

PSAT: A PAIRWISE TEST DATA GENERATION

TOOL BASED ON SIMULATED ANNEALING

ALGORITHM

GOH GHEE HAU

BACHELOR DEGREE OF COMPUTER SCIENCE

(SOFTWARE ENGINEERING)

UNIVERSITI MALAYSIA PAHANG

 i

DECLARATION OF THESIS AND COPYRIGHT

 Author’s full name : GOH GHEE HAU

Date of birth : 07 JUNE 1992_______________________________

Title : PSAT: A PAIRWISE TEST DATA GENERATION TOOL BASED ON

SIMULATED ANNEALING ALGORITHM

Academic Session : SEMESTER 1 2015/2016

I declare that this thesis is classified as:

CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

OPEN ACCESS I agree that my thesis to be published as online open

access (Full text)

I acknowledge that University Malaysia Pahang reserve the right as follows:

1. The Thesis is the Property of University Malaysia Pahang.

2. The Library of University Malaysia Pahang has the right to make copies for the

purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified By:

_________________________ __________________________

(Student’s Signature) (Signature of Supervisor)

__________________________ _________________________

New IC / Passport Number Name of Supervisor

Date: Date:

 ii

DECLARATION

I hereby declare that this research entitled “PSAT: A Pairwise Test Data Generation Tool

Based on Simulated Annealing Algorithm” is the result of my own research except the

citation in the references. The result has not been accepted for any degree and is not

concurrently submitted in candidature of any degree.

Date: 9th December 2015 GOH GHEE HAU

CB12079

 iii

SUPERVISOR DECLARATION

I hereby declare that I have read this research and my option in this research is sufficient in

terms of scope and quality for the award of the degree of Bachelor of Computer Science

(Software Engineering).

Signature : ….………………………………

Supervisor Name : Dr. AbdulRahman A. Al-Sewari

Date : ………………………………….

 iv

ACKNOWLEDGEMENTS

Firstly, I would like to express my thanks to my beloved parents who born me and provides

opportunity for me to enter local university. I also like to thanks to University Malaysia

Pahang (UMP) for giving me a chance and place to learn knowledge and done my bachelor

degree.

Besides that, I am very appreciating to have Dr. AbdulRahman A. Al-Sewari as my

supervisor for my Final Year Project (FYP) in 2015. I would like to thanks for his advices,

guidelines and support for me to complete my research during the whole FYP.

Hereby, I wish to thanks all the lecturers in UMP for passing their knowledge to me to

complete my research and studies in UMP. Next, I would like to thank to all my fellow

friends and seniors that always support me during the life in UMP.

Last but not least, I would like to thank the UMP RDU130366 Short Term Grants:

Development of a Pairwise Testing Tool with Constraint and Seeding Support Based on

and Optimization Algorithm, UMP RDU150369 A new Hybrid Variable Interaction

Strength Test Data Generation Strategy Based on Harmony Search Algorithm and Cuckoo

Search Algorithm, and FRGS RDU130199 Grant: Input Output Relations Harmony Search

T-way Testing Strategy, whose partially funded this dissertation.

 v

ABSTRACT

In this information technology era, there is a huge influence of high technology and

artificial intelligence when creating new software products in the whole world. To bring

high quality software products to the end user, software testing plays important roles and

need to be considered during the development stage. Therefore, there is impossible to cover

all the test case of the software products and may lead to exhaustive testing. This research

is about the research on developing a Pairwise Test Data Generation Tool based on

Simulated Annealing (SA) algorithm which named as PSAT. PSAT is used to generate the

sufficient test case to reduce the financial resources and time. In PSAT, we using pairwise

testing techniques which each interaction of test case considers of two input parameters.

Each parameter will have different parameter values that entering by users. In development

of PSAT, a prototype of Graphics User Interface (GUI) will be designed and create for user

to enter the number of parameters and number of values for each parameter. In this research,

the test case will be generated based on the SA algorithm to show that the test case can be

generated with sufficient.

 vi

ABSTRAK

Dalam era penuh dengan teknologi maklumat ini, terdapat pengaruh besar terhadap

teknologi tinggi dan kecerdasan buatan semasa membuat produk perisian baru di seluruh

dunia. Untuk membawa produk perisian yang berkualiti tinggi kepada pengguna akhir,

ujian perisian memainkan peranan yang penting dan perlu dipertimbangkan semasa

peringkat pembanguanan. Oleh sebab itu, adalah mustahil untuk merangkumi semua kes

ujian terhadap produk perisian dan ini boleh menyebabkan ujian lengkap terhadap sesuatu

produk. Kajian ini adalah mengenai pembangunan terhadap satu Pairwise Test Data

Generation Tool berdasarkan Simulated Annealing (SA) algoritma dengan beri nama PSAT.

PSAT digunakan untuk menjana kes ujian supaya dapat mengurangkan kegunaan sumber

kewangan and masa. Dalam PSAT, kita menggunakan teknik ujian dari segi pasangan di

mana setiap interaksi kes ujian mempunyai dua parameter input. Dalam setiap parameter

akan mempunyai nilai-nilai yang berbeza yang akan dimasukkan oleh pengguna. Dalam

pembangunan PSAT, satu prototaip Graphics User Interface (GUI) akan direka bentuk dan

membolehkan pengguna memasukkan nombor parameter dan niali bagi setiap parameter.

Dalam kajian ini, kes ujian dijana mengikut SA algoritma untuk menujukan kes ujian dapat

dijana dengan mencukupi.

 vii

TABLE OF CONTENTS

DECLARATION OF THESIS AND COPYRIGHT .. i

DECLARATION ... ii

SUPERVISOR DECLARATION .. iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT ... v

ABSTRAK .. vi

TABLE OF CONTENTS .. vii

LIST OF TABLES .. x

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS .. xiii

CHAPTER 1 INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Problem Statement ... 3

