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ABSTRACT 

 

Multiaxial fatigue is one of the most common failure mechanisms encountered by the 

mechanical components during service life. For reliability assessment of the 

components under real-life service conditions, and maintenance, the understanding of 

multiaxial fatigue phenomenon is essential. Despite extensive research in this area, the 

fatigue life prediction is still a challenging task. The application of analytical and 

numerical methods in fatigue life analysis under real-life service conditions is becoming 

more significant, given the time and costs considerations in experimental testing. This 

study aims to develop a hybrid multiaxial fatigue model capable of estimating fatigue 

life independent of applied loading-path-shape with the application of the most 

commonly available material property. A new fatigue parameter is formulated based on 

stress-strain variables identified from various fatigue life models in order to deal with 

mean stress effects and non-proportional hardening. Continuum damage mechanics 

approach is applied to develop damage expression as a continuously damage-

accumulative function in terms of fatigue parameter. Genetic algorithm is also applied 

for the calibration of proposed model in terms of calibrated coefficients. The developed 

hybrid model is calibrated using complex profiles for proportional and non-proportional 

loading under in-phase and out-of-phase loading conditions. The model is validated 

against the published experimental results under various loading and material conditions 

including SS304, carbon steel C40, EN3B, Steel20 and Titanium alloy BT9. 

Interpolation scheme for calibrated model coefficients is applied for loading cases with 

same profiles and different magnitude. For in-phase and out-of-phase loading with zero 

and positive mean stress the proposed model provides good correlation with 

experimental data (min. 4% diff.) for C40, EN3B and Steel 20. For SS304 predicted 

fatigue life from proposed model for complex profiles, calibrated with characteristic 

profiles, correlates well with the experimental data with an agreeable difference 

(min.6%). The results of the proposed model for Titanium alloy BT9 and steel 20 with 

block loading correlates reasonably well with experimental data (min. 4-10% diff.). The 

proposed model serves as path-independent fatigue life estimating tool hence can be 

used with any type of loading conditions. The notion of characteristic profiles for the 

calibration of the model is also coherent with the application of equivalent fatigue 

loading in generating experimental data for calibration. The model is simple in 

application with the use of genetic algorithm for model calibration making use of only 

the material fatigue limit. Thus the proposed model is more accurate for variety of 

loading and material conditions. The hybrid approach of critical plane, continuum 

damage mechanics and calibration through genetic algorithm provided a strong basis for 

a universally accepted multiaxial fatigue life model. Interpolation scheme based on the 

multiaixality of stresses is suggested for the determination of coefficients of the model 

for different loading paths. Material parameter including stress sensitivity factor for 

normal or shear stress can be incorporated to improve the calibration process. The 

proposed model can serve as an efficient tool for multiaxial fatigue life analysis in 

academics as well as commercial applications, especially automotive and aircraft 

industry, due to inherent flexibility of the model for accommodating different loading 

conditions. 
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ABSTRAK 
 

Kelesuan berbilang paksi adalah salah satu mekanisma kegagalan biasa yang terjadi ke 

atas komponen mekanikal semasa digunakan. Kefahaman yang mendalam untuk 

fenomena kelesuan berbilang paksi adalah amat penting apabila pengukuran 

kebolehpercayaan komponen di buat dalam keadaan pengunaan sebenar dan proses 

membaikpulih. Walaupun banyak kajian telah di lakukan untuk bidang ini, kajian 

jangkaan hayat kelesuan masih merupakan satu tugas yang mencabar. Penggunaan 

kaedah analisis dan berangka dalam analisis ketahanan keleusuan di dalam keadaan 

pengunaan sebenar menjadi lebih penting dan diberi pertimbangan masa dan kos dalam 

kajian. Kajian ini bertujuan untuk membangunkan model kelesuan berbilang paksi 

hibrid yang mampu menganggarkan kelesuan yang bebas daripada beban gunaan laluan-

bentuk dengan sifat bahan yang sedia ada. Parameter keletihan baru digubal berdasarkan 

pembolehubah tegasan-terikan yang dikenal pasti dari pelbagai model keleusuan yang 

sedia ada untuk menangani kesan-kesan tekanan yang minima dan pengerasan bukan 

berkadar. Pendekatan kontinum mekanik digunakan untuk membangunkan kerosakan 

terkumpul  secara berterusan sahaja kerosakan dari segi parameter kelesuan. Algoritma 

genetik juga digunakan untuk penentukuran model yang dicadangkan dari segi pekali-

terukur. Model hibrid yang telah di bina ditentukur menggunakan profil kompleks untuk 

bebanan berkadar dan bukan berkadar di dalam dan di luar fasa benanan tersebut. Model 

yang telah disahkan dengan keputusan ujikaji yang diterbitkan di bawah pelbagai 

keadaan bebanan dan bahan termasuk SS304, keluli karbon C40, EN3B, Steel20 dan 

Titanium aloi BT9. Sisipan skim bagi model pekali yang telah disahkan telah digunakan 

untuk bebanan kes profil yang sama dan berlainan magnitud. Bagi di dalam dan di luar 

fasa bebanan sifar dan positif bermaksud tekanan model cadangan memberi hubungan 

yang baik dengan data ujikaji (minima kelainan 4%) untuk bahan C40, EN3B dan 

Steel20. Untuk SS304 tahap kelesuan diramalkan dari model yang dicadangkan untuk 

profil kompleks, ditentukan dengan ciri-ciri profil, di sahkan dengan data ujikaji dengan 

perbezaan yang di persetujui (minima 6%).  Keputusan untuk model yang 

dicadangkan  untuk bahan BT9 aloi dan Steel20 adalah di sahlkan dengan baik dengan 

data ujikaji (minima kelainan 4%). Model yang dicadangkan telah digunakan sebagai 

