boundary conditions (2.4)-(2.8) can be reduced as

(0) 0, (0)  at 0,f f    

 
 
    

 

0 1(PWT)  at 0,

0 1(PHF)  at 0,
   2.41

0 1 0 (PWT)  at 0,

( ) 1, ( ) 0 as .f

 

 

   

   

 

  

    

   

Further discussion is in Chapter 3.
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2.3 NUMERICAL METHOD: KELLER-BOX METHOD

The detail of the numerical scheme which is the Keller-box method is discussed

in this section. Keller (1970) introduced the finite difference method for solving the

parabolic partial differential equations. This method is found to be the most efficient

and flexible to solve the boundary layer flow problems. This method is the implicit

finite difference method used with Newton’s method for linearization. Furthermore, the

Keller-box method is adaptable to solve equations of any order (Na, 1979).  Thus, in

this section Eqs. (2.25) and (2.33) with boundary conditions (2.41) are solved for case

of prescribed wall temperature by using the Keller-box method.

This section is divided into four sub-sections. Sub-section 2.7.1 discussed on the

finite difference method in which the nonlinear ordinary differential equations are

reduced to first order, and then written as finite difference forms using central

difference. Sub-section 2.7.2 shows the Newton’s method. It is used to linearise the

resulting nonlinear equations before the result into matrix vector form. Finally, the

linear system of ordinary differential equations with boundary conditions is solved

using the block-elimination method which comes into under sub-section 2.7.3. Sub-

section 2.7.4 discussed about the initial profiles.

2.3.1 Finite Difference Method

The Eqs. (2.25) and (2.33) are subjected to the boundary conditions (2.41) are

written as a first order differential equation. For this purpose, ( ),  ( ), ( ),  ( )f u v t   

and  s  are introduced as new dependent variables, and  s  is replaced by ( )  as

the temperature’s variable. The first order equations are as follows:

,                       (2.42)

,

f u

u v

 
                     (2.43)

,                         (2.44)s t 

where ( ),  ( ),  ( ),  ( )s s u u v v t t         and ( ') is derivative with respect to  .

Subject to this definition, the Eqs. (2.25) and (2.33) can be written as
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22 2 0,    (2.45)

1
0.       (2.

Pr

v fv u

t ft us

    

    46)

The boundary conditions are,

(0) 0, (0) , (0) 1,f u s  

( ) 1, ( ) 0, as .                                   (2.47)u s    

Figure 2.2 presents the net rectangle in the  plane. The net points are defined as,

0 10, , 1,2,...,

   ,                        (2.48)
j j j

J

h j J  

 




   



where jh is the j -spacing.  Here n and j are just the sequence of numbers that

indicate the coordinate location, not tensor indices or exponents.

Figure 2.2: Net rectangle for difference approximations

The finite difference form for any points is

1 1
2

1
(.) (.) ,                                       (2.49)

2
(.)

n n n
j jj 

   
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2 22
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.  (2.50)
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



 
  

We start by writing the finite difference form of Eqs. (2.42) to (2.44) by

considering a mesh rectangle as shown in Figure 2.2. The approximate of finite

known
unknown

“centering”
jh

1P 2P


n
j

1
2

n

j



1
n
j 
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difference for ordinary differential Eqs. (2.42) to (2.44) are written for mid-point
1 2j

n


of

the segment 1 2P P by using the central difference. Hence, the following are obtained,

1 1
1

2

,                             (2.51)
2

n n n n
j j j j n
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f f u u
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 
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1 1
1

2

1 1
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2

,                               (2.52)
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.
2

n n n n
j j j j n

j
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u u v v
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s s t t
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 



 



 
 

 
         (2.53)

The ordinary differential Eqs. (2.45) and (2.46) are stated in finite difference

method by centering about the mid-point 1 2j  for the line 1 2PP . The terms on the left

hand side Eqs. (2.45) and (2.46) can be denoted as 1L and 2L , respectively. Then, the

finite difference equation for Eqs. (2.45) and (2.46) are

 

 

1

2
11
2

1

2
12
2

0.               (2.54)
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

                 (2.55)

Following the Eqs. (2.45) and (2.46), can be written as

    1
1 11 1
2 2

0,                                        (2.56)
n n

j j
L L



 
 

    1
1 12 2
2 2

0,                                       (2.57)
n n

j j
L L



 
 

  2
1 11
2 2

1 2 2
1 1 1 1

2 2 2 2

2 2

           2( ) 2 , (2.58)
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  12
12
2

1
1 1 1 1

2 2 2 2

1
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By substituting Eqs. (2.58) and (2.59) into Eqs. (2.56) and (2.57), respectively

1 2 1
1 1 1 1 1

2 2 2 2

1 2 1
1 1 1 1 1

2 2 2 2

2( ) 2 ( ) =0,

2( ) 2 ( ) .        (2.60)
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By multiplying the Eqs. (2.51) to (2.53) with ,jh therefore

 
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1 1
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2
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2
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Next, the Eqs. (2.60) and (2.61) are multiplied with jh then yield

 

1 1 1 1 1 2 1
1 1 1 1 1 1

2 2 2 2

1
1 1 1 1 1 2 1

2 2 2 2 2

2 ( ) 2 ( ) ,                               (2.65)

Pr Pr ( ) . (2.66)
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j
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The Eqs. (2.62) to (2.66) are imposed for 1,2,...j J at the given n . Also, the boundary

condition (2.47) become

0 0 00,  ,  1,  1 and  0.                        (2.67)n n n n n
j jf u s u s    

2.3.2 Newton’s Method

If 1 1 1 1 1, , , ,n n n n n
j j j j jf u v s t     are supposed to be known for 0 j J  , then they

should define the solution of the unknown variable as ( , , , , ), 0,1,...,n n n n n
j j j j jf u v s t j J . To

simplify the writing, the unknown variable ix x , ( , , , , )n n n n n
j j j j jf u v s t are written as

 , , , ,j j j j jf u v s t (Nazar, 2003). The system of Eqs. (2.62) to (2.66) can be written as
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2
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For the Newton’s method, following iterates are introduced to linearise the nonlinear

system as
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Substitute the iteration (2.73) into the system of Eqs. (2.68) to (2.72), then
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The superscript i is dropped for simplicity. After a few steps of algebra the higher order

terms as in ( ) ( ) ( ) ( ) ( ), , , ,i i i i i
j j j j jf u v s t     are also dropped. The system of equation are

becomes as follows,
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The simple form of the system of Eqs. (2.80) to (2.83) are
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 

   

 

   

1 1

2

2 1 1

2

3 1

2

4 3

1
1 Pr ,

2

1
1 Pr 2,

2

1
Pr ,

2

,

jj j

jj jj

jj j

j j

b h f

b h f b

b h t

b b







 

    





 

   

5 1

2

6 5

1
Pr ,

2

,

jj j

j j

b h u

b b


 





36

 

   

7 1

2

8 7

1
Pr ,

2

,                (2.90)

jj j

j j

b h s

b b


 



 

 

11 1 1
22

12 1 1
22

1
,

2
1

,
2

j j jj j

j j jj j

r f f h u

r u u h v

 

 

  

  

  13 1 1
22

1
,                                  (2.91)

2j j jj j
r s s h t 

  

     1 14 1 1 1 1 112 2 22 2
2

2 2 ,j j jj jj j j
j

r v v h f v u R   


 
       

  

     1 15 1 1 1 1 1 2
2 2 2 22 2

Pr Pr .j j j jj jj j j j
r t t h f t h s u R    

              

To complete the system of Eqs. (2.84) to (2.88) with boundary condition (2.67) which

can be satisfied exactly with no iteration (Cebeci and Bradshaw, 1988). So, to maintain

these correct values in all the iterates, we take

0 0 00,  0,  0   and  0, 0.                   (2.92)J Jf u s u s        

2.3.3 The Block Elimination Technique

The linearised difference Eqs. (2.84) to (2.88) are in the structure of  a block-

tridiagonal system (Na, 1979).

Usually, the three diagonal block structure consists of variables or constants, but

here in Keller-box method is different because it consists of block matrices. In order to

solve the linearise difference Eqs. (2.84) to (2.88) by using the block elimination

technique, the elements of block matrices from Eqs. (2.84) to (2.88) must be defined by

considering three different cases which is when 1, 2,..., 1  andj j j J j J     .

When 1j  , the linearised scheme in Eqs. (2.84) to (2.88) become
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   

   

   

11 0 1 1 0 1 1
2

11 0 1 1 0 2 1
2

11 0 1 1 0 3 1
2

1
,

2
1

,
2
1

,
2

f f h u u r

u u h v v r

s s h t t r

   

   

   







   

   

   

              11 1 2 0 3 1 4 0 5 1 6 0 41 1 1 1 1 1 1
2

,a v a v a f a f a u a u r     


     

       
         

1 1 2 0 3 1 4 01 1 1 1

15 1 6 0 7 1 8 0 51 1 1 1 1
2

.

b t b t b f b f

b s b s b u b u r

   

   


   

   

The corresponding matrix form with boundary conditions (2.92) is as follows,

     
     

1 1

1 1

2
1 1 1

1 1 1

0

0

1

3 1 1

12 3 1

-1 2 h -1 2 h

-1 2 h -1 2 h

0 0 1 0 0

0 0 0

0 0 0

0 0

0 0b b b

a a a

v

t

f

v

t







   
   
   
    
   
   
      

 
   

11 1 21

12 1 2

13 1 2

14 1 2

15 1 2

1

1 1

1

1

2

5 2

27 5

-1 2 h ( )0 0 0 0

( )1 0 0 0 0

0 1 0 0 0 ( ) .
0 0 0 0 ( )

0 0 0 ( )

r

r

r

r

b b r

a

u

s

f

v

t

















                                          