1.3 Goal and Objectives ... 4

1.4 Scope .. 4

1.5 Thesis Organization ... 4

1.6 Summary .. 5

CHAPTER 2 LITERATURE REVIEW ... 6

2.1 Introduction .. 6

2.2 Overview .. 6

2.2.1 Pairwise Testing .. 7

 viii

2.3 Survey of Existing Pairwise Strategies .. 14

2.3.1 One Test at a Time (OTAT) ... 15

2.3.2 One Parameter at a Time (OPAT) .. 18

2.4 Analysis of Existing Pairwise Strategies.. 21

2.5 Summary .. 22

CHAPTER 3 METHODOLOGY .. 23

3.1 Introduction .. 23

3.2 Methodology .. 24

3.2.1 Requirement Planning ... 25

3.2.2 User Design ... 26

3.2.3 Implementation ... 26

3.2.4 Evaluation and Documentation ... 27

3.3 Hardware and Software .. 27

3.4 Summary .. 28

CHAPTER 4 DESIGN, IMPLEMENTATION AND RESULT DISCUSSION 29

4.1 Introduction .. 29

4.2 Development of PSAT ... 29

4.2.1 User Interface of PSAT ... 32

4.2.2 Interaction List Generation ... 36

4.2.3 Test Case Generation .. 45

4.2.4 Mapping Generation Algorithm .. 51

4.3 Result and Discussion .. 53

4.4 Summary .. 58

CHAPTER 5 CONCLUSION .. 59

5.1 Introduction .. 59

 ix

5.2 Research Constraint ... 61

5.3 Future Work ... 62

REFERENCES .. 63

APPENDICES ... 66

 x

LIST OF TABLES

Table 1 Parameters and Values of Laptop Features ... 3

Table 2 Input Variables and Values of Four Parameters .. 8

Table 3 Exhaustive Combinations of P1, P2, P3 and P4 .. 9

Table 4 2-way Combination for P1P2 .. 10

Table 5 2-way Combination for P1P3 .. 10

Table 6 2-way Combination for P1P4 .. 11

Table 7 2-way Combination for P2P3 .. 11

Table 8 2-way Combination for P2P4 .. 12

Table 9 2-way Combination for P3P4 .. 12

Table 10 Summary Analysis of the Existing Pairwise Strategies ... 22

Table 11 Hardware Specifications for Development PSAT ... 27

Table 12 Software Specifications for Development PSAT .. 28

Table 13 Assigning Symbolic Values for Specify Parameter Values 37

Table 14 Five Parameters with Symbolic Values ... 38

Table 15 Possible Interaction for P1, P2, P3, P4 and P5 .. 39

Table 16 Binary Position for Possible Interaction .. 41

Table 17 Position of Each Parameter .. 41

Table 18 Input Specifications for Experiment 1 ... 54

Table 19 Results for Other Existing Pairwise Strategies Tools in Experiment 1 54

Table 20 Results for PSAT in Experiment 1 .. 55

Table 21 Input Specifications for Experiment 2 ... 56

Table 22 Results for Other Existing Pairwise Strategies Tools in Experiment 2 56

Table 23 Results for PSAT in Experiment 2 .. 57

 xi

LIST OF FIGURES

Figure 1 A System Consists of Four Parameters .. 7

Figure 2 Merging of the P1, P2, P3 and P4 .. 13

Figure 3 Existing Pairwise Strategies ... 14

Figure 4 The Genetic Algorithm ... 16

Figure 5 The AETG Greedy Algorithm .. 17

Figure 6 The IPO Algorithm ... 19

Figure 7 The Search Algorithm for IRPS ... 21

Figure 8 Methodology Based on Rapid Application Development (RAD) Model 25

Figure 9 The Overview of PSAT Framework .. 30

Figure 10 Flow Chart for the Whole PSAT Framework .. 31

Figure 11 User Interface of PSAT .. 33

Figure 12 Text File Format for User Input ... 34

Figure 13 Final Test Cases with Actual Parameter Name of PSAT 35

Figure 14 Automated Assigning Algorithm for Each Parameter Values 37

Figure 15 Pseudocode for Interaction List Generation When T=2 40

Figure 16 Pseudocode of Interaction List Generation .. 42

Figure 17 Calculation for Total Possible Interaction .. 43

Figure 18 Structure Generating Interaction List with Symbolic Numbers 44

Figure 19 The SA Algorithm .. 45

Figure 20a Pseudocode of Test Case Generation Based on SA Algorithm 47

Figure 20b Pseudocode of Test Case Generation Based on SA Algorithm 48

Figure 21 Flow Chart of PSAT Algorithm ... 50

Figure 22 Mapping Generation Algorithm ... 51

Figure 23 Mapping Results of the Symbolic Values and Parameter Values 52

 xii

LIST OF ABBREVIATIONS

ACA Ant Colony Algorithm

AETG Automatic Efficient Test Generator

BA_PTC A Bat-Inspired Strategy for Pairwise Testing With Constraints Support

GA Genetic Algorithm

GUI Graphics User Interface

HS Harmony Search Algorithm

IPO In-Parameter-Order

IPOG In-Parameter-Order-General

IPOG-D In-Parameter-Order-General with D-construction

IPOG-F In-Parameter-Order-General with FireEye

IRPS Intersection Residual Pair Set

JDK Java Development Kit

LAHC Late Acceptance Hill Climbing Algorithm

OPAT One Parameter at a Time

OTAT One Test at a Time

OS Operating System

PICT Pairwise Independent Combinatorial Testing

PSAT Pairwise Test Data Generation Tool Based on Simulated Annealing

Algorithm

RAD Rapid Application Development

RAM Random Access Memory

 xiii

R&D Research and Development

SA Simulated Annealing Algorithm

SDLC Software Development Life Cycle

USB Universal Serial Bus

XP Extreme Programing

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

In the information technology era, there is a huge influence of high technology and

artificial intelligence when creating new software products in the whole world. This brand

new method provides an effective way from bringing high quality software products to the

end user. Many fields also rely on this method, especially in the Research and Development

(R&D) area. As an evidence, there are many manual processes has been taking place by

certain software products or artificial intelligence. Basically, every created product is

operating by the combination of hardware and software to implement each feature

(Perrouin G. et al. 2011). There is a closely relationship between hardware and software,

both are playing an important roles to avoid failure exists.

Failure of products will happen when a human action produces some error or bug in

the software and this will lead to the defects which will cause a failure occur when executed.

This problem will cause serious damage of system function, and will involve higher cost

and loss of time especially for a critical system. Therefore, software testing takes first

priority in any Software Development Life Cycle (SDLC) to make sure the quality of

software and to prevent the failure of the software.

2

Software testing defined as the process of executing a program on finding possible

errors and validating the software or system against its specification (Myers, G. J., Badgett,

T., & Sandler C. 1979). From the studies of seven principles, we know that exhaustive

testing is impossible to execute all the test cases for a real software product (Wang, S., Ali,

S., & Gotlieb, A. 2013). A complete testing or test for everything is impossible because

there are many possible combinations of inputs and pre-condition test case for software.

Pairwise testing is an effective combinatorial method used to minimize the number

of the test case that needs to inputs to a system which interactions between two input

parameters values (McCaffrey, J. D. 2010). This strategy will be generating test cases that

cover all the possible combinations to include the test data and to reduce the possibilities of

faults due to interaction (Perrouin, G. et al. 2011). There are many pairwise testing

strategies are available in the industry such as Ant Colony Algorithm (ACA) (Shiba, T.,

Tsuchiya, T. & Kikuno, T. 2004), Automatic Efficient Test Generator (AETG) (Cohen, D.

M., Dalal, S. R., Fredman, M. L. & Patton, G. C. 1997), Genetic Algorithm (GA), Harmony

Search (HS) Algorithm, In-Parameter-Order (IPO) (Lei, Y. & Tai, K. C. 1998),

Intersection Residual Pair Set (IRPS) (Younis, M. I., Zamli, K. Z. & Isa, N. A. M. 2008),

Simulated Annealing (SA) algorithm, All-Pairs, and so on. In Chapter 2, several existing

strategies such as AETG, GA, IPO and IRPS will be elaborated in details.

3

1.2 Problem Statement

The main outcome for the software testing is finding defects of the existing software

product. Table 1 shows the features on a laptop which consist of different Operating

System (OS), Processors, System Type, Random Access Memory (RAM), Graphics Card,

Battery, Universal Serial Bus (USB), Hard Drives, Screen Resolutions and Keyboard.

Based on Table 1, there are consists of 10 parameters, which each parameter have two

values. Therefore, exhaustive testing are happen due to 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2

= 210 = 1024 possible combinations need to be test to cover all the test cases. If one test case

needs 5 minutes to be tested, the total minutes to complete the test will be 5120 minutes or

approximately using 3 days to complete all test cases.

Table 1 Parameters and Values of Laptop Features

Parameters Values

OS Windows Linux

PROCESSORS Intel AMD

SYSTEM TYPE 64 bits 32 bits

RAM 2 GB 4 GB

GRAPHICS CARD Yes No

BATTERY Built In External

USB 2.0 3.0

HARD DRIVES 500 GB 1 TB

SCREEN RESOLUTION 1024×768 1280×800

KEYBOARD With Number Pad Without Number Pad

4

1.3 Goal and Objectives

 The main goal of this research is to develop a Pairwise Test Data Generation Tool

based on Simulated Annealing algorithm which given a name as PSAT. Following are the

several objectives to achieve the goal:

i) To study the pairwise testing generation by reviewing the existing pairwise

testing strategies.

ii) To apply Simulated Annealing (SA) algorithm into PSAT.

iii) To evaluate and compare the performance of proposed PSAT against with other

existing strategies in term of test size.

1.4 Scope

The PSAT will be developing by using the NetBeans8.0.2 with JFrame and Java

Development Kit (JDK) 8.0. Following are the scope of the research:

i) A pairwise tool with design of Graphics User Interface (GUI).

ii) A pairwise tool that adopting SA algorithm.

iii) A pairwise tool that consisting specifies values for each parameter.

1.5 Thesis Organization

 This research consists of five (5) chapters that discuss the main detail in each

chapter. Chapter 1 is Introduction. This chapter discusses the research introduction that will

be done with including the problem statement, goal, objectives, and scope for PSAT.

Chapter 2 is Literature Review. In this chapter, we will discuss the existing research

and literature review that related to the research.

5

Chapter 3 is Methodology. The overall approaches and framework of the research

will be discussed detail in this chapter. The method, techniques or approaches will be

shown on this chapter also.

Chapter 4 is Design, Implementation and Result Discussion of PSAT. In this

chapter, a PSAT design will be illustrated based on the selection algorithm and

implemented into PSAT. The detail of the implementation process that involved will be

discussed. Lastly, the final test cases will be analyzed and evaluated whether the

development is success or failure. The result also used to compare with other strategies.

Chapter 5 is Conclusion. All research that has done will be summarizing in this

chapter. Besides that, the future work and alternative way to improve the research also state

in this chapter.

1.6 Summary

This chapter discussed the introduction of the research of PSAT: Pairwise Test Data

Generation Tool by adopting the Simulated Annealing (SA) algorithm. Problem statement,

goals and objectives, scope and thesis organization are the content of this chapter. Next

chapter will discuss the existing pairwise testing strategies that should be review to

development our PSAT.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 In the Chapter 1, we discuss about the research introduction which included the

problem statement, goals and objectives, and scope. In this Chapter, survey of the relevant

literature review will be carried out to gain idea to design the PSAT. In particular, the

pairwise testing techniques and existing pairwise testing strategy will be elaborated to

justify the current work.

2.2 Overview

 There are many existing strategy has been published and released to industry to be

used in different field. In order to achieve the goal of this research, pairwise testing will be

discussed in details.

7

2.2.1 Pairwise Testing

 Pairwise testing is an effective combinatorial method used to minimize the number

of the test case that needs to inputs to a system which interactions between two input

parameters values (McCaffrey, J. D. 2009). In pairwise testing, a test suite will be

generated to covers all the possible combination that has consists of the test data values for

each pair of parameters. To understand the pairwise testing, an example will be shown with

a system with four parameters which is Router, Browser, Web Server and Database Server.