kaedah kelesuan bebas untuk membuat pengganggaran  dengan mana-mana jenis 

bebanan. Konsep ciri-ciri profil untuk penentukuran model ini juga koheren dengan 

kelesuan bebanan setara untuk menjana data-data ujikaji penentukuran. Model yang 

mudah dalam aplikasi menggunakan algoritma genetik untuk penentukuran model 

menggunakan hanya had lesu bahan. Oleh itu model yang dicadangkan adalah lebih 

tepat bagi pelbagai jenis pembebanan dan keadaan bahan. Pendekatan hibrid satah 

kritikal, mekanik kontinum dan penentukuran melalui algoritma genetik memberikan 

asas yang kukuh untuk penerimaan universal untuk kelesuan berbilang paksi.  Skim 

sisipan yang berdasarkan tegasan berbilang paksi dicadangkan untuk penentuan pekali 

untuk model bagi bebanan yang berbeza. Parameter bahan termasuk faktor sensitiviti 

tekanan biasa atau tegasan ricih boleh digunakan bersama untuk meningkatkan kuality 

proses penentukuran. Model yang dicadangkan boleh dijadikan cara yang cekap untuk 

menanalisa kelesuan berbilang paksi di dalam kajian akademik serta penggunaan 

komersil, terutama di dalam bidang automotif dan industri pesawat, kerana model ini 

memberikan keadaan fleksibiliti bagi menampung bebanan yang pelbagai. 
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αm represents evolution of stress / strain tensors and sequence duration 

(equal to 1 for constant amplitude loading) 

  

G, μ Shear modulus 

  

∆W Virtual strain energy (VSE) parameter 

 

ψe Free energy 
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Symbols                 Description 

λa
e (a=1,2,3) Eigen values of elastic finger tensor 

  

kB Bulk modulus 

  

η(t) void nucleation at time ‘t’ 

  

KIC Critical stress intensity factor 

  

fNf Normal stress at Nf cycles 

  

tNf Shear stress at Nf cycles 

  

ai, 1-5 Amplitude of deviatoric stresses 

  

a1, a2 Half-length of sides of rectangular hull loading path 

  

l, m, n Directional cosines of vector normal to plane 

  

ϕ, θ, ψ Angle locating material plane  

  

χ Angle between major axis and resolved shear stress 

  

V*(Ci) Volume at critical point 

  

d Length scale parameter 

  

αd, αp Damage and plastic internal variables 

  

α’ Slip system index 

  

dD(α) Damage parameter increment on slip system (α) 

  

dY(α) Plastic strains energy increment on slip system (α) 

  

G’ Notch gradient correction factor 

  

k1, k2, kH Loading related parameter 

 

t time 

 

a, b, m, n, A, B, Material parameters / model constants 

S, Ccoeff, σc, m’ 

δ’, d1, d2, a0 – a3 

σ0, γ1, γ2, γ3
’, ηNf,  

ac, bc, α, β, γ, δ, k,  

f, a,, b,, c, m, n, λ 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

 Fatigue is a common phenomenon during the service life of machines, 

equipment, vehicles, buildings, aircraft and several other structures subjected to time 

variable combined tension, bending and torsion load. These complex cyclic loadings are 

defined as multiaxial loadings, where the principal stresses rotate and change their 

magnitude non-proportionally during loading (Suman, 2013). The fatigue is classified 

on the basis of the state of stress and the load level. On the basis of the stress state, 

fatigue is divided into the two categories of uniaxial and multiaxial fatigue (Milella, 

2013). For uniaxial fatigue, the cyclic stresses do not change direction, such as in the 

case of axial and bending loadings. In the case of multiaxial fatigue, the time-varying 

loads in the cyclic stress change direction and act as combined axial and torsion out-of-

phase loading. Moreover, based on the level of loading, fatigue is classified as either 

low-cycle fatigue (LCF) or high-cycle fatigue (HCF). For LCF, the amplitude of loading 

is high enough that the component fails in less than approximately 103–104 cycles. 

However, fatigue life greater than 104-106 cycles is referred to as HCF due to the low 

magnitude of the applied loading (Manson and Halford, 2006). During HCF, 

deformations in components are mainly elastic, but for LCF deformations can be both 

elastic and plastic. As multiaxial fatigue is a time-dependent phenomenon, the 

modelling of physical conditions with mathematical models to predict the damage is 

certainly a challenging task (Sun et al., 2013). Unfortunately, the combination of 

multiaxial loading paths and complex geometries of components cannot be avoided in 

real-world scenarios and durability test experiments in most situations are not feasible 

due to time and cost considerations (Ince, 2013). Therefore, analytical and numerical 
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methods are an essential approach to perform fatigue and durability analysis in 

designing mechanical components. 

 

 A number of studies for the estimation of multiaxial fatigue life have been 

performed by researchers over the past 60 years. Various innovative techniques and 

approaches have been proposed during this period to address the complex phenomenon 

of multiaxial fatigue (Kenmeugne et al., 2012; Macha and Niesłony, 2012). These 

approaches include continuum damage mechanics (CDM) (Khandelwal and El-Tawil, 

2014), modified rainflow cycle counting (Meggiolaro and de Castro, 2012), 

optimization algorithms (Klemenc and Fajdiga, 2013) and critical-plane based fatigue 

life estimation models (Ince and Glinka, 2014). CDM is based on the framework of the 

thermodynamics of an irreversible process with damage as an irreversible and 

continuously increasing function (Chaboche, 1998a, b; Ottosen et al., 2008; Khandelwal 

and El-Tawil, 2014). Cycle counting methods are used to identify individual cycles 

from a variable loading history. Fatigue life is then estimated for the cycles identified 

from the fatigue data and curves obtained with simple constant amplitude load cycles 

(Manson and Halford, 2006; Meggiolaro and de Castro, 2012), however with the loss of 

the sequence of loading information (Anes et al., 2014). 