Hence, for the values of 1j  , it can be written as

       1 1 1 2 1 .                                     (2.93)A C r  

Next, we can write the linear system of Eqs. (2.84) to (2.88) for 2,..., 1j J  as

     11 2 1 1 2 1 1
2

1
,

2J J J J J J
f f h u u r         
   
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    

    

     
        

       
 

11 2 1 1 2 2 1
2

11 2 1 1 2 3 1
2

1 1 2 2 3 11 1 1

14 2 5 1 6 2 41 1 1 1
2

1 1 2 2 3 1 4 21 1 1 1

5

1
,

2
1

,
2

,

J J J J J J

J J J J J J

J J JJ J J

J J JJ J J J

J J J JJ J J J

J

u u h v v r

s s h t t r

a v a v a f

a f a u a u r

b t b t b f b f

b

   

   

  

  

   

      

      

    

      

      

   

   

  

  

   

        11 6 2 7 1 8 2 51 1 1 1 ( 1)
2

,J J J JJ J J J
s b s b u b u r           
   

   
   

1 1

1 1

3

1 3

1 2

4 2 2

24 2

-1 2 h

-1 2 h

0 0 1 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0
J J

J J

J

J J

J J

J

Jb b

a a

u

s

f

v

t







 

 



 

 





   
   
   
       
   
      

     
       

1

1

1

1 1 1

1 1 1 1

2

2

1

6 3 1 1

18 6 3 1

-1 2 h

-1 2 h

-1 2 h

0 1 0 0

1 0 0 0

0 1 0 0 +
0 0

0

J

J

J

J J J

J J J J

J

J

J

J

Jb b b b

a a a

u

s

f

v

t













  

   











   
      
   
   
   
      

 

 

 

 

 

11 2

1
2

1
2

5 1 1
2

1 5 1 1
2

1

1

1

1

1

1 1

21

3

4

7
5

-1 2 h
( )0 0 0 0
( )1 0 0 0 0

( )0 1 0 0 0 .

( ) 0 0 0 0 ( )
( ) ( ) 0 0 0 ( )

J

J J

J

J

J

J

J

J J

J

J

J

J

ru
rs

rf

a v r
b b t r













 

 












 



                                          

Hence, for the values of 2,..., 1j J  , can be written as

          1 1 1 .           (2.94)J J J J J J JB A C r      

Lastly, we can write the linear system Eqs. (2.84) to (2.88) for j J as below

    11 1 1
2

1
,

2J J J J J J
f f h u u r     
   
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   

   

     
       

       
         

11 1 2
2

11 1 3
2

1 2 1 3

14 1 5 6 1 4
2

1 2 1 3 4 1

15 6 1 7 8 1 5
2

1
,

2
1

,
2

,

,

J J J J J J

J J J J J J

J J JJ J J

J J JJ J J J

J J J JJ J J J

J J J JJ J J J J

u u h v v r

s s h t t r

a v a v a f

a f a u a u r

b t b t b f b f

b s b s b u b u r

   

   

  

  

   

   

  

  



  

 

  

   

   

  

  

   

    

   
   

2

2

1

4 2 1

14 2

-1 2 h

-1 2 h

0 0 1 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0
J J

J J

J

J J

J J

J

Jb b

a a

u

s

f

v

t

















   
   
   
       
   
      

     
       

11 2

1
2

1
2

1
2

1
2

1

21

3

6 3 1
4

8 6 3 1
5

-1 2 h

-1 2 h

-1 2 h

( )0 1 0 0

( )1 0 0 0

0 1 0 0 ( ) .
0 0 ( )

0 ( )

JJ

J J

J J

JJ J J

J J J J J

J

J

J

J

Jb b b b

a a a

ru
rs

rf

v r
t r





















                                          

Hence, for the values of ,j J it can be written as

       1 .                             (2.95)J J J J JB A r   

Therefore, in overall, for 1,2,3,..., 1, ,j J J  we have,

       
          

          
       

1 1 1 2 1

2 1 2 2 2 3 2

3 2 3 3 3 4 3

1

1                      : ,

2                     : ,

1                : ,

                     : .J J J J J

j A C r

j B A C r

j J B A C r

j J B A r

 

  

  

 

  

   

    

  

 

Now, we write the above system in matrix vector form as



40

     ,             (2.96)r A

     

1 1
1 1

2 2
2 2

2

1
1 1

1 1

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ]
, , .

[ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]

J
J J

J J
J J

J J

A C
r

A C
r

B
A r

C
r

B A
r

B A









 

 

 
    
    
    
      
    
    
          

 
 

 

The elements of the matrices are as

     
     

1 1

1 1

2
1 1 1

1 1 1

1

3 1

2 3 1

-1 2 h -1 2 h

-1 2 h -1 2 h

0 0 1 0 0

0 0 0

0 0 0[ ] ,         (2.97)
0 0

0 0b b b

a a a

A

 
 
 
 
 
 
 
  

     
       

6 3 1

8 6 3 1

-1 2 h

-1 2 h

-1 2 h

0 1 0 0

1 0 0 0

0 1 0 0[ ]  , 2 ,                           (2.98)
0 0

0
j j j

j j j j

j

j

j
j

b b b b

a a a
A j J

 
  
    
 
 
  

   
   

4 2

4 2

-1 2 h

-1 2 h

0 0 1 0 0

0 0 0 0

0 0 0 0[ ] ,  2 ,     (2.99)
0 0 0

0 0 0
j j

j j

j

j
j

b b

a a
B j J

 
 
 
    
 
 
  

5

57

-1 2 h 0 0 0 0

1 0 0 0 0

0 1 0 0 0[ ] ,  2 ,          (2.100)

( ) 0 0 0 0

( ) ( ) 0 0 0

j

j

j

j j

C j J

a

b b

 
 
 
   
 
 
  
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0 1

0 1

1 1 1

1 1

1 1

[ ] ,  [ ] , 2 ,                    (2.101)

j

j

j

v u

t s

j Jf f

v v

t t

 
 

  
 
 





   
   
   
      
   
   
      

11 2

1
2

1
2

1
2

1
2

2

3

4

5

( )

( )

( )[ ] , 2 .                                     (2.102)

( )

( )

j

j

j

j

j

j

r

r

r

r

r

r j J











 
 
 
    
 
 
  

In Eq. (2.96), the matrix A coefficient is known as a tridiagonal matrix with zero

elements. According the block-elimination method, we solve the Eq. (2.96) by assuming

that matrix A is nonsingular (Na, 1979). Matrix A can be factorized into lower matrix

 L and upper matrix  U as

     (2.103)A = L U ,

 

1

2 2

1

[ ]

[ ] [ ]

 ,

[ ]

[ ] [ ]
J

J J

B

L

B









 
 
 
 
 
 
  

 



and

 

1

2

[ ] [ ]

[ ] [ ]

,

[ ] [ ]

[ ]
J

I

I

U

I

I

 
  
 
  
  

 

where [I] is the identity matrix of order 5 and  i and  i are 5 5 matrices which

elements are determined by the following equations
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1 1

1 1 1

[ ] [ ],                  (2.104)

[ ][ ] [ ],

A

A C

 
 

1

        (2.105)

[ ] [ ] [ ][ ], 2,3,..., ,                              (2.106)

[ ][ ] [ ], 2,3,..., 1.                                     (2.107)
j j j j

j j j

A B j J

C j J




   

   

then, Eq.  (2.103) is substituted into Eq.  (2.96) such that

     .      (2.108)L U r 

If

    ,          (2.109)U W 

then, the Eq. (2.108) becomes

    ,          (2.110)L W r

where

 

1

2

1

[ ]

[ ]

.

[ ]

[ ]
J

J

W

W

W

W

W


 
 
 
 
 
 
  



jW   are 5  1 column matrices. The elements  W can be solved from Eq.  (2.109)

1 1 1

1

[ ][ ] [ ],                 (2.111)

[ ][ ] [ ] [ ][ ],  2 .                           (2.112j j j j j

W r

W r B W j J


 


    )

The step in which ,j j       and jW  are calculated is referred to as the forward

sweep. Once the elements of  W are found, Eq.  (2.109) then gives the solution   in

the so-called backward sweep, in which the elements are obtained by the following

relations:
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1

[ ] [ ],                 (2.113)

[ ] [ ] [ ][ ],  1 1,                        (2.114)
j j

j j j j

W

W j J



  



     

Since the elements of  δ are found. Eqs. (2.84) to (2.88) then can be used to find

th( 1)i  iteration for Eq. (2.73). These calculations are repeated until some convergence

criterion is satisfied. In laminar boundary layer calculations, the wall shear stress

parameter (0)v is commonly used as convergence criterion (Cebeci and Bradshaw,

1988). Calculations are stopped when

( )
0 1,               (2.115)iv 

where 1 is a too small fixed value. In this study, 1 0.00001  which gives the precise

values until four decimal places, as suggested by Cebeci and Bradshaw (1988).

2.7.4 Starting Conditions

The suitable step size  and boundary layer thickness  must be determined in

numerical computation. This is usually done by trial and error approach. We can start

with small value of  and move to a large value until the suitable values is obtained.

Sometime, too small or too large value of  is found through trial and error, which

may give rise to the convergence difficulties. For most laminar boundary layer flows,

the transformed boundary layer thickness   is constant (Cebeci and Bradshaw, 1988)

and typically lies between 5 to 10. In this study, the suitable boundary layer starts from 5

to 10 to provide accurate numerical results depending on the problems involved.

A step size ( ) of 0.02 to 0.04 is sufficient for the accurate numerical results

(Nazar, 2003). Moreover, Lok (2008) successfully used a step size of 0.1, and a step size

0.01 is used in this study. The appropriate value of step size  must not affect the

converged results appreciably, for example, the value of skin friction coefficient must be

free from the value of step size  chosen. An overly small values of  may increase
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a waiting time in calculations, while an overly large values of  can be calculated

quickly but may produce inaccurate results (Ahmad, 2009).