Each parameter of the system will consist of different values such as Router has Cisco and

Huawei, Browser has Internet Explorer and Google Chrome, Database Server has Oracle

and SQL Server and Web Server has Apache and Jboss as values as shown in Figure 1.

Figure 1 A System Consists of Four Parameters

8

Based on Figure 1, we assign the input variables into unknown term which are

consists of combination of alphabet and numeric number. The result is shown on Table 2.

Table 2 Input Variables and Values of Four Parameters

Base Values Input Variables

Parameter Router

(P1)

Browser

(P2)

Database Server

(P3)

Web Server

(P4)

Parameter

Values

Cisco

(A1)

Internet Explorer

(B1)

Oracle

(C1)

Apache

(D1)

Huawei

(A2)

Google Chrome

(B2)

SQL Server

(C2)

Jboss

(D2)

From the Table 2, the four parameters which are Router, Browser, Database Server

and Web Server are assigning as Parameter 1 (P1), Parameter 2 (P2), Parameter 3 (P3) and

Parameter 4 (P4). The values of each parameter also are assigning with the term of A1, A2,

B1, B2, C1, C2, D1 and D2 which is combination of alphabet and numeric number. The

four inputs variables are consist of two selections from the system respectively. In this

situation, there are 24 = 16 exhaustive combinations to cover all the possible test data and

the result is shown in Table 3.

9

Table 3 Exhaustive Combinations of P1, P2, P3 and P4

Base Values Input Variables

Parameters P1 P2 P3 P4

Parameter

Values

A1 B1 C1 D1

A2 B2 C2 D2

Exhaustive Combinations

T1 A1 B1 C1 D1

T2 A1 B1 C1 D2

T3 A1 B1 C2 D1

T4 A1 B1 C2 D2

T5 A1 B2 C1 D1

T6 A1 B2 C1 D2

T7 A1 B2 C2 D1

T8 A1 B2 C2 D2

T9 A2 B1 C1 D1

T10 A2 B1 C1 D2

T11 A2 B1 C2 D1

T12 A2 B1 C2 D2

T13 A2 B2 C1 D1

T14 A2 B2 C1 D2

T15 A2 B2 C2 D1

T16 A2 B2 C2 D2

10

Pairwise testing techniques have been used to reduce the exhaustive combinations

for this system. By using this technique, a 2-way possible combinations produce P1P2,

P1P3, P1P4, P2P3, P2P4 and P3P4 as the combinations. For P1P2 combination, the test

case has been reduced to four test cases which only consider P1 and P2 as a pair. P3 and P4

are randomly assigned a value as shown in Table 4.

Table 4 2-way Combination for P1P2

Base

Values

Input Variables

P1 P2 P3 P4

A1 B1 C1 D1

A2 B2 C2 D2

2-way Combinations for P1P2

Test Case 1 A1 B1 C1 D1

Test Case 2 A1 B2 C2 D2

Test Case 3 A2 B1 C1 D1

Test Case 4 A2 B2 C2 D2

The second combination is P1P3. For this combination, the test case also been

reduced become four test cases and only consider P1 and P3 as a pair. P2 and P4 are

randomly assigned a value as shown in Table 5.

Table 5 2-way Combination for P1P3

Base

Values

Input Variables

P1 P2 P3 P4

A1 B1 C1 D1

A2 B2 C2 D2

2-way Combinations for P1P3

Test Case 1 A1 B1 C1 D1

Test Case 2 A1 B2 C2 D2

Test Case 3 A2 B1 C1 D1

Test Case 4 A2 B2 C2 D2

11

The third combination is P1P4. For this combination, the total test size also reduced

become four test cases and only considers P1 and P4 as a pair. P2 and P3 are randomly

assigned a value as shown in Table 6.

Table 6 2-way Combination for P1P4

Base

Values

Input Variables

P1 P2 P3 P4

A1 B1 C1 D1

A2 B2 C2 D2

2-way Combination for P1P4

Test Case 1 A1 B1 C1 D1

Test Case 2 A1 B2 C2 D2

Test Case 3 A2 B1 C1 D1

Test Case 4 A2 B2 C2 D2

The fourth combination is P2P3. For this combination, the total test size also

reduced become four test cases and only considers P2 and P3. The value is randomly

assigned for P1 and P4 as shown in Table 7.

Table 7 2-way Combination for P2P3

Base

Values

Input Variables

P1 P2 P3 P4

A1 B1 C1 D1

A2 B2 C2 D2

2-way Combination for P2P3

Test Case 1 A1 B1 C1 D1

Test Case 2 A1 B1 C2 D2

Test Case 3 A2 B2 C1 D1

Test Case 4 A2 B2 C2 D2

12

The fifth combination is P2P4. For this combination, the total test size also reduced

become four test cases and only considers P2 and P4. The value is randomly assigned for

P1 and P3 as shown in Table 8.

Table 8 2-way Combination for P2P4

Base

Values

Input Variables

P1 P2 P3 P4

A1 B1 C1 D1

A2 B2 C2 D2

2-way Combination for P2P4

Test Case 1 A1 B1 C1 D1

Test Case 2 A1 B1 C2 D2

Test Case 3 A2 B2 C1 D1

Test Case 4 A2 B2 C2 D2

Lastly, the combination is P3P4. For this combination, the total test size also

reduced become four test cases and only considers P3 and P4. The value is randomly

assigned for P1 and P2 as shown in Table 9.

Table 9 2-way Combination for P3P4

Base

Values

Input Variables

P1 P2 P3 P4

A1 B1 C1 D1

A2 B2 C2 D2

2-way Combination for P3P4

Test Case 1 A1 B1 C1 D1

Test Case 2 A1 B2 C1 D2

Test Case 3 A2 B1 C2 D1

Test Case 4 A2 B2 C2 D2

13

After merging the combinations of P1P2, P1P3, P1P4, P2P3, P2P4 and P3P4, the

similar interaction of the combinations are created as a new test case and save into the final

test suite. After save into the final test suite, the interaction are deleted and do not count for

the next test case until all the interaction is covered. The result of this system shows that the

final test suite has been reducing from 16 test cases to 8 cases which reduction of 50%.

Figure 2 shown the total test cases after merge all the combinations.

Figure 2 Merging of the P1, P2, P3 and P4

14

2.3 Survey of Existing Pairwise Strategies

 In this topic, the surveys will be done based on the existing work on pairwise testing.

This existing pairwise testing is difference in two approaches which are one test at a time

(OTAT) and one parameter at a time (OPAT). We will review some existing techniques for

each approach. In one test at a time approaches, we will review the GA (Mitchell, M. 1995)

and AETG (Cohen, D. M., Dalal, S. R., Fredman, M. L. & Patton, G. C. 1997). While in

one parameter at a time approaches, we will review on IPO (Lei, Y. & Tai, K. C. 1998) and

IRPS (Younis, M. I., Zamli, K. Z. & Isa, N. A. M. 2008). Figure 3 show the design of the

existing pairwise strategies.

Figure 3 Existing Pairwise Strategies

15

2.3.1 One Test at a Time (OTAT)

 OTAT is an approach that using by several existing pairwise testing strategies.

OTAT is meant to generate a test case on one time in each iteration. The rule of OTAT is

generating all the test case one by one until all test cases have been covering all the possible

interaction. There are many existing strategies in this approaches such as AETG (Cohen, D.

M., Dalal, S. R., Fredman, M. L. & Patton, G. C. 1997), AETG2, SA, GA, ACA (Shiba, T.,

Tsuchiya, T. & Kikuno, T. 2004), All-Pairs, G2Way, Jenny (Younis, M. I., Zamli, K. Z. &

Isa, N. A. M. 2008), SA_SAT, mAETG_SAT (Alsewari, A. R. A. & Zamli, K. Z. 2012),

Pairwise Independent Combinatorial Testing (PICT) (Ahmed. B. S. & Zamli, K. Z. 2011),

TestCover, LAHC, HSS and BA_PTCS (Alsariera, Y. A., Alsewari, A. R. A. & Zamli, K.

Z. 2015). Here, we discussed by selecting one of the nature based algorithms such as GA

(Mitchell, M. 1995) and one of the first strategies based on pure computational techniques

which are AETG.

2.3.1.1 Genetic Algorithm (GA)

GA is a search heuristic that mimic the processes of biological evolution (Mitchell,

M. 1995). GA is used on finding best solutions to optimization-related problem and search

problem (Flores, P. & Cheon, Y. 2011). In GA, there are three main elements that consider

inside the GA which are chromosome encoding, fitness function and genetic operations. In

chromosome encoding, an individual will be encoded as a chromosome that have one value

of each parameter (Shiba, T., Tsuchiya, T. & Kikuno, T. 2004).

Mostly, each chromosome of the current population will assign a score (fitness)

from the fitness function. The fitness of each chromosome will measure the standard of the

chromosome to solve the problem. The fitness function is used to measure the potential of

individual to find out the good one. The individual that have higher fitness will have more

opportunity to stay in a population.