 

 Optimization is the act of obtaining the best solution under given circumstances 

(Pinto, 2007), and in the last decade evolutionary optimization algorithms have gained 

popularity in formulating fatigue life estimation methodologies (Krishnapillai and 

Jones, 2009; Brighenti and Carpinteri, 2012; Klemenc and Fajdiga, 2013). Critical plane 

models are based on experimental observations that cracks nucleate and grow on 

specific planes known as critical planes, and these models relate fatigue damage to 

stresses and strains on these planes. These models can predict fatigue life as well as the 

orientation of the cracks (Stephens et al., 2000). With all these efforts, the need to fully 

understand the multiaxial behaviour of different materials under various loading 

conditions is a special focus of this research. In spite of the importance of  

understanding multiaxial fatigue behaviour, limited literature exists on the subject due 

to the inherent complexities in studying this topic (Shamsaei, 2010; Gates and Fatemi, 

2014). 
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 Considering the effectiveness of the CDM and critical plane methods, a hybrid 

approach with the flexibility of evolutionary optimization algorithms has been proposed 

to estimate the multiaxial fatigue life. The proposed methodology does not require cycle 

counting and thus avoids the loss of loading sequence data by treating the damage as a 

continuously increasing function as the load time history advances. The proposed 

method incorporates the benefits of the critical plane estimation to predict the fatigue 

life as well as the direction of crack growth. Multi-objective optimization based on 

genetic algorithm (GA) has been used to calibrate the model coefficients as well as to 

predict the critical plane using more than one critical plane determination criterion. 

 

1.2 RESEARCH MOTIVATIONS 

 

 Most components in real-life scenarios have a multiaxial state of stress and are 

subjected to random loading conditions. Therefore, the study of multiaxial fatigue under 

complex loading conditions is of great practical significance (Reis et al., 2003; Rahman 

et al., 2009; Marquis, 2010; Gates et al., 2014). Models for fatigue life prediction in the 

case of uniaxial loadings are well established; however, for multiaxial as well as random 

amplitude loading conditions, research is still in progress. Very few methods are 

proposed in the literature addressing fatigue life estimation for non-proportional 

multiaxial loading (Shamsaei, 2010; Gates and Fatemi, 2014). However, while many 

fatigue parameters to address multiaxial fatigue have been proposed during recent 

decades, due to the challenging nature of the problem, a universally accepted model 

which can be used in various loading and material conditions is still needed for reliable 

multiaxial fatigue life estimation (Ganjidoust and Shariyat, 2009; Fatemi and Shamsaei, 

2011; Gómez et al., 2011; Ince, 2013; Ince and Glinka, 2014). The requirement to 

produce highly reliable products, with a cost-effective design process in terms of 

prototyping and testing is always the prime concern of design engineers (Ince, 2012). 

Testing and analysis are two essentials tools for design against fatigue failure. In order 

to reduce the design cost, it is essential to reduce the experimental testing and 

prototyping cost (Shamsaei, 2010). This goal can be achieved by replacing experimental 

testing with accurate analysis, especially in the early design stages. In order to evaluate 

fatigue life accurately, a technique is required which is capable of handling various 
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loading and material conditions and is adaptable for both academic and industrial 

applications. 

 

1.3 PROBLEM STATEMENT 

 

 Most machine components are subjected to combined cyclic tension, bending 

and torsional loads during their service life. In addition, many machine components 

have complex geometries as per design requirements, which can cause stress 

concentration areas (Acevedoa and Nussbaumer, 2009). With multiaxial loads, complex 

stress–strain states occur around stress concentration points and can cause fatigue 

failure without any apparent large-scale plastic deformations (Schijve, 2009; Schmid et 

al., 2013). To address this issue, various models have been proposed for multiaxial 

fatigue life estimation. However, most of these work accurately only for certain material 

and loading conditions (Marquis, 2010; Gómez et al., 2011; Ince and Glinka, 2014). In 

addition, as experimental testing for fatigue life becomes unfeasible in most situations, 

especially in the early design stages, the requirement for a fatigue life model that can 

serve as a general purpose model as well as for various materials and loading conditions 

is therefore indispensable to bring down the cost of product design (Ince, 2012; Suman, 

2013). 

 

 While the development of uniaxial fatigue models is at a quite mature stage, the 

modelling of multiaxial fatigue damage is still an active area of research (Liu, 2006; 

Habtour et al., 2014). Multiaxial fatigue modelling can generally be classified in three 

major categories: equivalent stress/strain-based, energy-based and critical plane-based. 

Equivalent stress/strain theories use the von Mises or Tresca failure criterion for an 

equivalent representation of stress and strain. These criteria cannot distinguish between 

proportional and non-proportional loading. Energy-based theories determine the strain 

energy within a material during the loading cycle and compare it with a critical value. 

Since energy is a scalar quantity, these criteria do not provide physical interpretations of 

the process by which fatigue cracks initiate and propagate along certain directions or 

planes in the material (Suman, 2013). The third theory was initially proposed by Findley 

(1959), based on orientation planes having cracks in the material, and is thus named 

critical plane methodology. This technique has gained widespread acceptance and many 
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improvements have been proposed by researchers, including Brown and Miller (1973), 

Fatemi and Socie (1988), Dang Van (1993), Lazzarin and Susmel (2003) and Susmel 

(2010), to name a few. Thus the critical plane concept is a better option to use as the 

basis of new fatigue life models. 