Choosing an appropriate initial guesses for the function f, u, v, s and t are

necessary in numerical computation of boundary layer flow. We start the initial guesses

with velocity u and temperature s at 0  to   . After that, by differentiation and

integration in respect to  , other functions ,f v and t also can be defined. There are a

few possibilities in the selection of distribution curves, as long as they satisfy the

boundary conditions (2.45). For the problem considered here, one possibility distribution

curves for u and s is suggested by Bejan (1984), Burmeister (1983) and Bejan and

Kraus (2003) are

  1 ,                        (2.116)
f

u
 

 
   

   
          

   
2

1 .                                  (2.117)s


  


 
   

 

By integrating the Eq. (2.116) with respect to  produce

   
0

1
1 .            (2.118)

2
f ud

 




    







 
    

 


Differentiating the Eqs. (2.116) and (2.117) gives

   1
1 ,                                       (2.119)

du
v

d
 

 
  

and

  1
2 1 ,                            (2.120)

ds
t

d




   

  
     

  

respectively.
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Note that the complete solution for the problem is discussed in this chapter 3

which is the problem of the stagnation point flow and heat transfer towards an

exponentially stretching sheet with prescribed wall temperature, prescribed surface heat

flux and convective boundary conditions. From the numerical results, it is found that the

Keller-box method is suitable to provide an accurate result of the convection in an

incompressible viscous fluid problem.

Figure 2.3 shows the general flow diagram for the computations of Keller-box

method. The Keller-box method is programmed in MATLAB software. The list of

symbols used in the MATLAB program is given in Appendix A while the complete

program of this problem is given in Appendix B.
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Figure 2.3: Flow diagram for the Keller-box method
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Figure 2.3: Flow diagram for the Keller-box method (continued)



CHAPTER 3

STAGNATION POINT FLOW AND HEAT TRANSFER TOWARDS AN

EXPONENTIALLY STRETCHING/SHRINKING SHEET

3.1 INTRODUCTION

In this chapter, two dimensional boundary layer stagnation point flow and heat

transfer over an exponentially stretching/shrinking sheet are considered. This problem is

studied with three cases of boundary conditions, which are prescribed wall temperature,

prescribed surface heat flux and convective boundary conditions. The problem with

prescribed wall temperature is compared with that done by Bhattacharyya and Vajravelu

(2012).

The boundary layer flow and heat transfer over a stretching surface has many

applications in industries and technologies. Therefore many researchers have been

interested in studying boundary layer flow and heat transfer in a large number of

applications. Some of these applications are drawing of plastic films, glass fiber

production, hot rolling, wire drawing, artificial fibers, aerodynamic extrusion of plastic

sheets, paper and metal production, polymer extrusion, metal spinning and many others

industrial manufacturing processes. The final product with the requested characteristics

depends on the cooling liquid used and the rate of stretching (Bachok et al., 2012).

Furthermore, Hiemenz (1911) was the first to investigated the two dimensional

stagnation point flow over a stationary plat. The stagnation point flow towards a

shrinking sheet was investigated by Wang (2008). The results obtained both a dual and

unique solutions for the specific range of the velocity-ratio parameter in two-

dimensional and asymmetric cases. Recently, Bhattacharyya (2013) and Bachok et al.
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(2013) investigated the unsteady and steady boundary layer stagnation point flow over

stretching/shrinking sheet with constant wall temperature and convective boundary

conditions, respectively.

The constant/prescribed wall temperature, constant/prescribed surface heat flux,

Newtonian heating and convective/conjugate boundary conditions are four general

heating processes on the wall temperature distribution, which are considered by Merkin

(1994). Commonly, in most research on the boundary layer flow and heat transfer, the

constant wall temperature is used as the boundary conditions. For example the

stagnation point flow over an exponentially stretching or shrinking sheet was

investigated by Wong et al. (2011). They found the unique solutions for case of

stretching sheet and dual solutions was obtained in the case of shrinking sheet. Makinde

and Aziz (2011) investigated nanofluid flow over a stretching sheet with convection

boundary condition. Recently, Nadeem et al. (2014) investigated the water-based

nanofluid over an exponentially stretching sheet. In this study three boundary conditions

are considered.

Hence, we study the stagnation flow over exponentially stretching/shrinking

sheet with prescribed wall temperature, prescribed surface heat flux and with convective

boundary conditions. Mathematical formulations of the problems are discussed in

section 3.2. Section 3.3 is the results and discussion and is divided in three sub-sections.

Sub-section 3.3.1 is about stagnation point flow over an exponentially

stretching/shrinking sheet with prescribed wall temperature. Stagnation point flow with

surface heat flux is discussed in sub-section 3.3.2. Sub-section 3.3.3 considered the case

of convective boundary conditions. The conclusion is discussed in the section 3.4.

3.2 MATHEMATICAL FORMULATION

Let us consider the steady viscous, laminar and two-dimensional boundary layer

stagnation point flow (of an incompressible fluid) and heat transfer over an

exponentially stretching/shrinking sheet as shown in Figure 2.1. The governing

equations are written as follows,
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 

22 2 0, (3.1)

Pr 0.  (3.2)

f f f f

f f  

     
    

where Pr   is the Prandtl number. The boundary condition are,

   
     
      

(0) 0, (0) , at  0,

0 1 PWT ,  at  0,

0 1 PHF ,  at  0,      3.3

0 1 0 CBC , at  0 ,

( ) 1, ( ) 0,    as ,

f f

f

 

 

 

   

   

  

 

   

    

    

where b a  is the stretching/shrinking parameter, can be noted that 0  is for

shrinking, 0  is valid for stretching and 0  corresponds to a fixed sheet. The

physical quantities of interest are the skin friction coefficient fC and local Nusselt

number xNu which are defined as:

 2
,           3.4

( )

,
( )

w
f

e

w
x

w

C
U x

xq
Nu

k T T











     (3.5)

where  is the fluid density, w is the surface shear stress and wq represents the surface

heat flux. Let

 
0

0

,     3.6

,

w

y

w

y

u

y

T
q k

y

 




 
   

 
    

     3.7

where  and k are the dynamic viscosity and thermal conductivity, respectively. By

substituting Eq. (2.23) and Eq. (2.21) into Eq. (3.6) and Eq. (3.4) respectively, the

reduced skin friction coefficient is defined as:
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 

 
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Re .                                 3.8
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
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

 

By substituting the boundary conditions Eq. (2.5) to Eq. (2.7) and similarity

transformation Eq. (2.27), (2.28) and (2.15) respectively into Eq. (3.5), the reduced

Nusselt number are as,

a. Prescribed wall temperature (PWT)

 

 

   

0

2
0

2
,

+

,
2

2
.                                        3.9
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 
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 
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 
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b. Prescribed heat flux (PHF)

 
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c. Convective boundary condition (CBC)

  2
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,
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x x
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kx T e

k
Nu

kT e

 
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x x

L L
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1 .                             3.11

Re
x

x

NuL

x
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where Re e
x

u x

v
 is the local Reynolds number.

3.3 RESULTS AND DISCUSSION

3.3.1 Prescribed Wall Temperature (PWT)

Eqs. (3.1) and (3.2) are subject to boundary conditions (3.3) which have been

numerically solved using Keller-box method for the stretching/shrinking parameter and

Prandtl number. The effects of governing parameter on the reduced skin friction

coefficient, the reduced Nusselt number and velocity and temperature profile are

presented in tabular form and graphically. The results for the reduced skin friction

coefficient and reduced Nusselt number are compared with that reported results by

Bhattacharyya and Vajravelu (2012). The reduced Nusselt number is presented in the

Table 3.1 with various values of Prandtl number Pr and stretching/shrinking parameter

 . It shows that the reduced Nusselt number increases with an increase in the value of

Pr and  .

Furthermore, the reduced skin friction coefficient (0)f  and reduced Nusselt

number (0)  are plotted in Figures 3.1 and 3.2 respectively. These figures show dual

and unique solutions. The aforementioned problem has a dual solution for

1.487068 0.9734    , a unique solution exists for 0.9734   and for

1.487068   there is no similarity solution. Figures 3.3 and 3.4 explain the
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temperature profile ( )  with various values of Pr and , respectively. The finding

shows that the temperature profiles decreases, when the Prandtl number and

stretching/shrinking parameter increase.

Table 3.1: The various value reduced Nusselt number (0) with different values of

Pr and  .

 0 

Pr



0.2 0.5 0.7 0.9 1

-0.7 0.3543 0.4488 0.4772 0.4933 0.4983

-0.5 0.3866 0.5176 0.5676 0.6041 0.6190

-0.3 0.4156 0.5793 0.6484 0.7029 0.7263

0.1 0.4665 0.6874 0.7898 0.8751 0.9134

0.5 0.5111 0.7817 0.9126 1.0244 1.0751

1 0.5605 0.8862 1.0486 1.1889 1.2533

3 0.7185 1.2199 1.48067 1.7099 1.8159

Figure 3.1: Comparison of the reduced skin friction coefficient (0)f  with different

values of 
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Figure 3.2: Comparison of the reduced Nusselt number (0)  with different values of

 when Pr 0.2

Figure 3.3: Variation of temperature profile ( )  with different values of

Pr 0.2,1,3,7,10 when 0.5 
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Figure 3.4: Variation of temperature profile ( )  with different values of

0.7,0.7,3,7,10   when Pr 0.2

3.3.2 Prescribed Surface Heat Flux (PHF)

The problem of the stagnation point over an exponentially stretching/shrinking

sheet with prescribed surface heat flux (PHF) has been numerically solved using Keller-

box method. The results obtained are consistent with that have been reported by

Bhattacharyya and Vajravelu (2012) in Figure 3.1. This confirms the dual existence and

uniqueness of the solution to the aforementioned problem. Figure 3.5 illustrates the
1

22L Rex xx Nu as a function of  and it shows that a dual solution exists for

1.487068 0.9734    , while no similar solution exists for 1.487068   and a

unique solution exists for 0.9734   . These findings show a good agreement with

Bhattacharyya and Vajravelu (2012). It can be concluded that this method works well

for the present problem, and  the results presented here are accurate. Also this figure

shows that when  decreases the
1

22L Rex xx Nu slightly decreases in the first

solution but increases in the second solution. As  decreasing, the temperature

increases and it is found that
1

22L Rex xx Nu decreases.
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Figure 3.6 illustrates the first and second solutions of the velocity profiles  f 

for different values of  and with Pr 0.2 . From this figure, it is found that the

boundary thickness of the second solution is thicker than that of the first solution.