16

In the genetic operations, there are three types of operators which are selection,

crossover, and mutation (Mitchell, M. 1995):

a) Selection : Used to selects the chromosomes for reproduction.

b) Crossover : Combinations of two chromosomes to create two offspring.

c) Mutation : Randomly changes or modified the chromosomes.

Figure 4 The Genetic Algorithm

Normally, produce a new generation of the population as same as shown in Figure 4

(McCaffrey, J. D. 2009). Firstly, select a pair of parent chromosomes from the population

based on the fitness functions. Secondly, two offspring will be produced from the pair of

parent chromosomes through the crossover. Third, randomly change the fitness functions of

the two offspring by using mutation operator and replace the result in the new population.

This step is repeated to generate the new population until the stopping conditions are met.

17

2.3.1.2 Automatic Efficient Test Generator (AETG)

 AETG is a strategy that used to generate efficient test cases based on the

combinatorial design (Cohen, D. M., Dalal, S. R., Fredman, M. L. & Patton, G. C. 1997).

AETG is used a greedy algorithm to generate a test set by adding one test case which will

cover all the n-way combinations of parameter (Shiba, T., Tsuchiya, T. & Kikuno, T. 2004).

Since the number of test set required to cover all the n-way combinations, therefore the size

of test set are grows logarithmically in the number of test parameters to generate an

efficient test case. Figure 5 shows the algorithm of AETG (Cohen et al. 1997).

Figure 5 The AETG Greedy Algorithm

In AETG algorithm, is same as an incremental method which starts generate an

empty test set by adding one test case until meet 100% coverage for the interaction. This

AETG algorithm help to find the optimal test case because it assumes to find test case that

covers the maximum number of combinations which consists of many possible test cases

(Cohen, D. M., Dalal, S. R., Fredman, M. L. & Patton, G. C. 1997).

18

2.3.2 One Parameter at a Time (OPAT)

 OPAT is another approach that uses to generate all test cases by starting from the

first pairs then add one parameter’s values in each iteration until all pairs are covered. In

this way, we have selected one of the pure computational techniques which are IPO (Lei, Y.

& Tai, K. C. 1998) and one of the improvements of computational techniques like IRPS

(Younis, M. I., Zamli, K. Z. & Isa, N. A. M. 2008).

2.3.2.1 In-Parameter-Order (IPO)

 IPO is a test generation strategy for pairwise testing. This strategy is used to

generate the pairwise test set for the values of the first two parameters follow by extending

the test suite for the first three parameters (Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., &

Lawrence, J. 2008). The step will be continues for every additional another parameter until

all parameters are included in the test suite (Lei, Y. & Tai, K. C. 1998).

There is two algorithms used by IPO to extend test suite for each additional of new

parameters. The first algorithm that been used is horizontal growth that able to add the

value of the new parameters by extending the existing test suite. While the second

algorithm which is vertical growth that used to satisfy between the test suite and pairwise

coverage for the value of the new parameters by adding new test cases. Figure 6 shows the

IPO algorithm (Lei, Y. & Tai, K. C. 1998).

19

Figure 6 The IPO Algorithm

 Lately, the improvement of IPO strategy to become In-Parameter-Order-General

(IPOG), In-Parameter-Order-General with D- construction (IPOG-D) (Lei, Y., Kacker, R.,

Kuhn, D. R., Okun, V. & Lawrence, J. 2007), IPOG-F which is In-Parameter-Order-

General with FireEye and IPOG-F2 (Forbes, M., Lawrence, J., Lei, Y., Kacker, R. N. &

Kuhn, D. R. 2008) that used to optimize the test cases and reduce the execution time

(Alsewari, A. R. A. & Zamli, K. Z. 2012).

20

2.3.2.2 Intersection Residual Pair Set (IRPS)

 IRPS is another efficient pairwise strategies used to test data generation.

Development of IRPS is a way used to generate the pairwise test set with optimum size

(Younis, M. I., Zamli, K. Z. & Isa, N. A. M. 2008). There are several steps to conduct when

generating the test set using IRPS:

1) Step 1 : Save all pairs into a compact linked list called Pi after generating the test

pairs.

2) Step 2 : Search in the Pi list and find the desired weight from the candidate case,

this candidate case with become a test case and will deleted form the Pi list.

3) Step 3 : Continue with Step 2 until there are nothing inside the Pi list.

 IRPS will generate and stored all pairs into the linked list, Pi by using array. Each

linked list consists of the nodes that equal to the number of the parameters. Weight of the

candidate test case is important to IRPS because IRPS need to calculate the combinations

which cover all pairs of the candidate test case. The candidate will treat a test case based on

the desired weight criteria, or else the intersection between the node and other nodes will

continue to generate. The repeated variables in each node will be deleted by using delete

operation in IRPS. Following Figure 7 is the search algorithm used by the IRPS (Younis, M.

I. et al. 2008).

21

Figure 7 The Search Algorithm for IRPS

2.4 Analysis of Existing Pairwise Strategies

 After studies of all existing pairwise strategies as mentioned above, we know that

the existing strategies separate in two different approaches which are OTAT and OPAT.

There are different comparisons between these two approaches. For OTAT, a complete test

case will be generated by cover all the interaction elements while the OPAT is tested using

selected element parameters of the test cases by adding one parameter of each time to

produce sufficient test case (Alsewari, A. R. A. & Zamli, K. Z. 2012). For each existing

pairwise strategies, the n-way are t = 2.

22

Table 10 Summary Analysis of the Existing Pairwise Strategies

Approaches Existing

Strategies

n-way Deterministic GUI

One Test at a

Time (OTAT)

GA t = 2  

AETG t = 2  

One Parameter at

a Time (OPAT)

IPO t = 2  

IRPS t = 2  

From the Table 10 above, we know that GA and AETG is a non-deterministic

approach. Non-deterministic means that the generated test cases cannot be determined or

another define is the same input parameter may appear in the different test cases (Grindal,

M., Offutt, J. & Andler, F. 2004). For IPO and IRPS, they are classified to deterministic

approaches which are always generate same test case result by using a specific input

parameter (Grindal, M., Offutt, J. & Andler, F. 2004). Furthermore, some of the existing

pairwise strategies do not design with Graphics User Interface such as GA, IPO and IRPS.

Therefore, to adopt the design of PSAT, we proposed a Pairwise Test Data Generation Tool

by using Simulated Annealing Algorithm. In the Chapter 4, this generator tool will be

explained in more details.

2.5 Summary

This chapter has discussed the pairwise testing and previous existing pairwise

testing strategies. The existing pairwise testing strategy that cover in this chapter is Genetic

Algorithm (GA), Automatic Efficient Test Generator (AETG), In-Parameter-Order (IPO),

and Intersection Residual Pair Set (IRPS). In general, all pairwise strategies have the same

objective which is to minimize the test case, identify the defects and increase the coverage

of interaction.

23

CHAPTER 3

METHODOLOGY

In Chapter 2, we have been discussed in details about the several existing pairwise

testing strategies. Therefore, in this chapter we will discuss about the methodology that we

will use to finish up this research. Rapid Application Development (RAD) whereas one of

the existing methodology will be used as a guideline to build the Pairwise Test Data

Generation Tool based on the Simulated Annealing algorithm (PSAT). There are several

stage consists in RAD and the importance for each stages will be explained in details in this

chapter.

3.1 Introduction

 The proposed PSAT is designed by implementing the SA algorithm. As we discuss

in the previous chapter, the goals of designing these generator tools is to minimize the

number of test cases for an input system. Therefore, SA algorithm is implementing in the

PSAT because SA is a random search algorithm that able generated the least number of test

cases for this research.

To complete this research as we planned, a methodology is needed to include into

development of PSAT. The methodology is a standard framework used to plan and manage

the activities inside the process development of PSAT. There is important for every project

to have a methodology as a guideline to ensure the goals of the research is achieved.

24

 There are a lot of different kind methodologies in the software development process.

The most common methodologies consist of Waterfall Methodology, V-Model

Methodology, Spiral Methodology, Agile Methodology, Rapid Application Development

(RAD), and Extreme Programing (XP). In this research, RAD has been chosen as the

methodology to develop our Pairwise Test Data Generation Tool based on Simulated

Annealing Algorithm (PSAT).

3.2 Methodology

 RAD is to improve the process of development which faster than the Waterfall

Methodology (Martin, J. 1991). By using RAD, our research is able to produce high quality

generator tools and have the potential to reduce time to complete this research. We adopt

the RAD methodology and have carried out four stages which are requirement planning

stage, user design stage, implementation stage and evaluation and documentation stage.

Figure 8 shows the stages of the RAD model.

25

Figure 8 Methodology Based on Rapid Application Development (RAD) Model

3.2.1 Requirement Planning

 In this stage, we have analyzed and determine the existing problem that related to

this research. There is an important step before we start to decide the goals and objectives

of the research. The goals of this research are to develop a PSAT by adopting SA algorithm.