  

Real-life loading conditions are variable in amplitude, while most multiaxial 

fatigue life models are formulated on the basis of constant amplitude loading (Suman, 

2013). In order to estimate the fatigue life for variable amplitude loading, cycle 

counting methods are applied to compare the effect of variable amplitude loading 

histories to fatigue data obtained with simple constant amplitude load cycles (Stephens 

et al., 2000). Fatigue life is estimated for each of the counted constant amplitude cycle 

set and cumulative damage is determined with respect to the number of cycles counted 

for each magnitude determined from the variable loading history. The main drawback of 

the cycle counting method is the loss of the sequence of loading data, which can lead to 

ignoring any effect it might have on fatigue life (Gao et al., 2014). The concept of 

continuum damage mechanics deals with fatigue damage as a constantly increasing 

function, where the damage is accumulated as the loading history progresses with time 

(Bobyr et al., 2014). The essential feature of CDM theory is that it is formulated by 

means of incremental relations and not changes per cycle, so it contains in itself the 

damage accumulation; thus the cycle counting method is no longer required and the loss 

of data can be avoided (Ottosen et al., 2008). 

  

The application of evolutionary optimization algorithms in fatigue life 

estimation is a relatively new research domain (Zhou et al., 2012). Approaches like 

genetic algorithms (GA) and artificial neural networking (ANN) are employed to 

estimate the model parameters. Complex interrelationships can be established between 

physical and theoretical correlations with experimental observations (Bukkapatnam and 

Sadananda, 2005; Roux et al., 2013). These approaches can be termed as material-

independent data-driven methods correlating input and output parameters and 

establishing the relationship between them. Thus, with an adequate amount of data, 

these models can be used with any material and loading configurations (Vassilopoulos 

et al., 2008; Brighenti and Carpinteri, 2012; Klemenc and Fajdiga, 2013). 
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This research aims at finding a hybrid approach incorporating the multi-

objective optimization algorithm with a critical plane-based fatigue estimation model. 

The model should be independent of the loading path shape and work with various 

material conditions. Implementation of the model should be easy enough to make it 

easily adaptable by industry. To achieve this, a methodology is proposed to integrate the 

benefits of the concepts which have been successfully applied before for various 

specific loading and material conditions but were not suitable as a general purpose or 

universal approach. The first step is the proposal of a new fatigue parameter expression 

based on the stress–strain parameters identified from the earlier published fatigue 

models, which are used to handle the effects of mean stress, high-cycle and low-cycle 

fatigue and non-proportional hardening. The proposed model is developed on the basis 

of the critical plane method, where the fatigue parameter is maximized as a whole to 

locate the critical plane. Secondly the calibration methodology is proposed to estimate 

the coefficients of the fatigue model expressions with the application of optimization 

algorithms by using the known experimental data about fatigue life and fatigue limit. 

This formulation is proposed on the assumption that, as per the continuum damage 

mechanics approach, damage is a continuously increasing function until unity or failure. 

This approach will allow the damage estimation to be independent of the loading path, 

as damage will follow the loading path as it progresses and not depend on the cycle 

counting methods. In the case of loading blocks or constant amplitude cycles, the 

Palmgren–Miner linear damage rule will be applied to determine the number of cycles 

or blocks of loading to failure. 

 

1.4 OBJECTIVES OF THE STUDY 

 

 The objectives of the study are summarized as follows: 

 

i. To develop a multiaxial fatigue life estimation model based on the continuum 

damage mechanics approach and critical plane method. 

ii. To determine calibrated coefficients for the proposed model utilizing 

optimization algorithms. 
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iii. To validate and analyse the performance of the proposed multiaxial fatigue 

model against various multiaxial loadings and material conditions from 

published results. 

iv. To develop a critical plane estimation method for complex random loading 

conditions in order to identify an increased number of planes for maximum 

damage compared to established models.  

 

1.5 SCOPE OF THE STUDY 

 

 The scope of the study are as follows: 

 

i. A multiaxial fatigue life estimation model is developed based on a hybrid 

approach using continuum damage mechanics and critical plane theory with 

crack initiation considered as failure. 

ii. Maximum normal and shear strain ranges, normal and shear stress and mean 

normal and shear stress on the critical plane are used in establishing the fatigue 

model equations. 

iii. Non-linear finite element analysis was performed based on various specimen 

geometries to generate the stress response time histories against the applied 

loading. 

iv. Calibrated coefficients for the proposed model are determined by employing a 

genetic algorithm. 

v. The proposed model is validated by testing the fatigue life prediction 

performance for various multiaxial loadings and materials, i.e., EN3B steel 

alloy, carbon steel C40, SS304, titanium alloy BT9 and low carbon steel (steel 

20) with experimental fatigue lives. Experimental fatigue related data of various 

materials and loading conditions were taken from the published literature, as it is 

sufficient to validate the model and demonstrate the capability of the proposed 

model. 

vi. Model performance is analyzed in handling complex profiles and block loading 

for factors including two-principal strain directions, fully reversed loading, 

rotational principal strain direction, load step length and direction of loading 

path. 
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vii. A multi-parameter method is devised to locate the critical plane using the multi-

objective optimization feature of GA. 

 

1.6 OVERVIEW OF THE THESIS 

 

 Chapter 1 includes a brief description of continuum damage mechanics, the 

critical plane method, evolutionary optimization algorithms, research motivations, the 

problem statement, research objectives and the scope of study. Chapter 2 presents a 

literature review of fatigue life estimation models with the emphasis on highlighting the 

latest advances in recent years. A brief review of the application of optimization 

algorithms in fatigue life estimation models is also given. Chapter 3 describes the 

developed fatigue life model, with detailed discussion of the calibration process using 

the optimization algorithm and working of the proposed model. Details are given of the 

validation exercise performed for the proposed model, with material and loading 

conditions taken from published literature, and the FEA models, developed for 

acquiring the stress–strain response, are shown. Chapter 4 presents the results of the 

proposed model validation exercise and discusses the performance of the proposed 

model in various material and loading conditions. Calibration of model coefficients is 

performed using characteristic profiles and the effects of these calibrated coefficients on 

fatigue life estimation for complex loadings are analysed. The efficiency of the 

interpolation of the estimated coefficients method is discussed, and performance 

analysis of the multi-parameter critical plane estimation method is presented. Chapter 5 

presents the conclusions of the study, its contribution, and recommendations for future 

studies.  