Moreover, the velocity at a point increases with an increasing  for first solution and

decreases for second solution. Finally, Figures 3.7 and 3.8 illustrate the temperature

profiles    for different values of  and Pr, respectively.  It can be seen that, as Pr

and  decreases, the temperature increases and the thermal boundary layer thickness

also increases. This is because for small values of Pr, the fluid is highly conductive.

Physically, if Pr increases, the thermal diffusivity decreases and this phenomenon lead

to the decreasing of energy transfer ability that reduces the thermal boundary layer. The

velocity profiles  f  with various values of velocity ratio parameter  are presented

in Figures 3.9 and 3.10. The velocity  f  for different values of 1  and 1 

increase, when the value of  is increased.

Figure 3.5: The value of
1

22L Rex xx Nu with 
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Figure 3.6: Variation of velocity profiles ( )f  with various values of  when

Pr 0.2

Figure 3.7: Variation of temperature profiles ( )  with different values of 3,5,7,9 

when Pr 0.7
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Figure 3.8: Variation of temperature profile ( )  with different values of

Pr 0.3,0.5,0.7,1,3 when 3 

Figure 3.9: Variation of velocity profile  f  with different values of

3,5,7,10  when Pr 0.7
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Figure 3.10: Variation of velocity profile  f  with different values of

0.7, 0.3,0.3,0.7    when Pr 0.7

3.3.3 Convective Boundary Conditions (CBC)

Figures 3.12, 3.13 and 3.14 illustrate the reduced skin friction coefficient (0)f  ,

reduced Nusselt number (0)  , and the temperature (0) , respectively, with various

values of stretching/shrinking parameter . From Figures 3.11 and 3.12 it was found

that they are in a good agreement with the results reported by Bhattacharyya and

Vajravelu (2012). It confirms the dual solution and unique solution of the

aforementioned problem. In addition, it is found that the unique solution is for

stretching case, while the dual solution is for shrinking case. These figures show that the

dual solution exists, when 1.487068 0.9734    . The unique solution exists when

0.9734   and no solutions exist for 1.487068   . Figure 3.13 illustrates that the

stretching/shrinking parameter  increase with the increase in value of (0) in the

second solution. Meanwhile for the first solution  it decreases with the increasing

value of (0) .
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Figures 3.14 and 3.15 illustrate the temperature (0) with Pr and  when

0.5,1  and Pr 0.2, respectively. Figure 3.16 shows Pr must be less than some

critical value, i.e.
1

Pr 0.35c  and 2Pr 0.56c  when 0.5  and 1  , respectively. The

value of  must be greater than some critical value, i.e. 0.186c  when 1.2   and

Pr 0.2 seen from Figure 3.15.

Figures 3.16 to 3.18 display the temperature profile ( )  for several values of

,  Pr and , respectively. Figure 3.16 shows that the thermal boundary layer

thickness for the second solution which is thicker than the case of the first solution in

the temperature profile. In the first solution, magnitude of  at a point increase of the

temperature ( )  . However temperature ( )  at the same point increases with the

decrease in the magnitude of  in the second solution. The variation of the temperature

profiles for same values of Prandtl number is visible in Figure 3.17. This shows that for

a case of stretching/shrinking parameter, the temperature ( )  sharply increases

initially with an increased value of the Prandtl number in the second solution. The

Prandtl number decreases when the temperature ( )  increases in the first solution.

Figure 3.18 shows the temperature profile with various values of  . It is observed that

the temperature ( )  increases, with the increase in the value of conjugate parameter 

, in the first solution, while for second solution it decreases.

The dual and unique solutions of the velocity profile with various values of 

are shown in Figures 3.19 and 3.20, respectively. From Figure 3.19 exhibits that in

second solution the velocity increases with the decrease in the value of  except for a

very small  . However, the velocity increases with the increase in the value of  in the

case of first solution. Finally the velocity increases with the increase in the value of

stretching parameter as illustrated in Figure 3.20. Lastly Table 3.2 shows the

comparison velocity and temperature profile with three cases of boundary condition. It

is found that, in three cases of boundary condition the behavior of velocity are same.

The velocity increases by increasing the value of  , while the temperature decreases

with increasing values of  . From this table, it is clear; the physical graphs of

temperature are different which verified the boundary condition.
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Figure 3.11: Variation of the reduced skin friction coefficient (0)f  with  when

Pr 0.2 and 0.5 

Figure 3.12: Comparison of the reduced Nusselt number (0)  with different values of

 when Pr 0.2,  
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Figure 3.13: Variation of the temperature (0) with  when Pr 0.2 and 0.5 

Figure 3.14: Variation of the temperature (0) with Pr when 0.5,1  and

1.2  
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Figure 3.15: Variation of the temperature (0) with  when Pr 0.2 and

1.2  

Figure 3.16: Temperature profile ( )  for various values of 1.1, 1.2, 1.3    

when Pr 0.2 and 0.5 
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Figure 3.17: Temperature profile    for various values of Pr 0.1,0.2,0.25 when

1.2   and 0.5 

Figure 3.18: Temperature profile ( )  for various values of 0.5, 1,2  when

Pr 0.2 and 1.2  
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Figure 3.19: Velocity profiles  f  for different values of 1.1, 1.2, 1.3     when

Pr 0.2 and 0.5 

Figure 3.20: Velocity profiles ( )f  for different values of

0.2,0.3,0.7,1.0,1.3,1.7,2.2   when Pr 0.2 and 0.5 
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3.4 CONCLUSION

Two-dimensional boundary layer flow and heat transfer over an exponentially

stretching/shrinking sheet is subjected to boundary conditions namely prescribed wall

temperature, prescribed surface heat flux and convective boundary conditions were

studied numerically in this chapter. The effects of Prandtl number, conjugate parameter

and velocity ratio on the reduced skin friction, velocity and temperature profiles were

considered in this chapter. In conclusion, this problem has a dual solution when the

velocity ratio is between 0.9734 and 1.487068 , the solution is unique when the

velocity ratio is greater than 0.9734 and finally there is no similarity solution exists

for velocity ratio when it is smaller than 1.487068 . For the case of convective

boundary conditions, we found a conclusion for the critical values for prandtl number

Pr and conjugate parameter  in the second solution. The prandtl number Pr must be

smaller than a critical value Prc and it depends on conjugate parameter  .

Furthermore, the conjugate parameter  must be greater than some critical value c

which depends on the Prandtl number Pr .
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Table 3.2: The comparison velocity and temperature profiles with three boundary conditions PWT, PHF and CBC

Not: FS=first solution and SS=second solution
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CHAPTER 4

RADIATION EFFECT ON MHD STAGNATION POINT FLOW AND

HEAT TRANSFER TOWARDS AN EXPONENTIALLY STRETCHING SHEET

4.1 INTRODUCTION

The influence of thermal radiation on magnetohydrodynamic (MHD) stagnation

point flow over an exponentially stretching sheet is considered in this chapter. This

topic has received attention from many researchers due to its application in industrial

and manufacturing processes. Elbashbeshy (2001), Khan (2006) and Sajid and Hayat

(2008) have studied the two-dimensional boundary layer flow in a viscous fluid and

viscoelastic fluid over an exponentially stretching sheet with suction and thermal

radiation effects, respectively.

This problem was solved numerically using the Keller-box method. The

numerical results were compared with the results obtained by Magyari and Keller

(1999), Bidin and Nazar (2009), Ishak (2011), Mukhopadhyay (2013), Mabood et al.

(2014) and Mustafa et al. (2013).

4.2 MATHEMATICAL FORMULATION

Consider the problem of of radiation effects of MHD boundary layer stagnation

point and heat transfer over an exponentially stretching/shrinking sheet as shown in

Figure 4.1. The Cartesian coordinate system is used in such a way that the x-axis is

along the surface of the sheet and the y-axis is normal to it. Her ( ) x L
eU x be is the free

stream velocity and 0b  is the straining velocity rate, the velocity stretching velocity is

( ) x L
wU x ae , a is the stretching velocity rate and x 2L

0ewT T T  is the surface
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temperature, T is the stream temperature assumed to be constant, 0T is a constant which

measures the rate of temperature increase along the sheet, L is the reference length, B(x) is

the magnetic field and the thermal radiation parameter is rq .

Figure 4.1: Physical model and coordinate system

The boundary layer equations are written as

2 2

2

0,              (4.1)

,            (4.2)e
e

u v

x y

dUu u u B
u v U u

x y dx y

T
u

 
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 

   
    

   

 2

2

1
,                   (4.3)r

p p

qT k T
v

x y c y c y

 
  

     

where u and v are the components of velocity in x- and y- axes, respectively. T is the

temperature,  is the kinematic fluid viscosity ,  is the electric conductivity and k is

the thermal conductivity. Subject to the boundary conditions (Bachok et al., 2012):

 ( ),   0,  at  0,  4.4wu U x v y  

( )eU x ( )eU x

BB

y

O ( )wU x

x

( )wU x

wT

T
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 

   

2
0+  (PWT), at 0,                           4.5

  (PHF),   at 0,                                       (4.6)
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where
0

( ) 2 x L
w wq x q a vLe is the variable surface heat flux. According to Rosseland

approximation, the radiative heat flux rq is defined as

44
,         (4.9)

3r

T
q

k y

 



 



where   and k  the Stefan – Boltzmann and are constant and the mean absorption

coefficient, respectively. It is assumed the temperature differences within the flow as

such in that the term 4T in Taylor series toward T is given by

4 3 44 3 .      (4.10)T T T T  

In view of Eqs. (4.9) and (4.10),

* 3 2

* 2

16
.                                       (4.11)

3
rq T T

y k y

  
 

 

Substituting Eq. (4.11) into Eq. (4.3) yields,

3 2

2

16
( ) .                    (4.12)

3
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In order to satisfy the similarity solution, the magnetic field ( )B x is assumed as
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2
0 e ,            (2.13)

x

LB B

where 0B is the constant magnetic field.