NetBeans IDE 8.0.2 with JFrame and JDK 8.0 has been chosen as the development tool to

develop these PSAT.

26

Besides that, the literature review has been performed to analyze and plan the idea

to develop the PSAT based on SA algorithm. Research on other existing pairwise testing

strategies is a must to collect more information to complete this research. The existing

pairwise testing strategies including GA (Mitchell, M. 1995), AETG (Cohen, D. M., Dalal,

S. R., Fredman, M. L. & Patton, G. C. 1997), IPO (Lei, Y. & Tai, K. C. 1998), and IRPS

(Younis, M. I., Zamli, K. Z. & Isa, N. A. M. 2008) has been explained in details.

3.2.2 User Design

 In this stage, the design of the PSAT based on JFrame will be carried out. There are

four (4) techniques to design the PSAT. For the first techniques, a prototype user interface

will be designed for these generation tool. The interface is used to show the required

content of the generation tool to the user and request input from the user. The second

technique is the interaction list generation. Here, all the possible pairs of test case will be

generated according to the input from the user. Test case generation is the third technique in

stage three of user design. After getting all the possible pairs, the generator tool will find

out and generate the sufficient test case based on the SA algorithm. In the last techniques,

the test case will be generated and map with the actual parameter value name to show to

user.

3.2.3 Implementation

 In this stage, the study of SA algorithm will be implemented into the PSAT because

SA algorithm is the search technique for this proposed research. The SA algorithm will be

created and test to make sure the algorithm is work properly and run smoothly by using the

NetBeans IDE 8.0.2. The algorithm will be adopted with the user interface to generate out

the sufficient test cases. The result of the generation will be collected and recorded.

27

3.2.4 Evaluation and Documentation

 In this stages, the result of test cases that collect from stage three will be used to

compared with the result that produce from other existing pairwise testing tools. The

comparison of test cases is to check the performance of SA algorithm and evaluate which

pairwise tool is better.

 By last, the research information and result will be finalized and documented in this

research. Furthermore, this documentation will become as a reference for the future use or

improvement.

3.3 Hardware and Software

 There are some requirements of the research to ensure the research meets the goals

successfully. Therefore, a few hardware and software requirements are needed to fulfill

along this research. Table 11 shows the hardware specifications and Table 12 shows the

software specifications of this research.

Table 11 Hardware Specifications for Development PSAT

Hardware Specifications Description/Importance

Laptop ASUS K43SD,

Intel Core i5 2450M 2.5GHz,

6GB DDR3 SDRAM,

2.5" SATA 500GB 5400rpm.

Used for the whole research that

include:

1. Documentation,

2. Design user interface,

3. Algorithm implementation,

4. Comparison for result.

External Hard Disk 1TB Toshiba 1. Backup project files

2. Storage

Thumb Drive 8GB Kingston DT101 G2 1. File transfer

28

Table 12 Software Specifications for Development PSAT

Software Specifications Description/Importance

Operating System Window 10 Education 64-bit 1. Platform for research

development

Development Tool NetBeans IDE 8.0.2 1. Java language

development tool

Running

Environment

1. JDK 8.0,

2. JRE 8.0,

3. JFrame.

1. Implementation platform

for research development

2. Design GUI

Word Processor Microsoft Word 2013 1. Write documentation

2. Draft

Plan and Schedule Microsoft Project 2013 1. Gantt chart planning

Diagram Microsoft Visio 2013 1. Draw Diagram

Presentation Microsoft Office 2013 1. Slide preparation

Document Reader Adobe Reader 1. Read journal, article, and

paper

2. Preview journal, article,

and paper

Web Browser 1. Google Chrome,

2. Mozilla Firefox,

3. Internet Explorer.

1. Search information

3.4 Summary

In this chapter, we have discussed the methodology that used on our research which

is Rapid Application Development (RAD). In RAD, there are separate the stage in four

stages to complete our PSAT. Besides that, the hardware and software specification that

include in the research also been discussed in this chapter.

29

CHAPTER 4

DESIGN, IMPLEMENTATION AND RESULT DISCUSSION

4.1 Introduction

 In the previous chapter, we have been discussed about the Rapid Application

Development (RAD) methodology that been used as a guideline to accomplish this research.

In this chapter, we will comprehensively discuss the designing of PSAT and how the

structure and algorithms that will be used to implement into our PSAT. After the

implementation, PSAT will be used to evaluate and compare with the existing pairwise

testing strategies as mentioned in Chapter 2. All the results will be recorded and

documented.

4.2 Development of PSAT

 In this section, a full explanation on the structure development of PSAT and how

the flows on generating PSAT test cases will be discussed in details. In this research, the

PSAT process has been categories into four techniques which are the user interface,

interaction list generation, test case generation and mapping generation. Four of the

techniques are the main important process to complete the PSAT prototype and this

proposed research. Figure 9 illustrate the overview of this framework.

30

Figure 9 The Overview of PSAT Framework

Based on Figure 4.1, software tester requires entering the input parameter and the

input values of each parameter through the input screen from user interface that created

using JFrame. Based on the input parameter and input values, the interaction list generation

will be triggered and all the possible interaction pairs will be generated. When the

interaction pairs cover all the possible interaction of the input parameters, the interaction

pairs will be saved into an arraylist named interaction list. As usual, each interaction pairs

consists of two different values which are the combination of two different input

parameters. This is because the proposed research is pairwise testing and pairwise testing is

a 2-way combinatorial strategy.

31

In this research, SA algorithm is our main algorithm used to generate test case with

randomly in test case generation. We using SA algorithm to generate the test case randomly

according to the interaction list and find the weightage of each test case. When the test case

covers the maximum weightage, the selected test case will be saved into the final test list.

While the test case does not cover maximum weightage, the test case will be process based

on probability to find out the test case and save the test case in final test list again. After

test case generation find out all the sufficient test case, PSAT will return the exact result to

the software tester. Figure 10 shows the flow chart of this proposed research framework.

Figure 10 Flow Chart for the Whole PSAT Framework

32

4.2.1 User Interface of PSAT

 As we mentioned above, there are four important techniques will be used to

complete the PSAT prototype. In this section, the first technique to develop this proposed

research is user interface. The prototype user interface is designed using NetBeans 8.0.2

with JFrame which is an interface frame with a title and a border in NetBeans IDE. The

important of the prototype user interface is as an interaction to gather input from user, show

the required contents to the user and provide the expected result that user needs.

Firstly, the prototype interface will request some information from user such as

number of input parameter, the name of each input parameter, number of values for each

parameter and value names of each parameter. Figure 11 is the user interface of PSAT with

designed on JFrame. The user is allowed to upload a file format to the user interface and

edit the contents inside the file. Each time user editing the contents through the user

interface, user requires saving the text file again before proceeds to the interaction list

generation. Figure 12 is the file format to enter all the required input of this PSAT.

33

Figure 11 User Interface of PSAT

34

Figure 12 Text File Format for User Input

35

After user finish enter the require input, user need can generate the test case by

pressing the Generate Test Case button on the user interface. The PSAT algorithm will be

triggered and produce the actual result to user. Figure 13 is the final test cases with actual

parameter name after completed the interaction list generation and test case generation.

Figure 13 Final Test Cases with Actual Parameter Name of PSAT

36

4.2.2 Interaction List Generation

 Interaction list generation is the second technique in the development process of

PSAT. The interaction list generation will be triggered after user enters the number of input

parameter, name of each input parameter, number of values for each parameter and value

names of each parameter then submitted it. Essentially, our proposed research is designed

on the framework of pairwise testing, therefore the combinatorial interaction to generate the

interaction list will be T=2 only.

4.2.2.1 Automated Assigning for Parameter Values

In this section, an automated assigning method was implemented into this proposed

research PSAT to ensure the program is faster processing and reduce the operation time.

The automated assigning method is a process on converting the input parameter values into

a set of integer number called symbolic values which are starting from 0, 1, 2, 3 and so on.

In PSAT, each input parameter having different parameter values and names which enter by

user. Therefore, the automated assigning will be triggered by assigning the symbolic values

according to the total parameter values.

As shown in Table 13, the parameter values will be assigning the symbolic values

starting from integer 0 until the parameter values is end. The symbolic values will be store

in an arraylist and used for the generated interaction list.

37

 Table 13 Assigning Symbolic Values for Specify Parameter Values

Parameter (P) Values (V) Symbolic Values (S)

OS {Windows, Linux, Mac OS X, Google

Chrome OS}

{0, 1, 2, 3}

Processors {Intel, AMD} {4, 5}

System Type {32-bit, 64-bit} {6, 7}

RAM {4GB, 6GB, 8GB} {8, 9, 10}

Screen Solution {800×600, 1024×768, 1280×800,

1280×1024}

{11, 12, 13, 14}

 Figure 14 Automated Assigning Algorithm for Each Parameter Values

38

4.2.2.2 Generating Interaction Pair

In PSAT, there is essential to generate the interaction pairs before generating the

final test case. In pairwise testing, the interaction pairs of PSAT are generated based on the

combination of every two parameters with their own values that have been specifying by

the software tester. Table 14 shows the example of five (5) parameters with different values

that have assigned with a symbolic value. P1 represents the first parameter, P2 represents

the second parameter, P3 represents the third parameter and so on.