 

 



 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

 The purpose of this chapter is to provide a survey of past research efforts linked 

with the development of fatigue life estimation models. In the survey, the main 

objective is to identify new ideas fo2011r fatigue life estimation other than the classical 

models and their hybrids. Various techniques to estimate fatigue life have been 

identified, including critical plane deviation, 5D deviatoric space enclosed surface, and 

modified Wholer curve. But the most distinguished one found is the application of 

evolutionary optimization algorithms for, e.g., genetic algorithms, artificial neural 

networking and differential ant-stigmergy algorithms. In this chapter first a brief history 

of fatigue life estimation and modelling is presented. In subsequent sections some well-

known classical models are discussed and then various innovative approaches to fatigue 

life prediction are reviewed. The survey is fairly detailed and best efforts have been 

made to net in as many new methodologies as possible. The review is organized to offer 

insight on how past research efforts have provided the groundwork for subsequent 

studies, including the present research effort. The present research effort can be properly 

tailored to add to the present body of literature as well as to justify its own scope and 

trends. 

 

2.2 FATIGUE LIFE ESTIMATION 

 

 The importance of fatigue is evident from the estimate that almost half of all 

mechanical failures are due to fatigue, which constitutes approximately 4% of the gross 

national product of USA (Stephens et al., 2000). It is essential to understand the physics 
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of fatigue and develop a fatigue life estimation methodology which can help reduce the 

probability of such failures (Sangid, 2013). Since the investigations by Wohler in 1860, 

fatigue experiments and predictions have played a major role in mechanical design (Lee 

et al., 2005; Manson and Halford, 2006). Addressing the fatigue problem, huge efforts 

have been made to devise sound methodologies suitable for safely assessing mechanical 

components subjected to time-variable loadings (Schijve, 2003; Rahman et al., 2007; 

Abdullah et al., 2008; Li et al., 2011; Mamiya et al., 2011; Papuga, 2011; Kenmeugne et 

al., 2012; Meggiolaro and de Castro, 2012a; Susmel and Taylor, 2012; Saintier et al., 

2013). It is an acknowledged fact that to estimate fatigue life accurately in real-world 

scenarios is a complex task in which numerous variables have to be taken into account 

in order to avoid unwanted and dangerous failures  (Brighenti and Carpinteri, 2012). 

The reliability of a fatigue estimation technique depends on its ability to model damage 

due to non-zero superimposed static stresses, the degree of multiaxiality in the stress 

field and the effects of stress concentration phenomena (Susmel and Taylor, 2008). For 

the cases of cyclic and random multiaxial loading conditions, it is difficult to estimate 

fatigue life as damage is dependent on all the stress components and their variations 

during the whole duration of load application  (Susmel and Taylor, 2008; Macha and 

Niesłony, 2012). A brief classification of fatigue analysis types is summarized in 

Table 2.1 (Liu, 2006). To predict fatigue estimation results accurately, the fatigue 

assessment method should be calibrated with reference to some experimental 

information that can be easily obtained through tests run in accordance with the 

pertinent standard codes (Atzori et al., 2006; Susmel and Taylor, 2008; Susmel and 

Tovo, 2011; Brighenti and Carpinteri, 2012; Susmel and Taylor, 2012). Stress analysis 

is conducted to correctly estimate fatigue damage by directly post-processing a simple 

linear elastic finite element model (Bishop and Sherratt, 2000; Rahman et al., 2009; 

Pinto et al., 2010). 

 

2.3 MULTIAXIAL MATERIAL FATIGUE MODELLING 

 

 Fatigue is defined as the process of progressive localized permanent structural 

change occurring in a material subjected to conditions that produce fluctuating stresses 

and strains at some point or points, and which may culminate in cracks or complete 

fracture after a sufficient number of fluctuations (ASM, 1996). In common engineering 



11 
 

 
 

terminology, it refers to the damage and failure of materials under cyclic loads, 

including mechanical loads, thermal loads, etc. (Liu, 2006). Fatigue damage is 

characterized by nucleation, coalescence and stable growth of cracks, leading ultimately 

to net section yielding or brittle fracture (Varvani-Farahani, 2005). An evaluation of 

fatigue of structures and materials in the 20th century raises the question what happened 

in the 19th century? The answer is that fatigue of structures became evident as a by-

product of the industrial revolution in the 19th century (Schijve, 2009). A fundamental 

step in fatigue analysis was made at the beginning of the 20th century by Ewing and 

Humfrey (1903). The authors carried out a microscopic investigation which showed that 

fatigue crack nuclei start as micro-cracks in slip bands (Schijve, 2003). When 

components are stressed in the high-cycle fatigue or very high-cycle fatigue regime, 

most load cycles in realistic in-service loading sequences are at stress amplitudes that 

are too low to cause failure under constant amplitude loading conditions (Mayer, 2009). 

Constant amplitude cycling below the endurance limit does not lead to fracture, but it 

can cause fatigue damage. Several investigations show that short fatigue cracks may be 

initiated by cycling carbon steels below the endurance limit (Chapetti et al., 2001; 

Mayer, 2009). 

 

Table 2.1: Classification of various types of fatigue analysis. 