A particularly useful similarity transformation is adopted from Sajid and Hayat (2008);

   2

2

2 ,                                    (4.14)

,   (4.15)
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 C),                                   4.18

where  is the similarity variable,  f  is the dimensionless stream function and

   is the dimensionless temperature. The velocity component u and v are as

   
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The stretching velocity wU and straining velocity eU are written as,

 ,              4.21

,

x

L
w

x

L
e

U be

U ae



      4.22

By substituting Eq. (2.22) to Eq. (2.24) and velocity components Eq. (4.19) and Eq.

(4.20) into Eq. (4.2), the momentum equation derives as,
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where 2
02M B L a  is the magnetic parameter

By substituting Eq. (2.27) to Eq. (2.29) into Eq. (4.12), the energy equation derives as,
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c. Convective boundary condition
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The resulting of Eq. (4.24) to (4.26) are,

 4
1 Pr 0,                        (4.27)

3 RN f f
           
 

where
34

R

T
N

k k

  
 is the radiation parameter and Pr pvc k is the Prandtl number.

The boundary conditions Eqs. (4.4) to (4.8) become,

 
 

(0) 0, (0) 1 at 0,

0 1(CWT), at 0,

0 1 (CHF), at 0,

(0)=- (1- (0)) (CBC) at 0,       (4.28)

( ) , ( ) 0 as .

f f
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 

   

 
   

where a b  is the velocity ratio parameter.

The physical quantities of interest are the skin friction coefficient fC and local

Nusselt number xNu which are introduced in Eqs. (3.4) and (3.5) and the surface shear

stress w is in Eq. (3.6), but the surface heat flux wq is defined as:

 
3

0

16
,                     4.29
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The reduced skin friction is defined as,

 2
Re .fx f x

L
C C f

x
 

By using the boundary conditions Eq. (4.5) to Eq. (4.7) and similarity transformation

Eq. (4.16) to Eq. (4.18), the reduced Nusselt number for three cases of boundary

conditions are,

a. Prescribed wall temperature,
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b. Prescribed heat flux,
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c. Convective boundary condition,
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x

u x

v
 is the local Reynolds number.
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4.3 RESULTS AND DISCUSSION

Eqs. (4.23) and (4.27) are subject to the boundary conditions (4.28) were

numerically solved for the three cases namely, the prescribed wall temperature (PWT),

prescribed surface heat flux (PHF) and convective boundary conditions (CBC). In this

section the effect of governing parameters on reduced skin friction coefficient, heat

transfer coefficient and velocity and temperature profile are discussed in tabular form

and graphically.

4.3.1 Prescribed Wall Temperature (PWT)

In this subsection, the prescribed wall temperature with the effects of governing

parameters on the reduced skin friction coefficient and heat transfer coefficient are

discussed. The results compared with the existing results from Magyari and Keller

(1999), Bidin and Nazar (2009), Ishak (2011), Mukhopadhyay (2013), Mabood et al.

(2014) and Mustafa et al. (2013). The numerical comparison of existing results and

previous results show good agreement, as illustrated in Tables 4.1 and 4.2. The

numerical results without velocity ratio  are in good agreement with the previous

results. The comparison results for various values of heat transfer coefficient (0) 

with radiation parameter RN , magnetic parameter M and Prandtl number Pr are shown

in Table 4.1. We notice that from Table 4.1, when 0RN M  (in the absence of

radiation and magnetic field effects), the result is close towards the results reported by

Magyari and Keller (1999), Bidin and Nazar (2009), Ishak (2011), Mukhopadhyay

(2013) and Mabood et al. (2014). Moreover, when the parameters ,RN M and Pr are

presence, the present results good agreement with the results of Ishak (2011),

Mukhopadhyay (2013) and Mabood et al. (2014).

Table 4.2 presents the value of reduced skin friction coefficient (0)f  with

different values of velocity ratio parameter  . The results are compared with results of

Mustafa et al. (2013). The various values of the reduced skin friction coefficient (0)f 

and heat transfer coefficient (0)  with different values of governing parameter are

presented in Tables 4.3 to 4.6. In addition, the various values of the reduced skin
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friction coefficient (0)f  and heat transfer coefficient (0)  with different values of

M when Pr, 1RN  and 0.2  are shown in Table 4.3. From this table we can see that

the values of (0)f  and (0)  reduces with increasing values of M when Pr, RN and

 are fixed.

Tables 4.4 and 4.5 present the different values of (0)f  and (0)  with various

values of RN and Pr , respectively, when the others governing parameters are fixed.

Increasing values of RN with the values of (0)  decrease, when Pr, M and  are

fixed, visible in Table 4.4. Also, it can be seen clearly that the radiation parameter RN

does not effect on the reduced skin friction coefficient (0)f  . Table 4.5 shows that the

values of (0)f  and (0)  increase as the values of Pr increases when 1RM N  and

0.5  . Table 4.6 illustrates the reduced skin friction coefficient (0)f  and heat

transfer coefficient (0)  with the various values of  when other parameters are fixed.

The value of the reduced skin friction coefficient and heat transfer coefficient increase

with increasing values of velocity ratio parameter .

The velocity profile ( )f  for different values of velocity ratio parameter  is

illustrated in Figures 4.2. It can be observed from this figure that the velocity increases

with increasing values of  . Figure (4.3) shows the velocity profiles ( )f  for various

values of the magnetic parameter M . The velocity ( )f  is found to increases with

increasing values of M when 1  , while a reverse effect is observed for the case of

1  when Pr 1RN  . Furthermore, it is also clearly seen from these figures, that the

velocity satisfies the given boundary condition (4.3) which ensures the accuracy of our

results.

Figures 4.4 to 4.7 show the temperature profiles ( )  with different values of

,  Pr, RN and ,M respectively. Figure 4.4 discusses the variation of temperature field

for different values of the velocity ratio parameter  . The temperature ( )  decreases

with increasing values of  . The influence of the Prandtl number Pr on the temperature

field is shown in Figure 4.5. It can be observed from this figure that the temperature of
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the fluid decreases, as Pr increases. This situation corresponds to the physical

observation of the fluids with large Prandtl number which has high viscosity and small

thermal conductivity. Consequently this makes the fluid thick. Naturally it causes a

decrease in the velocity of the fluid.

On the other hand, from Figures 4.6, it is clear that when the radiation parameter

RN increases, the temperature also increases. The effect of the magnetic parameter M on

the temperature profile is presented in Figure 4.7. Physically, 0M  means that there is

no magnetic effect and the flow. Moreover, it is found from this figure that the

temperature increases with increasing values of .M In addition, it can be concluded

from the above graphs that the temperature is at a maximum near the plat and it

decreased away from the plate and finally asymptotically approaches zero in the free

stream region.

Table 4.1: The comparison heat transfer coefficient (0)  when 0 

RN M Pr

Magyari

and Keller

(1999)

Bidin and

Nazar

(2009)

Ishak

(2011)

Mukhopadh

yay (2013)

Mabood

et al.

(2014)

Present

Results

0 0 1 0.9548 0.9548 0.9548 0.9547 0.95478 0.9547

0 0 2 ----- 1.4714 1.4715 1.4714 1.47151 1.4715

0 0 3 1.8691 1.8691 1.8691 1.8691 1.86909 1.8691

0 0 5 2.5001 ----- 2.5001 2.5001 2.50012 2.5003

0 0 10 3.6604 ----- 3.6604 3.6603 3.66039 3.6635

1 0 1 ------ 0.5315 0.5312 0.5312 0.53121 0.5322

0 1 1 ------ ----- 0.8611 0.8610 0.86113 0.8614

0.5 0 2 ------ 1.0735 ----- 1.0734 1.07352 1.0735

0.5 0 3 ------ 1.3807 ----- 1.3807 1.38075 1.3807

1 0 3 ------ 1.1214 ----- 1.1213 1.12142 1.1214

1 1 1 ------ ------ 0.4505 ----- 0.45052 0.4515
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Table 4.2: Comparison skin friction coefficient (0)f  when 0M 


(0)f 

Mustafa et al. (2013) Present results

0 -1.281809 -1.2819

0.1 -1.253580 -1.2535

0.2 -1.195118 -1.1951

0.5 -0.879833 -0.8800

0.8 -0.397767 -0.3979

1.2 0.451568 0.4520

Table 4.3: Values of the reduced skin friction coefficient (0)f  and heat transfer

coefficient (0)  for several values of M when Pr 1RN  and 0.2 

M (0)f  (0) 

0 -1.1950 0.6027

0.3 -1.3212 0.5712

0.5 -1.3982 0.5519

0.7 -1.4704 0.5343

1 -1.5715 0.5109

3 -2.1185 0.4054

5 -2.5481 0.3481

7 -2.9145 0.2857

10 -3.3904 0.2411
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Table 4.4: Values of the reduced skin friction coefficient (0)f  and heat transfer

coefficient (0)  for different values on RN when Pr 1M  and 0.2 

RN (0)f  (0) 