Table 14 Five Parameters with Symbolic Values

OS

(P1)

Processors

(P2)

System Type

(P3)

RAM

(P4)

Screen Solution

(P5)

Windows (0) Intel (4) 32-bit (6) 4GB (8) 800×600 (11)

Linux (1) AMD (5) 64-bit (7) 6GB (9) 1024×768 (12)

Mac OS X (2) 8GB (10) 1280×800 (13)

Google Chrome OS (3) 1280×1024 (14)

39

As shown in Table 14, the possible interactions are P1P2, P1P3, P1P4, P1P5, P2P3,

P2P4, P2P5, P3P4, P3P5 and P4P5 which are 10 possible interactions. Table 15 shows the

possible interactions of the five parameters based on pairwise testing.

Table 15 Possible Interaction for P1, P2, P3, P4 and P5

No. P1 P2 P3 P4 P5 Possible

Interactions

T1   P1P2

T2   P1P3

T3   P1P4

T4   P1P5

T5   P2P3

T6   P2P4

T7   P2P5

T8   P3P4

T9   P3P5

T10   P4P5

40

With the possible interaction in Table 15, we generate these interactions based on

binary number. Figure 15 shows the pseudocode for the generating possible interaction into

binary number and save in interaction list based on interaction strength, T=2. We apply the

use of pseudocode in Figure 15 to set the number of required parameter which is five for

the example in Table 14 as numberOfParameter and the interaction strength, T=2 as

numberOfT (Wen F. W. 2015). When the required parameter and interaction strength is

accepted, the algorithm will be triggered and generate the binary number which consists of

0 and 1. Value of 0 is represents there is no interaction between the specify parameters

while the value of 1 represents an existing interaction between the specify parameters.

Figure 15 Pseudocode for Interaction List Generation When T=2

41

As an example, the binary number for T1 that show in Table 15 is 11000 which are

generated from the solution of 24 + 23. Each parameter will be assign one position values

which 0, 1, 2, 3 and 4 to represent the position of the parameters. Then, the position values

will use as the solution of base 2 which are 2[the position values]. Table 16 show the binary

position for each possible interaction and Table 17 illustrate the position for each parameter.

Table 16 Binary Position for Possible Interaction

No. P1 P2 P3 P4 P5 Interaction Binary

T1   P1P2 11000

T2   P1P3 10100

T3   P1P4 10010

T4   P1P5 10001

T5   P2P3 01100

T6   P2P4 01010

T7   P2P5 01001

T8   P3P4 00110

T9   P3P5 00101

T10   P4P5 00011

Table 17 Position of Each Parameter

Parameter P1 P2 P3 P4 P5

Position Values 4 3 2 1 0

Solution of base 2 24 23 22 21 20

42

After finding the combination of parameter, the interaction list will be generated

based on the two parameter values of the combination parameters interaction. Figure 16

shows the pseudocode of the generating interaction list.

Figure 16 Pseudocode of Interaction List Generation

As shown in Figure 16 above, the Interaction List Generation algorithm can be

describes using the pseudocode above. Based on the Figure 16, the algorithm will trigger

and started reading the symbolicNumberData which contains of all actual parameter values

that been assigned with a symbolic values as we mentioned above.

43

In pairwise testing, the interaction strength is t=2, which is the generated interaction

pair must be a combination of two parameter values only. So, the algorithm will read and

loop in the symbolicNumberData to pair up the parameter values of each parameter

according to the size. This means that when symbolicNumberData[0] represents the first

parameter and symbolicNumberData[1] is represents the second parameter.

For more detail about the generation, here an example to discuss the generating

interaction pair for every parameter. Based on the interaction in Table 15, the first

interaction is P1P2 which parameter one (P1) consists of four (4) values with symbolic

values {0, 1, 2, 3} and parameter two (P2) consists of two (2) values with symbolic values

{4, 5}. Based on the values of each parameter, we can calculate the total possible

interaction using the calculation as shown in Figure 17. For the first interaction pairs P1P2,

the total possible interaction will be (4 x 2) = 8 pairs.

Figure 17 Calculation for Total Possible Interaction

44

Therefore, the possible interaction of the first interaction pairs P1P2 is {(0, 4), (0, 5),

(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)} which is total 8 pairs of interaction pairs. Figure 18

shows the structure for generating the interaction and the result of interaction list for P1P2

with the symbolic numbers.

Figure 18 Structure Generating Interaction List with Symbolic Numbers

 The algorithm will continue to generate all the possible interaction pairs with the

remainder parameter which are P1P3, P1P4, P1P5, P2P3, P2P4, P2P5, P3P4, P3P5 and

P4P5 before proceeding to the test case generation. All the possible interaction pairs will be

saved in an arraylist and named uncoveredData.

45

4.2.3 Test Case Generation

Test Case Generation is the third technique in the development process of PSAT. In

this proposed research, we will generate the test case using the Simulated Annealing (SA)

algorithm. SA algorithm is a heuristic technique to find the feasible solution for the

combinatorial optimization problems (Kirkpatrick S., Gelatt C. D. & Vecchi M. P. 1983).

In order to understand more detail of our development, we will discuss the implementation

of SA algorithm with several steps for this proposed research. In SA, the procedure is

separate into four main steps as shown in Figure 19 (Kirkpatrick S., Gelatt C. D. & Vecchi

M. P. 1983).

Figure 19 The SA Algorithm

46

Initially in Step 1, defining test case (S) becomes the initial test case that use to

make comparison. In Step 2, defining an initial temperature (T) based on the input from

software tester. This temperature (T) is used to check the movement whether goes uphill or

downhill. Step 3 will continue to generate the test case to do comparison until the T become

0 or all the test case have covered. Each completion of a loop, the temperature is reducing

to continue for the next loop. For each loop, we randomly pick one of the test case (S) as

new test case (S’). In next step, we find out the difference between the new test case (S’)

and the initial test case (S). When the difference of the two test cases is less than zero, the

downhill will be accepted and initial test case is remains. While the changes of two test

cases are higher than zero, the uphill will be accepted and the test case needs to check based

on the probability (P). If P is more than the difference of test case, the initial test case will

be replaced by the new test case for the next generation. While P is less than the difference

of test case, the initial test case is remaining for the next generation.

47

Based on the discussion above, we have implemented the SA algorithm with our

own method into PSAT which is reducing the test case. PSAT Test Case Generation will be

triggered after finish generating all the interaction pairs in Interaction List Generation. In

this section, PSAT will generate all relevant test case based on SA algorithm. Figure 20a

and Figure 20b is the pseudocode of the test case generation based on SA algorithm.

Figure 20a Pseudocode of Test Case Generation Based on SA Algorithm

48

Figure 20b Pseudocode of Test Case Generation Based on SA Algorithm

 According to the Figure 20a and Figure 20b, the final test case will be generated by

counting all the number of interaction pairs or tuples from uncoveredData and named it as

tuplesCount. Every time a test case is adding into Final Test List, the interaction pair or the

tuples that involved will be removed from and the uncoveredData and the tuplesCount will

be count based on the current uncoveredData. When the tuplesCount is equal to zero, this

means that all interaction pairs or tuples have been triggered and covered by all test cases in

the Final Test List. Therefore, the PSAT execution will be terminating to generate new test

case again.

49

Initially, the final test case is empty and tuplesCount is not empty, the PSAT

algorithm will be executed and random generate test case. These random generate test case

will be named as initRandomTC because the test case is covered the first pair interaction

pairs or tuples inside the uncoveredData. Then the weightage of the test case will be

calculated and check whether the weightage reached the maximum weightage. If the test

case reaches the maximum weightage, the test case will be adding to the Final Test List.

The interaction pairs or tuples will be removed from uncoveredData and tuplesCount will

be decrease also.

If the test case does not cover the maximum weightage, the PSAT algorithm with

set initial temperature and loop to generate random test case named as randomTC until the

temperature become 0.0. In this step, the weightage of the initRandomTC and randomTC

will be calculated and find the difference between these two test case. The difference

weightage of the two test cases named delta (newDelta - initDelta). When delta equals or

greater than zero, the two weightage and two test cases will be exchanges. Then newDelta

and new randomTC will be used to compare with the new random generation test case

again by reducing the temperature each time. When the temperature become 0.0, last

generated test case will be added to the Final Test List and removed the tuples that involved

from the uncoveredData if the initDelta is not equal to zero.

50

There is one condition when the delta not equal or greater than zero, here we need

to check the probability of the two test case and find out the suitable test case to use for the

next random generation test case. In this step, we initially the probability equal to 0.7 which

means the new probability having 70% better than the initial probability, the new test case

will be accepted to use for the next random generation test case else the test case is remains.