 

Classification basis Fatigue analysis type Description 

Loading 

Uniaxial 

One cyclic stress or strain 

component dominates during the 

life 

Multiaxial 

Multiaxial cyclic stress or strain 

components dominate during the 

life 

Fatigue life 
High-cycle Fatigue life >104-6 cycles 

Low-cycle Fatigue life <103-4 cycles 

Damage stage 
Crack initiation From no crack to macro crack 

Crack propagation From macro crack to final failure 

Analysis approach 

Stress-life approach (S-N) 
Stress is used to predict fatigue 

life 

Strain-life approach (e-N) 
Strain is used to predict fatigue 

life 

Energy approach 
Energy is used to predict fatigue 

life 

Fracture mechanics approach 
Fracture parameters are used to 

predict fatigue life 
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 In real-world scenarios loading conditions are variable and complex and the 

resulting stress states are also multiaxial. Multiaxial loads, which can be in-phase 

(proportional) or out-of-phase (non-proportional), are common for many components 

and structures (Suman, 2013). Even under uniaxial loads. multiaxial stresses often exist, 

although typically in-phase, for example due to geometric constraints at notches. Such 

multiaxial loads and stress states are frequently encountered in many industries, 

including automotive, aerospace, and power generation, among others (Fatemi and 

Shamsaei, 2011). Non-proportional multiaxial fatigue damage occurs when the principal 

stress directions vary during the loading induced by several independent sources, such 

as out-of-phase bending and torsion moments (Meggiolaro and de Castro, 2012a). The 

methodologies for the more complex case of multiaxial variable amplitude loading are 

not yet well established, particularly when the loads are non-proportional (Ghalami and 

Fatemi, 2013). In the following section, fatigue life models are presented which were 

proposed in the last century and are well discussed and known in published literature, 

mentioned here as classical models.  

 

2.4 CLASSICAL MULTIAXIAL FATIGUE LIFE ESTIMATION MODELS 

 

 This section presents a brief review of the fatigue life models which are most 

popular in the published literature, and many of the models proposed more recently 

lately are their hybrids.  

 

2.4.1 Stress-Based Models 

 

 Sines (1955, 1959) proposed that octahedral (von Mises) shear stress is used as a 

fatigue damage criterion as expressed in Eq. (2.1), but this model is incapable of 

handling non-proportional loading. 

 

  





h
oct 3

2
                                                   (2.1) 

 

where ∆τoct = octahedral stress (von Mises) range, σh = hydrostatic stress, α and β are 

material parameters. 
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 Crossland (1956) proposed a similar parameter to that of Sines but used 

maximum hydrostatic stress (σhmax) instead of mean, as expressed in Eq. (2.2). This also 

faces problems in dealing with out-of-phase multiaxial loading (Papuga, 2011).  

 

  





max3
2

h
oct                                               (2.2) 

 

 Findley (1959) proposed a fatigue life parameter, as expressed in Eq. (2.3), 

based on a combination of shear stress range and normal stress on the plane having the 

maximum value of the parameter. 

 

fk n 











max2



                                                 (2.3) 

 

where ∆τ = shear stress range, σn = normal stress, k = material constant. 

 

 McDiarmid (1991, 1994) proposed a model similar to Findley’s, as expressed in 

Eq. (2.4), in which the critical plane is identified as the plane with the maximum shear 

stress range, but has a large scatter in results. 

 

1
22

max,

,

max 


uts

n

BAt 


                                                (2.4) 

 

where ∆τmax = maximum shear stress range, tA,B = shear fatigue strength, uts = ultimate 

tensile strength. 

 

 Dang Van (1993) proposed an endurance limit criterion, also known as the Dang 

Van model, based on the concept of micro-stresses within a critical volume of material, 

expressed in Eq. (2.5). Recently, Hofmann et al. (2009) and Charkaluk et al. (2009) 

revisited the Dang Van model and suggested a finer qualitative analysis to better 

understand the ability of the model. 

btat h  )()(                                               (2.5) 
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where (t) = instantaneous shear stress, h(t) = instantaneous hydrostatic stress, a and b 

= material constants 

 

2.4.2 Strain-Based Models 

 

 Brown and Miller (1973); Brown and Miller (1982) and Kandil et al. (1982) 

proposed a parameter based on the maximum shear strain range and normal strain range 

on the plane experiencing the maximum shear strain range, as expressed in Eq. (2.6). 
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                 (2.6) 

 

where ∆γmax = maximum shear strain range, ∆εn = normal strain range, σn,mean = mean 

normal stress, S, A and B = material constants. 

 

 Wang and Brown (1993) proposed a modification of the model proposed by 

(Brown and Miller, 1982), adding the capability to handle the strain path effect. The 

model is expressed in Eq. (2.7).  

 

         cffpp
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







   (2.7) 

 

where ̂  = equivalent shear strain connection, max = maximum shear strain range, 

n
* = normal strain excursion between two turning points of max, e and p = elastic and 

plastic Poisson ratio, S = a material parameter representing the influence of normal 

strain on fatigue crack growth. 

 

2.4.3 Strain Energy-Based Models 

 

 Smith et al. (1970) proposed a damage model also known as the Smith Watson 

Topper (SWT) model, including the cyclic normal strain range and maximum normal 

stress, as expressed in Eq. (2.8); the critical plane is identified as the plane of maximum 
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normal stress. This model was originally developed and is still used for mean stress 

correction.  
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                       (2.8) 

 

where σn,max = maximum normal stress, ∆ε1 = principal strain range, σf
’ = fatigue 

strength coefficient, εf
’ = fatigue ductility coefficient, E = elastic modulus, Nf = fatigue 

life, b = fatigue strength coefficient, c = fatigue ductility exponent. 