0 -1.5713 0.9068

0.3 -1.5715 0.7248

0.5 -1.5715 0.6441

0.7 -1.5715 0.5818

1 -1.5715 0.5109

3 -1.5715 0.2702

Table 4.5: Values of the reduced skin friction coefficient (0)f  and heat transfer

coefficient (0)  for various values of Pr when 1RN M  and 0.5 

Pr (0)f  (0) 

0.3 -1.3011 0.3083

0.5 -1.3011 0.4140

0.7 -1.3010 0.5037

1 -1.3010 0.6201

3 -1.2994 1.1751

5 -1.2970 1.5739

7 -1.2904 1.9079

10 -1.2833 2.3265
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Table 4.6: Values of the reduced skin friction coefficient (0)f  and heat transfer

coefficient (0)  with various values of  when 1RN M  and Pr 1

 (0)f  (0) 

0.1 -1.6142 0.4727

0.3 -1.5034 0.5499

0.5 -1.3010 0.6201

0.7 -1.0227 0.6822

0.9 -0.6790 0.7385

1 -0.4851 0.7648

3 5.7300 1.1700

5 15.2003 1.4663

Figure 4.2: The velocity profile ( )f  with  for different values of 0,0.5,1,1.5,2 

when Pr 1RN  and 0.1M 
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Figure 4.3: The velocity profile ( )f  with  for different values of 0,0.5,1M 

when 0.1, 2  and Pr 1RN 

Figure 4.4: The temperature profile ( )  with  for different values of

0.1, 0.5, 1, 2, 4  when Pr 1RN  and 1M 
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Figure 4.5: The temperature profile ( )  with  for different values of

Pr 0.5, 1, 2, 4, 7 when 1RN   and 1M 

Figure 4.6: The temperature profile ( )  with  for different values of 0.5, 1, 2, 4RN 

when Pr 1  and 1M 



83

Figure 4.7: The temperature profile ( )  with  for different values of 0, 1, 2, 4M 

when Pr 1RN  and 0.2 

4.3.2 Prescribed Surface Heat Flux (PHF)

Eqs. (4.23) and (4.27) with prescribed surface heat flux are solved numerically.

Tables 4.7 and 4.8 illustrate the reduced Nusselt number with governing parameter

namely, radiation effects parameter RN , velocity ratio parameter  , Prandtl number Pr

and magnetic parameter M . From Table 4.7 it can be clearly seen that the reduced

Nusselt number increases with an increase in the values of velocity ratio parameter,

while it decreases when the values of radiation parameter increases. Table 4.8 illustrates

the reduced Nusselt number with magnetic parameter M and Prandtl number Pr . The

table shows that in decreasing manner of the reduced Nusselt number, which represents

the heat transfer rate at the surface, by increasing in values of magnetic parameter M ,

but the reduced Nusselt number increases with increasing values of Prandtl number.

The temperatures profiles    with ,  Pr, M and RN are presented in Figures

4.8 to 4.11, respectively. Figure 4.8 presents by the variation of temperature profiles



84

   for different values of the velocity ratio parameter  .  The temperature reduces

with enhancing values of  . Figure 4.9 shows the effects of Prandtl number on the

temperature profile    , when others parameter are fixed.  It is observed from this

figure that the temperature of the fluid decreases with increasing values of Pr . In

addition, the influence of magnetic parameter M on the temperature profile    is

presented in Figure 4.10. It is clear from this figure that due to increased in value of

magnetic field, the temperature increases. Temperature profile with radiation parameter

is shown in Figure 4.11. The temperature increases as the values of radiation parameter

RN increases.

Figure 4.12 illustrates the velocity profiles ( )f  for different values of velocity

ratio parameter . It can be seen from the Figure that the velocity is increasing with the

increasing values of  . Figure 4.13 shows the velocity profiles ( )f  for various values

of the magnetic parameter M . The velocity ( )f  is found to increase with increasing

values of M when 1  , while a reverse effect is observed for the case of 1  when

Pr 1RN  .

Table 4.7: Various values of the reduced Nusselt number for various values of  and

RN when 1M  and Pr 1

1 (0)

RN


0 0.5 1 2 3

0.1 0.8393 0.4921 0.2703 0.1142 0.0503

0.5 1.0101 0.7361 0.5743 0.3821 0.2799

0.9 1.1533 0.8816 0.7370 0.5787 0.4850

2 1.4701 1.1580 0.9889 0.7989 0.6866

3 1.7099 1.3690 1.1698 0.9433 0.7184
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Table 4.8: Various values of the reduced Nusselt number for various values of Pr and

M when 1RN  and 0.5 

1 (0)

Pr
M

0.5 0.7 1 3 5

1 0.3489 0.4492 0.5813 1.1351 1.5452

3 0.1869 0.2651 0.3499 0.8758 1.2949

5 0.1216 0.1804 0.2322 0.6578 1.0207

7 0.0955 0.1266 0.1929 0.5332 0.7204

10 0.0678 0.0736 0.1122 0.2799 0.6040

Figure 4.8: The temperature profile ( )  with  for different values of

0.1, 0.5, 1, 2  when Pr 1RN  and 1M 
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Figure 4.9: The temperature profile ( )  with  for different values of

Pr 0.5, 1, 2, 4, 7 when 1RN   and 1M 

Figure 4.10: The temperature profile ( )  with  for different values of

0, 1, 2, 4M  when Pr 1RN  and 0.2 
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Figure 4.11: The temperature profile ( )  with  for different values of

0.5, 1, 2, 4RN  when Pr 1  and 1M 

Figure 4.12: The velocity profile ( )f  with  for different values of

0.3,0.5,0.7, 1.3, 1.5, 1.7  when Pr 1RN  and 0.5M 
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Figure 4.13: The velocity profile ( )f  with  for different values of

0.0,0.3,0.5,0.7, 0.9M  when 0.2,2  and Pr 1RN 

4.3.3 Convective Boundary Conditions (CBC)

The Eqs. (4.23) and (4.27) with boundary condition (4.28) are numerically

solved for the case of convective boundary conditions with five parameters considered,

namely, the magnetic parameter ,M radiation parameter RN , velocity ratio parameter

 , Prandtl number Pr and conjugate parameter  . Table 4.9 presents the comparison

results for convective boundary conditions (CBC) corresponding to the value of heat

transfer coefficient (0)  without the velocity ratio parameter when    with the

available published results of Magyari and Keller (1999) and Ishak (2011). The new

results shows good agreement with previous results reported by Magyari and Keller

(1999) and Ishak (2011).

Tables 4.10 to 4.14 exhibit the reduced skin friction coefficient and heat transfer

coefficient (0)  with various values of magnetic parameter M , radiation parameter
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RN , velocity ratio parameter  , Prandtle number Pr , and conjugate parameter 

respectively. Table 4.10 shows the reduced skin friction coefficient (0)f  and heat

transfer (0)  with various values of M when 0.5RN    and Pr 10 . It

demonstrates that with strong magnetic field the reduced skin friction coefficient and

heat transfer coefficient are reduced. The reduced skin friction coefficient (0)f  and heat

transfer coefficient (0)  with various values of RN when 0.5M    and

Pr 10 are provided in Table 4.11. The value of the reduced skin friction coefficient

(0)f  and heat transfer coefficient (0)  decreases with increasing values of radiation

parameter RN .

Table 4.12 shows the reduced skin friction coefficient (0)f  and heat transfer

coefficient (0)  with various values of  , when other governing parameters are fixed.

This table illustrates the reduced skin friction coefficient (0)f  and heat transfer

coefficient (0)  increases with increasing values of  . The effects of Prandtl number

on the reduced skin friction coefficient (0)f  and heat transfer coefficient (0)  are

presented in Table 4.13. From this table it should be noted that by increasing the values

of Prandtl number Pr , it will increase the reduced skin friction coefficient (0)f  and

heat transfer coefficient (0)  . Finally, the effect of the reduced skin friction

coefficient (0)f  and heat transfer coefficient (0)  with various values of  when

0.5RM N    and Pr 10 are shown in Table 4.12. It shows the conjugate

parameter has no effect on the reduced skin friction coefficient (0)f  , but, heat

transfer coefficient (0)  increases with increasing the values of conjugate parameter

 .

In addition, temperature profiles ( )  with governing parameters are plotted in

Figures 4.14 to 4.18. Figure 4.14 shows the temperature profiles ( )  for various values

of 0.2,0.5,1,2M  when Pr 0.5RN    and 0.5  . It can be seen that temperature

( )  increases with increasing of magnetic field M . Moreover, the temperature profile

( )  for different values of 0.2,0.5,1,2RN  is shown in Figure 4.15. It shows that,
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( )  increases with increasing values of RN and fixed values of Pr, ,M  and  . Figure

4.16 illustrates the effect of ( )  with various values of 0.2,0.5,1,2  and fixed value

of Pr 0.5RM N   and 0.5  . Temperature ( )  increases with increasing in the

values of  .

On the other hand, Figure 4.17 shows that the temperature ( )  increases with

the decreasing values of Pr . Finally, figure 4.18 presents the temperature profile ( ) 

with 0.2,0.5,1,2  and fixed values of Pr 0.5RM N   and 0.5  . It shows the

values of  decreases with increasing values of the temperature ( )  . The velocity

profiles ( )f  for different values of velocity ratio parameter  are illustrated in Figure

4.19. It can be observed from the figure that, the velocity increases with increasing

values of  . Figure 4.20 shows the velocity profiles ( )f  for various values of the

magnetic parameter M . The velocity ( )f  is found to be increased with increasing

values of M and for 1  . While a reverse effect is observed for the case of 1  and

Pr 1RN  .