This is same as previous, the two weightage and two test cases with be exchange also and

used to compare with the new random generation test case again by reducing the

temperature. When temperature is equal to 0.0 and initDelta not equal to zero, the last

generated test case will be added to the Final Test List and removed the tuples that involved

from the uncoveredData again. Figure 21 is the flowchart of PSAT algorithm based on SA

algorithm.

Figure 21 Flow Chart of PSAT Algorithm

51

4.2.4 Mapping Generation Algorithm

In previous development, PSAT has converted the actual parameter values name

into symbolic values to generate final test cases. This is the four techniques which are to let

the whole PSAT become faster and reduce time. Therefore, after the final test case has been

generated, the symbolic values should be converted back to the actual parameter values

name to make user understand the actual final test cases. To success the process, Mapping

Generation algorithm has applied in PSAT to map the symbolic values back to the actual

parameter values name. Figure 22 show the Mapping Generation algorithm used for PSAT.

Figure 22 Mapping Generation Algorithm

52

After all the final test cases are generated, the Mapping Generation algorithm will

be triggered and read the size of the finalList. Then, map the symbolic values of each final

test case with the actual parameter values name which is named bringValueList. After

mapping, save the actual name test case in another arraylist. This process will be repeated

until the finalList is finished and all of the symbolic values test case should success

converted back to the actual parameter values name. Figure 23 the mapping results of the

symbolic values and parameter values.

Figure 23 Mapping Results of the Symbolic Values and Parameter Values

53

4.3 Result and Discussion

After completing the implementation of PSAT, PSAT is evaluated and analyzes to

ensure the goals and objectives are achieved. In this proposed research, the main objective

is to evaluate the PSAT in term of test size which based on pairwise testing, t=2. Therefore,

PSAT will be evaluated and compare with the existing result which collected from other

existing pairwise testing strategies that mentioned in the literature review.

There is two main existing results that collected from the previous literature review

which shown in Table 19 and Table 22. We separate the two results into two experiments

by given named Experiment 1 (E1) and Experiment 2 (E2). To conduct this experiment, the

test case will be generated by using an Asus K43SD laptop with Windows 10 Education

and processors Intel® Care™ i5-2450M CPU @ 2.50 GHz, 6GB DDR3 SSDRAM and

2.5" SATA 500GB hard disk. NetBeans 8.0.2, Oracle JDK 8.0 and JRE 8.0 are the

application that needs to be installed to conduct this experiment also.

54

Experiment 1

In the Experiment 1, the test case is generated based on the interaction strength, t=2.

Each experiment result is running for 10 times to get the average results of the test cases

and the average of execution time. The existing pairwise testing strategies tools are used for

comparing with the PSAT are SA_SAT, mAETG_SAT (Alsewari, A. R. A. & Zamli, K. Z.

2012), PICT (Ahmed. B. S. & Zamli, K. Z. 2011), TestCover, LAHC, HSS and BA_PTCS

(Alsariera, Y. A., Alsewari, A. R. A. & Zamli, K. Z. 2015). In Experiment 1, there are five

(5) tests are run with the different input specifications as shown in Table 18.

Table 18 Input Specifications for Experiment 1

Tests Covering Array Representation Input Specification

S1 CA(N,2,33) three 3-valued parameters

S2 CA(N,2,43) three 4-valued parameters

S3 CA(N,2,53) three 5-valued parameters

S4 CA(N,2,63) three 6-valued parameters

S5 CA(N,2,73) three 7-valued parameters

Table 19 Results for Other Existing Pairwise Strategies Tools in Experiment 1

E1 SA_SAT mAETG_SAT PICT TestCover LAHC HSS BA-PTCS PSAT

S1 9 9 10 9 9 9 9 11

S2 16 16 17 16 16 16 16 20

S3 25 25 26 25 25 25 25 36

S4 36 37 39 36 38 36 36 53

S5 49 52 55 49 51 49 49 77

55

Table 20 Results for PSAT in Experiment 1

 Test Case Generated Time Execution (seconds)

E1 PSAT (Minimum) PSAT (Average) PSAT (Minimum) PSAT (Average)

S1 11 13.0 7 7.7

S2 20 24.8 8 8.4

S3 36 41.2 7 7.9

S4 53 58.1 7 7.9

S5 77 82.5 8 8.2

 Table 19 is the existing results for several existing pairwise strategies tools used to

compare with our PSAT and Table 19 is the overall results generated that carry out from

Experiment 1. As shown in Table 20, the goals and objectives of PSAT have been achieved

due to the results provided show that PSAT is reducing the test cases. For example, the Test

S1 having three 3-valued parameters, which will produce 3 x 3 x 3 = 27 test cases. But

using PSAT, the final test case has been reducing from 27 test cases to an average of 13 test

cases.

 By comparing with other existing results shown in Table 19, the PSAT result is not

showing the best result between the other existing results after 10 times running. As an

example in Test S2, PSAT has generated 20 test cases which are the minimum test case for

the 10 times running with the same input specifications in Experiment 1. The result is a bit

higher than other existing pairwise strategies result such as 17 test cases generated in PICT

because PSAT is using a random method to generate all the test cases by reducing the

temperature in each time. For generated a test case in PSAT, the total average of generation

is about 24.8 test cases each time for Test S2.

Although the result of the PSAT is not the best, but the execution time to generate

final test cases showing high efficiency. In Table 20, Test S2 shows that the minimum

execution time of PSAT to generate all the final test case is 8 seconds only and the

execution is very fast in generation test cases.

56

Experiment 2

 In Experiment 2, the test case is generated based on the interaction strength, t=2.

Each experiment result is running for 10 times to get the average results of the test cases

and the average of the execution time. The existing pairwise testing strategies tools used for

comparing the PSAT are AETG (Cohen, D. M., Dalal, S. R., Fredman, M. L. & Patton, G.

C. 1997), AETG2 (Shiba, T., Tsuchiya, T. & Kikuno, T. 2004), IPO (Lei, Y. &Tai, K. C.

1998), SA, GA, ACA (Shiba, T., Tsuchiya, T. & Kikuno, T. 2004), ALL-Pairs, G2Way,

Jenny and IPRS (Younis, M. I., Zamli, K. Z. & Isa, N. A. M. 2008). In Experiment 2, there

are seven (7) tests are run with the different input specifications as shown in Table 21.

Table 21 Input Specifications for Experiment 2

Tests Covering Array Representation Input Specification

S1 CA(N,2,33) three 3-valued parameters

S2 CA(N,2,34) four 3-valued parameters

S3 CA(N,2,313) 13 3-valued parameters

S4 CA(N,2,1010) 10 10-valued parameters

S5 CA(N,2,1510) 10 5-valued parameters

S6 CA(N,2,1020) 20 10-valued parameters

S7 CA(N,2,510) 10 5-valued parameters

Table 22 Results for Other Existing Pairwise Strategies Tools in Experiment 2

E2 AETG AETG2 IPO SA GA ACA ALL-

Pairs

G2Way Jenny IPRS PSAT

S1 NA NA NA NA NA NA 10 10 9 9 12

S2 9 11 9 9 9 9 10 10 13 9 16

S3 15 17 17 16 17 17 22 19 20 17 34

S4 NA NA 169 NA 157 159 177 160 157 149 419

S5 NA NA 361 NA NA NA 390 343 336 321 958

S6 180 198 212 183 227 225 230 200 194 210 560

S7 NA NA 47 NA NA NA 49 46 45 45 98

57

Table 23 Results for PSAT in Experiment 2

 Test Case Generated Time Execution (seconds)

E1 PSAT (Minimum) PSAT (Average) PSAT (Minimum) PSAT (Average)

S1 12 13.2 8 9.5

S2 16 18.3 8 8.9

S3 34 39.4 8 9.1

S4 419 427.9 13 13.5

S5 958 974.9 27 27.7

S6 560 577.3 27 29.0

S7 98 106.4 8 9.1

 Same as the Experiment 1, Table 21 is the existing results for several existing

pairwise strategies tools used to compare with our PSAT and Table 22 is the overall results

generated that carry out from Experiment 2.

Based on the result in Table 22, PSAT is successful to reduce the exhaustive test

cases but does not show the best result comparing with the result of other existing pairwise

strategies tools. As an example, PSAT has generated 34 test cases as minimum test cases

and 39.4 test cases as the average test cases in Test S3. Most of the result from other

existing pairwise strategies tools might better than PSAT which some existing pairwise

strategies tool like AETG has generated 15 test cases only.

In term of the time execution, PSAT still considers as the faster tools to generate the

final test cases. For an example, PSAT has generated an average of 974.9 test cases for Test

S5. Normally, the execution time of generating the huge test cases will take a long time to

execute, but the result shows that PSAT using an average 27.7 seconds to generate final test

cases in 10 times running of the same input specifications.

58

 Besides that, PSAT able to support all the different input specification in Table 20.

As an evidence, certain tests like Test S1 which are three 3-valued parameter in Experiment

2 is not supported by other existing tools such as AETG, AETG2, IPO, SA, GA and ACA.