 

 Fatemi and Socie (1988) suggested a modification to the Brown and Miller 

model by replacing the normal strain term with normal stress. Eq. (2.9) represents the 

Fatemi–Socie model when shear fatigue properties are used (Stephens et al., 2000) and 

also in the form of uniaxial fatigue properties (Fatemi and Socie, 1988; Fatemi and 

Gladskyi, 2013). Additional cyclic hardening developed during out-of-phase loading is 

included in the normal stress term. Mean stress can also be accounted for by adding the 

normal mean stress across the maximum shear plane to the alternating normal stress 

across the same plane.  
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where ∆γ = shear strain range, σy = yield stress, τf
’ = shear fatigue strength coefficient, 

γf = shear fatigue ductility coefficient, G = shear modulus, bγ = shear fatigue strength 

exponent, cγ = shear fatigue ductility exponent, e and p = elastic and plastic Poisson 

ratio. 

 Liu (1993) proposed a model based on virtual strain energy (VSE), i.e., the 

product of the stress and strain ranges, expressed in Eqs. (2.10)–(2.11). The critical 

plane is defined by the value of maximum normal work and the VSE quantity is the sum 

of normal work and shear work on the critical plane for tensile failure dominant 

materials, and vice versa for shear failure dominant materials. 
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For tensile failure: 

 

    
maxnnW                                           (2.10) 

 

For shear failure: 

 

   max  nnW                                       (2.11) 

 

where W = virtual strain energy parameter, ∆σn = normal stress range, n = normal 

strain range,  = shear stress range,  = shear strain range. 

 

 Liu and Wang (2001) revisited the VSE model and evaluated its effectiveness, 

stating the strengths of the method as its ability to predict the physical characteristics of 

fatigue cracks, such as initiation sites, fracture modes and crack orientations. The 

method under-predicted in the case of superimposed compressive mean stress for 

torsional fatigue life. Núñez et al. (2011) introduced a probabilistic formulation in Liu’s 

model based on a perturbation method to obtain two statistical moments (mean and 

variance) of the random variable fatigue lifetime. They compared their results with 

analysis done with a Monte Carlo simulation approach, and good agreement was found. 

But no experimental results are used in the study for comparison of model performance. 

 

 Chu (1995) proposed a similar parameter to Liu’s model to combine shear and 

normal work, but replaced stress ranges with maximum stresses to include the mean 

stress effect, as expressed in Eq. (2.12). The critical plane is defined by the plane having 

the maximum fatigue parameter value.  
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where n,max = maximum shear stress on plane. 
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 Glinka et al. (1995) proposed a shear strain energy model that includes the 

effects from both tensile and shear mean stresses, as expressed in Eq. (2.13). The critical 

plane is identified as the plane experiencing the largest shear work. 
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 Summary of the prediction capability of the models is presented in Table 2.2. 

The next section outlines the models proposed in the last 30 years which presented new 

proposals and expressions to estimate multiaxial fatigue damage. 

 

Table 2.2: Prediction capability of fatigue life models 

 

Fatigue model Load type handling capability 
Capable to handle 

mean stress effect 

Sines (1955, 1959) Proportional No 

Crossland (1956) Proportional No 

Findley (1959) Proportional No 

McDiarmid (1991, 1994) Proportional / non-proportional Yes 

Dang Van (1993) 
Proportional and random 

loading 
Yes 

Brown and Miller (1973); 

Brown and Miller (1982) 

and Kandil et al. (1982) 

Proportional / non-proportional No 

Wang and Brown (1993) Proportional / non-proportional Yes 

Smith et al. (1970) Proportional / non-proportional Yes 

Fatemi and Socie (1988) Proportional / non-proportional Yes 

Liu (1993) Proportional / non-proportional No 

Chu (1995) Proportional / non-proportional Yes 

Glinka et al. (1995) Proportional / non-proportional Yes 
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2.5 ADVANCES IN MULTIAXIAL FATIGUE LIFE ESTIMATION 

MODELS 

 

 The above discussion gives a brief introduction to the fatigue models that have 

gained widespread acceptance. The following section discusses some less known 

models, which may not be widely used but present new concepts and fatigue parameter 

expressions to estimate multiaxial fatigue life. This review is not exhaustive but best 

efforts have been made to gather as much data as possible about the development of 

fatigue life models from the previously published literature. The reviewed models are 

categorized with respect to basic concepts for example the critical plane, enclosed 

surface methods, integral type models, material structure-based models, stress 

invariants-based models, statistical assessment models, plasticity framework models. To 

highlight the stress–strain parameters involved for defining the model expressions 

quantifying fatigue damage and fatigue life. 

 

2.5.1 Critical Plane Models 

 

  Susmel and Lazzarin (2002) and Lazzarin and Susmel (2003) proposed a critical 

plane model, i.e., the plane of maximum shear stress amplitude, then calculated both the 

maximum shear stress amplitude and the maximum normal and mean stress relative to 

that plane. Their modified Wholer curve method (MWCM) is expressed in Eqs. (2.14)–

(2.15). 

 

  bak effeff                                                (2.14) 

    effefffA Re,                                             (2.15) 

 

where k(ρeff) = negative inverse slope of Wholer curve, ρeff = critical plane stress ratio, 

A,Ref (ρeff) = reference shear stress amplitude at considered limit to cycles to failure, a, b, 

,  = material constants. 

 

 Susmel and Taylor (2006) proposed a simplified approach to apply the theory of 

critical distances (TCD) (Taylor, 1999), as defined in Eq. (2.16), to predict the fatigue 

behaviour of notched components subjected to torsional fatigue loading. TCD was 
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found to be a useful tool for assessing fatigue life, as the experimental results generated 

using uniaxial testing equipment and linear elastic FE models are the only two pieces of 

information needed for its application. 
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where L = material characteristic length, KI,th = fatigue threshold stress intensity factor, 

0 = range of uniaxial plane fatigue limit. 