Table 4.15 displays the comparison velocity and temperature profiles with three

cases of boundary conditions. From this table, it’s found that, in three cases of boundary

conditions the behavior of velocity profile are the same. The velocity increases by

increasing the value of M when 1  , while a reverse effect in observed for the case of

1  . Furtherer, the temperature increase with increasing the value of magnetic

parameter, but it increases by decreasing  . Just the physical graphs of temperature

confirm the boundary conditions.
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Table 4.9: The comparison of (0)  with various values of ,RN M and Pr when 0 

and   

RN M Pr Magyari and Keller, 1999 Ishak (2011)
Present

results

0 0 10 3.660379 3.6604 3.6604

0 0 5 2.500135 2.5001 2.5001

0 0 3 1.869075 1.8691 1.8691

0 0 1 0.954782 0.9548 0.9548

0 1 1 ------- 0.8611 0.8611

1 0 1 ------ 0.5312 0.5312

1 1 1 ------ 0.4505 0.4505

Table 4.10: The values of (0)  and (0)f  with different values of M when

0.5RN    and Pr 10

M (0)  (0)f 

0.3 0.4255 -1.0097

0.5 0.4251 -1.0918

0.7 0.4247 -1.1706

1 0.4241 -1.2831

3 0.4204 -1.9011

5 0.4173 -2.3732

7 0.4145 -2.7652

10 0.4106 -3.2657

15 0.4049 -3.9579
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Table 4.11: The values of (0)  and (0)f  with different values of RN when

0.5M    and Pr 10

RN (0)  (0)f 

0.3 0.4308 -1.0962

0.5 0.4251 -1.0918

0.7 0.4198 -1.0918

1.0 0.4128 -1.0918

3.0 0.3786 -1.0962

5.0 0.3553 -1.1007

7.0 0.3375 -1.1025

10.0 0.3166 -1.1033

15.0 0.2908 -1.1038

Table 4.12: The values of (0)  and (0)f  with different values of  when

0.5RN M   and Pr 10

 (0)  (0)f 

0.1 0.4226 -1.4430

0.2 0.4230 -1.3898

0.3 0.4236 -1.3132

0.5 0.4250 -1.0962

0.7 0.4266 -0.8049

1.0 0.4291 -0.2493

3.0 0.4419 6.0538

5.0 0.4498 15.5428

7.0 0.4552 27.4143
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Table 4.13: The values of (0)  and (0)f  with different values of Pr when

0.5RN M   and 0.5 

Pr (0)  (0)f 

0.3 0.2226 -1.1040

0.5 0.2584 -1.1040

0.7 0.2821 -1.1038

1.0 0.3065 -1.1036

3.0 0.3730 -1.1007

5.0 0.3979 -1.0962

7.0 0.4120 -1.0918

10.0 0.4251 -1.0850

15.0 0.4379 -1.0850

Table 4.14: The values of (0)  and (0)f  with different values of  when

0.5RN M   and Pr 10

 (0)  (0)f 

0.1 0.0966 -1.0850

0.2 0.1868 -1.0850

0.3 0.2713 -1.0850

0.5 0.4251 -1.0850

0.7 0.5615 -1.0850

1.0 0.7395 -1.0850

3.0 1.4586 -1.0850

5.0 1.8107 -1.0850

7.0 2.0196 -1.0850
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Figure 4.14: The temperature profiles ( )  for several values of 0,2, 0.5, 1,2M 

when Pr 0.5RN    and 0.5 

Figure 4.15: The temperature profiles ( )  for several values of 0.2, 0.5, 1,2RN 

when Pr 0.5M    and 0.5 
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Figure 4.16: The temperature profiles ( )  for several values of 0,2, 0.5, 1,2  when

Pr 0.5M    and 0.5RN 

Figure 4.17: The temperature profiles ( )  for several values of Pr 0,2, 0.5, 1,2

when 0.5RN M    and 0.5 
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Figure 4.18: The temperature profiles ( )  for several values of 0.2, 0.5, 1,2  when

Pr 0.5RN M   and 0.5 

Figure 4.19: The velocity profiles ( )f  for several values of 0,0.4,0.8,1.3,1.6,2.0 

when Pr 0.5RN M   and 0.5 
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Figure 4.20: The velocity profiles ( )f  for several values of 0.2,0.5,1,2M  when

Pr 0.5RN    and 0.5, 1.7 

4.4 CONCLUSION

This chapter investigates the effect of radiation on stagnation point flow and

heat transfer toward an exponentially stretching sheet in hydrodynamic field with three

cases boundary conditions namely prescribed wall temperature, prescribed surface heat

flux and convective boundary conditions are considered. In this investigation, the effect

of velocity ratio parameter , radiation parameter RN , magnetic parameter M , prandtl

number Pr and conjugate parameter on reducedl skin friction coefficient, local Nusselt

number, velocity and temperature profile are discussed.

Temperature profile increases when the values of the radiation parameter and

magnetic parameter increase, but with an increase in temperature profile, the values of

the Prandtl number and velocity ration parameter are decreased. The temperature profile

and velocity profile increases with increasing values of the conjugate parameter and

velocity ratio parameter, respectively.
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Table 4.15: The comparison velocity and temperature profiles with three boundary conditions PWT, PHF and CBC
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CHAPTER 5

CONCLUSIONS

5.1 SUMMARY AND CONCLUSION

This research project considers two main problems. The first problem is that of

the boundary layer stagnation point flow and heat transfer over an exponentially

stretching sheet. This problem considers three cases of boundary conditions namely,

prescribed wall temperature, prescribed surface heat flux and convective boundary

conditions. The second problem is the radiation effects on the MHD stagnation point

and heat transfer towards an exponentially stretching sheet. This problem also,

considers three cases of boundary conditions, prescribed wall temperature, prescribed

surface heat flux and convective boundary conditions. We derive the mathematical

models of these problems. First of all, the nonlinear partial differential equations are

transformed to nonlinear ordinary differential equations by similarity transformation.

The nonlinear ordinary differential equations have being numerically solved by using

the Keller-box method.

General introductions, the boundary layer theory, boundary conditions, research

objective, research scope, literature review, significant of the research and thesis outline

are presented in Chapter 1. The governing equation and detailed numerical method are

discussed in Chapter 2. In this chapter, the Keller-box method is considered for a

particular problem of the boundary layer stagnation point flow and heat transfer over an

exponentially stretching sheet with prescribed wall temperature. This method involves

several steps. Firstly, the ordinary differential equation is reduced to a system of first-

order equations. Then, the system rewrites in finite difference forms using central

difference. Next, Newton’s method is used for linearization. The linear system is solved
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by using the block triadiagonal elimination technique, the Keller-box method is

programmed in MATLAB.  The complete program is given in Appendix B.

Chapter 3 discusses the first problem of stagnation point flow and heat transfer

towards an exponentially stretching/shrinking sheet. The problem considers three cases

of boundary conditions, namely prescribed wall temperature, prescribed surface heat

flux and convective boundary conditions. The results of this problem were compared

with the existing results from literature and the results obtained are consistent with

previous reported results. The effects of the governing parameter namely the Prandtl

number and stretching/shrinking parameter on the momentum and energy equations are

discussed. The equations have dual, unique and non-similarity solution and which is

dependent on the velocity ratio parameter. When 0.9734 1.487068    the

equations have dual solution, the unique solution exists for 0.9734   and non-

similarity solution is found for 1.487068   . For the case of convective boundary

conditions, we found that the critical values for prandtl number Pr and conjugate

parameter  in second solution. The prandtl number Pr must be smaller than a critical

value Prc and it depends on conjugate parameter  . Furthermore, the conjugate

parameter  must be greater than some critical value c which depends on the Prandtl

number Pr .

The radiation effect on the magnetohydrodynamic (MHD) stagnation point flow

and heat transfer over an exponentially stretching sheet is presented in chapter 4. This

chapter studied the effect of the radiation parameter, magnetic parameter, Prandtl

number and stretching parameter on the reduced skin friction coefficient, local Nusselt

number as well as velocity and temperature profiles. We consider three cases of

boundary conditions namely prescribed wall temperature, prescribed surface heat flux

and convective boundary conditions. The problem is then reduced to a system of

nonlinear ordinary differential equation. The results are also compared with the existing

results in the literature. The results are presented in the tabular form and graphically. It

can be concluded that we have added two parameters namely the radiation parameter,

the magnetic parameter in second problem, so we can compare these two problem, it is
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important to know the effects of these two parameter on skin friction coefficient, heat

transfer coefficient, velocity profile and temperature.

In comparison we can write, the heat transfer coefficient increased with

increasing values of the velocity ratio parameter and Prandtl number in both problems,

meanwhile it decreases with the increasing values of the magnetic parameter and

radiation parameter in second problem. In these three cases of boundary conditions the

behavior of temperature are the same. In both problems, the temperature profiles

decrease with the increase in the values of Prandtl number and the velocity ratio

parameter. But in second problem, the temperature increases with increasing values of

radiation parameter and magnetic parameter. The temperature increases with the

increase in the values of conjugate parameter for case of convective boundary

conditions in both problems. In comparison, the radiation parameter has negative effects

on heat transfer, but the magnetic parameter has positive effects in velocity of flow. In

addition, it can be concluded from the graphs that temperature is highest near the plate,

decreases when further away from the plate and asymptotically approaches zero in the

free stream region.

The contributions in this thesis are presented in the form of reduced skin friction

coefficient, heat transfer coefficient, local Nusselt number, and dimensionless velocity

and temperature profiles for various values of velocity ratio parameter, Prandtl number,

magnetic parameter, radiation parameter and conjugate parameter.

5.2 SUGGESTION FOR FUTURE STUDIES

There are number of interesting investigations regarding the problem of

boundary layer flow. The problem of boundary layer stagnation point flow towards an

exponentially stretching sheet is presented in this thesis. This problem concentrates on

three types of boundary conditions which are prescribed wall temperature, prescribed

surface heat flux and convective boundary conditions. This problem might be extended

for future studies as follows
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1. Include other effects such as chemical reaction, slip effects and soret/dufour

which are also important in industrial applications.

2. Consider the nanosize particles (nanofluid) and viscoelastic due to its important

applications such as in cooling of a large metallic plate in a bath and glass fiber

production.