Therefore, PSAT might better than other existing tools in term of generating test cases

based on different input specification.

4.4 Summary

 This chapter discusses the design and implementation of PSAT. The development

process of PSAT is separate in four main techniques which included user interface,

interaction list generation, test case generation and mapping generation. Input parameters

and parameter values from the user will be represented by using integer number named

symbolic values to faster the processing and reduce the operation time. Besides that, SA

algorithm is discussed and applied into PSAT to generate the final test cases. After that, the

mapping generation is used to map the final test cases to actual name to show user.

Lastly, PSAT has been analyzed and evaluated that implementation of PSAT able to

generate test case by covered all the interaction pairs based on SA algorithm. PSAT also

used in the experiment to compare with the other pairwise testing existing tools in term of

test cases size. From the results, PSAT able to reduce the test cases size but not the best

compare with other. But the results show that PSAT able to generate test cases based on

different input specification and the execution time to finish generation is shorter.

59

CHAPTER 5

CONCLUSION

5.1 Introduction

In all previous chapters, we have discussed the flow and process to complete this

research such as reviewing the existing pairwise testing strategies, the selected

methodology, design and development of PSAT and also comparison results and discussion

between PSAT and other pairwise testing tools. Last but not least, this chapter is concluded

the research and future work for PSAT.

 Based on the first chapter, the main goal of this research is to develop PSAT: A

Pairwise Test Data Generation Tool Based on Simulated Annealing (SA) algorithm which

able to generate sufficient test cases. The PSAT tool was developed using the NetBeans

8.0.2 application and Java Languages to provide an independent platform for all user to use

it. To reaches the achievement of goals, following objectives have been set:

i) To study the pairwise testing generation by reviewing the existing pairwise

testing strategies.

ii) To apply Simulated Annealing (SA) algorithm into PSAT.

iii) To evaluate and compare the performance of proposed PSAT against with other

existing strategies in term of test size.

60

In order to achieve the goals and objectives, there are many aspects have been

considered during the development of PSAT. In Chapter 2, there is necessary to review

several existing pairwise testing strategies to gain knowledge and understanding for the

development of PSAT. The PSAT is designed based on four main techniques which are

user interface, interaction list generation, test case generation and mapping generation.

Furthermore, some experiment has been carried out to evaluate and prove the

effectiveness of PSAT in Chapter 4. After the experiment, the result proves that PSAT able

to reduce the exhaustive test cases with covered all the interaction pairs. Besides that,

PSAT also proves that the execution time is faster by running with different input

specification.

With the experiment results in this research, the performance of PSAT successfully

reached the goals and objectives in term of reducing the test cases size. Although the PSAT

not the best result during the comparison with other existing tools, but the execution time

was the benefit of PSAT.

61

5.2 Research Constraint

To completion every research or project, there are several constraints of the research

or project. This is same as completion of PSAT, following are the constraints of this

research:

i) Limitation of time

During the Final Year Project, the result of PSAT does not show the best

because we faced the limitation of time to run all experiment again and again

until getting the best result of the different input specification. So, the result of

PSAT is running in 10 times only.

ii) Limitation of test cases

As mentioned above, PSAT still have some limitation of generating minimum

size of final test cases compare with other existing pairwise testing strategies.

The reason for this constraint is because the SA algorithm having many random

methods and each test case generated will reduce by temperature.

iii) Limitation of choosing local variables

Due to the limitation of time as mentioned above, we face another constraint

which is the limitation of choosing local variables. In PSAT algorithm, there are

many local variables such as temperature (0 to infinite), cooling rate, and

probability is having a range of number from zero (0) to one (1). If we adjust the

values of the local variables, it will take a long time to run all the experiment, so

we set the temperature at 10000, the cooling rate is set on 0.3, and the

probability is set on 0.7.

62

5.3 Future Work

For future enhancement of PSAT, there are several area of research can be carried

out:

i) Improve PSAT algorithm

Based on the result, PSAT still has the limitation of generating minimum size of

test cases. In the future improvements, PSAT algorithm should be modified and

improve the strategy to generate optimal test cases.

ii) Support t-way interaction

For current research, PSAT only support pairwise interaction which is t=2. For

future improvements, PSAT should be supported more than 2-way interaction (t >

2) to let the tool more flexible in future.

iii) Support constraint

In the real environment or system, some input parameter values should be

included or excluded. Therefore, in future improvements, PSAT should be

developed with support constraint to improve the practicability of test case

generation.

iv) Support test process

In the Software Development Life Cycle, the test process included planning,

analysis and design, implementation, testing, evaluating exit criteria and

reporting, and test closure activities. So, PSAT should integrate with test

process to be useful in the process of testing.

63

REFERENCES

Ahmed. B. S. & Zamli, K. Z. (2011). A Variable Strength Interaction Test Suites

Generation Strategy Using Particle Swarm Optimization. Journal of Systems and

Software, vol. 84, 12, 2011, pp. 2171-2185.

Alsariera, Y. A., Alsewari, A. R. A. & Zamli, K. Z. (2015). A Bat-Inspired Strategy for

Pairwise Testing with Constraints Support. Advanced Science Letters,

Vol.21,8,2281-2284, 2015.

Alsewari, A. R. A., & Zamli, K. Z. (2012). Design and implementation of a harmony-

search-based variable-strength t-way testing strategy with constraints support.

Information and Software Technology, 54(6), 553-568. doi:

10.1016/j.infsof.2012.01.002

Cohen, D. M., Dalal, S. R., Fredman, M. L. & Patton, G. C. (1997). The AETG System An

Approach to Testing. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 23, NO. 7, JULY 1997.

Flores, P. & Cheon, Y. (2011). PWiseGen: Generating Test Cases for Pairwise Testing

Using Genetic Algorithms. IEEE, 978-1-4244-8728-8/11.

Grindal, M., Offutt, J. & Andler, F. (2004). Combination Testing Strategies: A Survey.

Kirkpatrick S., Gelatt C. D. & Vecchi M. P. (1983). Optimization by Simulated Annealing.

Science, New Series, Vol. 220, No. 4598., 671-680.

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., & Lawrence, J. (2007). IPOG A General

Strategy for T-Way Software Testing. 14th Annual IEEE International Conference

and Workshops on the Engineering of Computer-Based Systems, 549-556.

64

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., & Lawrence, J. (2008). IPOG/IPOG-D:

efficient test generation for multi-way combinatorial testing. Software Testing,

Verification and Reliability, 18(3), 125-148. doi: 10.1002/stvr.381

Lei, Y. & Tai, K. C. (1998). In-Parameter-Order A Test Generation Strategy for Pairwise

Testing. Department of Computer Science, North Carolina State University,

Raleigh, NC 27695-7534,USA.

McCaffrey, J. D. (2009). Generation of Pairwise Test Sets Using a Genetic Algorithm. 33rd

Annual IEEE International Computer Software and Applications Conference, 626-

631. doi: 10.1109/compsac.2009.91

McCaffrey, J. D. (2010). An Empirical Study of Pairwise Test Set Generation Using a

Genetic Algorithm. Seventh International Conference on Information Technology,

992-997. doi: 10.1109/itng.2010.93

Mitchell, M. (1995). Genetic Algorithms: An Overview. Complexity, (1 (1)), 31-39.

Rutenbar R. A. (1989). Simulated Annealing Algorithms: An Overview. IEEE 8755-

3996/89/0100-0019.

Myers, G. J., Badgett, T., & Sandler, C. (1979). The Art of Software Testing (3rd ed.).

JohnWiley & Sons, Inc., Hoboken, New Jersey.

Patil, M., & Nikumbh, P. J. (2012). Pair-wise Testing Using Simulated Annealing.

Procedia Technology, 4, 778-782. doi: 10.1016/j.protcy.2012.05.127

65

Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., & le Traon, Y. (2011). Pairwise

testing for software product lines: comparison of two approaches. Software Quality

Journal, 20(3-4), 605-643. doi: 10.1007/s11219-011-9160-9

Shiba, T., Tsuchiya, T., Kikuno, T. (2014). Using Artificial Life Techniques to Generate

Test Cases for Combinatorial Testing. 28th Annual International Computer

Software and Applications Conference (COMPSAC'04), 0730-3157/04.

Wang, S., Ali, S., & Gotlieb, A. (2013). Minimizing Test Suites in Software Product Lines

Using Weight-based Genetic Algorithms. Simula Research Laboratory, Technical

Report 2012, 25.

Younis, M. I., Zamli, K. Z. & Isa, N. A. M. (2008). IRPS - An Efficient Test Data

Generation Strategy for Pairwise Testing.

Younis, M. I., Zamli, K. Z., Klaib, M. F. J., Soh, Z. H. C., Abdullah, S. A. C., & Isa, N. A.

M. (2010). Assessing IRPS as an efficient pairwise test data generation strategy. Int.

J. Advanced Intelligence Paradigms, Vol. 2, No. 1, 2010.

66

APPENDICES