3. Consider other geometrics such as vertical plate inclined stretching plate, sphere

and horizontal circular cylinder.

4. Consider other boundary conditions such as Hall current effect convective heat

transfer and Newtonian heating.
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APPENDIX A

LIST OF SYMBOLS IN MATLAB PROGRAM

MATLAB KELLER-BOX

np J

eta, etainf, deleta , ,   

f, u, v, s, t , , , ,f f f    

cfb, cub, cvb, csb, ctb 1 1 1 1 1
1 2 1 2 1 2 1 2 1 2, , , ,n n n n n

j j j j jf u v s t    
    

cuub, cfvb, cftb, cusb  21 1 1 1 1 1 1
1 2 1 2 1 2 1 2 1 2 1 2 1 2, , ,n n n n n n n

j j j j j j ju f v f t u s      
      

cdervb, cdertb    1 1 1 1 1 1
1 1,n n n n

j j j j j jv v h t t h     
  

fb, ub, vb, sb, tb 1 2 1 2 1 2 1 2 1 2, , , ,j j j j jf u v s t    

uub, fvb, ftb, usb  21 2 1 2 1 2 1 2 1 2 1 2 1 2, , ,j j j j j j ju f v f t u s      

dervb, dertb    1 1
1 1,j j j j j jv v h t t h 
  

a1 to a6    1 6to
j j

a a

b1 to b8    1 8to
j j

b b

r1 to r5    1 5 to
j j

r r

r1,  r2    1 1

1 21 2 1 2
,

n n

j j
R R

 

 

a, b, c , ,j j jA B C          

alfa, gamma ,j j      

ww, rr, dell , ,j j jW r           

delf,  delu, delv, dels, delt , , , ,f u v s t    
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APPENDIX B

THE MATLAB PROGRAMS FOR BOUNDARY LAYER STAGNATION POINT

FLOW AND HEAT TRANSFER OVER AN EXPONENTIALLY STRETCHING

SHEET WITH PRESCRIBED WALL TEMPERATURE (PWT)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% These Matlab Codes Solve the Problem of boundary layer Stagnation  %
% point flow toward an exponentially stretching/shrinking sheet with %
% Prescribed Wall Temperature (PWT) Chapter 3                        %
%                                                                    %
%  f"' + ff" - 2 * f'^2 + 2  = 0 %
%  g" + pr ( f g' - f' g  )= 0                                       %
%  f(0)=0     f'(0)= ee   g(0)= 1                                    %
%  f'(inf)= 1    g(inf)=0                                            %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Insert The following values of Parameter:

clear all ; clc
blt = 10;
deleta = 0.01 ;
np = (blt /deleta)+1;
pr = input (' Input the value of Prandtl Number = ');
ee = input (' Input the value of Stretching Parameter = ');

% Previous Station

% cfb = 0.0; cub = 0.0; cvb = 0.0; csb = 0.0; ctb = 0.0;
% cuub = cub^2; cfvb = cfb * cvb; cftb = cfb * ctb;
% cusb = cub *csb; cdervb = 0.0; cdertb =0.0;

% set initial values for iteration

stop=1.0; k=1;
while stop>0.00001

% Generates the grids in y direction

eta(1,1)=0.0;
for j=2:np
eta(j,1)=eta(j-1,1)+deleta;
end

% Initial value of velocity and temperature profile
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etau15 = 1 / eta(np,1);
etanp = eta(np,1);
for j = 1:np
deta(j,k) = deleta;
etab = eta(j,1) / eta(np,1);
etab1 = (1-etab);
etab2 = (1-etab)^2;
etau = eta(j,1);

% initial guess used for Eqs. (2.116)-(2.120)

f(j,1) = etau * (ee + 0.5 * etab *(1-ee));
u(j,1) = etab + eeetab1;
v(j,1) = etau15 * (1 – ee);
s(j,1) = etab2;
t(j,1) = -2* etab1 * etau15;
end

% Present station
% Eqs. (2.51)- (2.53)

for j = 2: np

fb(j,k) = 0.5 * (f(j,k) + f(j-1,k));
ub(j,k) = 0.5 * (u(j,k) + u(j-1,k));
vb(j,k) = 0.5 * (v(j,k) + v(j-1,k));
sb(j,k) = 0.5 * (s(j,k) + s(j-1,k));
tb(j,k) = 0.5 * (t(j,k) + t(j-1,k));
fvb(j,k) = fb(j,k) * vb(j,k);
uub(j,k) = ub(j,k) * ub(j,k);
ftb(j,k) = fb(j,k) * tb(j,k);
sub(j,k) = sb(j,k) * ub(j,k);

%coefficients of the difference momentum equation (2.89)

a1(j,k) = 1.0 + ( 0.5 * deta(j,k) * fb(j,k));
a2(j,k) = a1(j,k) - 2.0;
a3(j,k) = 0.5 * deta(j,k) * vb(j,k);
a4(j,k) = a3(j,k);
a5(j,k) = - deta(j,k) * ub(j,k);
a6(j,k) = a5(j,k);

%coefficients of the difference energy Eq (2.90)

b1(j,k) = 1 + 0.5 * pr * deta(j,k) * fb(j,k);
b2(j,k) = b1(j,k) - 2.0;
b3(j,k) = 0.5 * pr * deta(j,k) * tb(j,k);
b4(j,k) = b3(j,k);
b5(j,k) = -0.5 * pr * deta(j,k) * sb(j,k);
b6(j,k) = b5(j,k);
b7(j,k) = -0.5 * pr * deta(j,k) * ub(j,k);
b8(j,k) = b7(j,k);

% expressions of r(j-1/2) in Eq(2.91)

r1(j,k) = (f(j-1,k) - f(j,k)) + (deta(j,k) * ub(j,k));
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r2(j,k) = (u(j-1,k) - u(j,k)) + (deta(j,k) * vb(j,k));
r3(j,k) = (s(j-1,k) - s(j,k)) + (deta(j,k) * tb(j,k));
r4(j,k) = (v(j-1,k) - v(j,k)) - deta(j,k) * (fvb(j,k)...
+ 2 - 2 * uub(j,k ));
r5(j,k) = pr * deta(j,k) *(sub(j,k) - ftb(j,k))...
+(t(j-1,k) - t(j,k)) ;
end

% obtain the matrices

a{2,k} = [0 0 1 0 0; -0.5*deta(2,k) 0 0 -0.5*deta(2,k) 0;...
0 -0.5*deta(2,k) 0 0 -0.5*deta(2,k); a2(2,k) 0 a3(2,k)
a1(2,k) 0;...
0 b2(2,k) b3(2,k) 0 b1(2,k)];
for j= 3:np
a{j,k} = [-0.5*deta(j,k) 0 1 0 0; -1 0 0 -0.5*deta(j,k) 0;...
0 -1 0 0 -0.5*deta(j,k); a6(j,k) 0 a3(j,k) a1(j,k) 0;...
b6(j,k) b8(j,k) b3(j,k) 0 b1(j,k)];
b{j,k} = [0 0 -1 0 0; 0 0 0 -0.5*deta(j,k) 0;...
0 0 0 0 -0.5*deta(j,k); 0 0 a4(j,k) a2(j,k) 0;...
0 0 b4(j,k) 0 b2(j,k)];
end
for j=2: np-1
c{j,k} = [ -0.5*deta(j,k) 0 0 0 0; 1 0 0 0 0 ; 0 1 0 0 0;...
a5(j,k) 0 0 0 0; b5(j,k)  b7(j,k) 0 0 0];
end

% The recursion formulas

alfa{2,k} = a{2,k};
for j = 3:np
gamma{j,k} = b{j,k} * inv(alfa{j-1,k});
alfa{j,k} = a{j,k} - gamma{j,k} * c{j-1,k};
end
for j = 2:np
rr{j,k} = [ r1(j,k); r2(j,k); r3(j,k); r4(j,k); r5(j,k)];
end
ww{2,k} = rr{2,k};
for j = 3:np
ww{j,k} = rr{j,k} - gamma{j,k} * ww{j-1,k};
end

% Eq. (2.92)

delf(1,k) = 0;
delu(1,k) = 0;
dels(1,k) = 0;
delu(np,k) = 0;
dels(np,k) = 0;
dell{np,k} = inv(alfa{np,k}) * ww{np,k};
for j = np-1:-1:2
dell{j,k} = inv(alfa{j,k}) * (ww{j,k} - (c{j,k} *

dell{j+1,k}));
end
delv(1,k) = dell{2,k}(1,1);
delt(1,k) = dell{2,k}(2,1);
delf(2,k) = dell{2,k}(3,1);
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delv(2,k) = dell{2,k}(4,1);
delt(2,k) = dell{2,k}(5,1);
for j = np:-1:3
delu(j-1,k) = dell{j,k}(1,1);
dels(j-1,k) = dell{j,k}(2,1);
delf(j,k) = dell{j,k}(3,1);
delv(j,k) = dell{j,k}(4,1);
delt(j,k) = dell{j,k}(5,1);
end

% Newton's method

for j = 1:np
f(j,k+1) = f(j,k) + delf(j,k);
u(j,k+1) = u(j,k) + delu(j,k);
v(j,k+1) = v(j,k) + delv(j,k);
s(j,k+1) = s(j,k) + dels(j,k);
t(j,k+1) = t(j,k) + delt(j,k);
end

% Check for convergence of the derivatives

stop = abs(delv(1,k));
kmax = k;
k = k+1;
end
kmax
f_0=f(1,kmax)
u_0=u(1,kmax)
u_inf=u(np,kmax)
s_0=s(1,kmax)
f_inf=f(np,kmax)
s_inf=s(np,kmax)
t_0=-t(1,kmax)
v_0=v(1,kmax)

plot (eta,s(:,kmax),'r')
xlabel('\eta')
ylabel('\theta(\eta)')

hold on
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