 

 Susmel and Taylor (2008) later proposed a method which combines the MWCM 

and TCD methods to estimate fatigue life under multiaxial loadings. They concluded 

that the proposed method is efficient, provided that it is calibrated by using appropriate 

pieces of experimental information. Susmel (2010) formulated a critical plane 

determination method based on the concept that the material plane where the crack 

initiation phenomenon takes place is the one containing the direction along which 

variance of the resolved shear stress reaches its maximum. Expressions defining the 

variance are shown in Eqs. (2.17)–(2.19). The main feature of the method is the speed 

of critical plane determination, as the time needed to find the global maximum is not 

dependent on the length of load history under study.  

 

    dCdtVar T

q                                              (2.17) 

 

where d = direction cosines, [C] = matrix consisting of variance Vi, covariance Ci,j terms 

defined as: 

   yzxzxyzyxifortVarV ii ,,,,,                      (2.18) 

 

     yzxzxyzyxiforttCoVarC jiji ,,,,,,,                    (2.19) 

 

 Susmel and Taylor (2011) proposed a reformulation of the TCD method so that 

it can be used to estimate the fatigue life of notched components facing variable 

amplitude uniaxial fatigue loading. They also highlighted three forms of application of 
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TCD: the point method, line method and area method, of which the point method is said 

to be the easiest to apply in terms of the calculation load. Susmel and Tovo (2011) 

presented the methodology of estimating fatigue life under variable amplitude loading 

conditions, using MWCM along with MVM for critical plane determination. They also 

introduced a material parameter critical damage sum, expressed in Eqs. (2.20)–(2.21), 

determined experimentally, where this parameter can vary with the degree of 

multiaxiality and non-proportionality. 

 

  21 ddD effeffCR                                           (2.20) 

 

where d1 and d2 = material fatigue properties to be determined experimentally, ρeff = 

critical plane stress ratio, defined by 
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anmn

eff
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
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

,, 
                                                (2.21) 

 

where m = mean stress sensitivity index, n,m and n,a = mean and amplitude of stress 

perpendicular to critical plane, a = shear stress amplitude. 

 

 Susmel and Taylor (2012) devised a technique for fatigue assessment of notched 

components subjected to variable amplitude fatigue loading. They used MWCM along 

with TCD in the form of the point method, where the critical plane is determined using 

MVM. They concluded that their method provided a high level of accuracy and that real 

components can be designed against variable amplitude uniaxial/multiaxial loading by 

direct post-processing of the relevant stress fields determined through conventional 

linear-elastic FE models. Susmel et al. (2014b) investigated the MVM method to 

determine whether, independently from the degree of multiaxiality and non-

proportionality of the applied loading history, the direction of maximum variance of the 

resolved shear stress is also capable of accurately estimating the orientation of Stage I 

crack paths. The study showed that MVM is seen to be capable of estimating the 

orientation of the Stage I crack paths under non-proportional loading with an adequate 

level of accuracy. Susmel et al. (2014a) performed a validation exercise to judge the 

effectiveness of TCD in the form of the point method along with MCWM in estimating 
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fatigue life for uniaxial/multiaxial loading cases by directly post-processing linear 

elastic stress fields calculated from commercial finite element software. A high level of 

accuracy was observed in the calculated fatigue life results. 

 

 Mahadevan and Liu (2005) proposed a fatigue model based on the concept of 

critical plane deviation, as expressed in Eq. (2.22), where first a search for the fracture 

plane is conducted and then the critical plane is found at a certain deviation from the 

fracture plane. The concept is based on the idea that a crack initiates on one plane and 

then propagates along a distinct plane orientation. The model is tested for constant 

amplitude loading and is found to give results in good agreement with experimental 

data. Later, Mahadevan and Liu (2007) extended the application domain of their model 

from isotropic materials to anisotropic materials and composite materials. But, due to 

the non-availability of experimental fatigue data on anisotropic materials in the 

literature, they suggested testing the proposed model with more experimental data 

available in future studies. 
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where a,c = normal stress amplitude on critical plane, m,c = mean normal stress on 

critical plane, fNf = normal stress at Nf cycles, tNf = shear stress at Nf cycles, a,c = shear 

stress amplitude on critical plane, a,c
H = hydrostatic stress amplitude on critical plane. 

 

 Ninic and Stark (2007) proposed a non-linear fatigue damage function based on 

the critical plane concept expressed in Eq. (2.23), rightly named as the quadratic critical 

plane formula by Papuga (2011). The critical plane is identified as the plane 

experiencing the maximum value of damage function. Their study concluded that the 

proposed fatigue damage function is dependent on the normal stress sensitivity factor 

for accurate predictions, and also identified that the endurance strength ratio is 

important for multiaxial fatigue analysis.  
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where D = damage on critical plane, a = shear stress amplitude, Te = fatigue limit in 

fully reversed torsion, eq = equivalent stress amplitude, Se = fatigue limit in fully 

reversed axial and torsion, (l,m,n) = direction cosines of vector normal to plane, k = 

normal stress sensitivity factor. 

 

 Papuga and Ruzicka (2008) proposed two criteria with a similar damage 

parameter with the emphasis on the effects of shear stress in comparison to normal 

stress. The criteria for the search for the critical plane are expressed in Eqs. (2.24)–

(2.26). The two methods derived here are to study whether it is more effective to 

integrate the load effect or to maximize it. Both methods provide very similar results as 

regards the presented data set of 119 experimental results.  
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where k, ac, bc = material parameter, Ca = shear stress on considered plane, Na = 

maximum normal stress, Nm = mean normal stress, t-1 = fatigue limit in fully reversed 

torsion, f0 = fatigue limit in repeated axial loading, f-1 = fatigue limit in fully reversed 

axial loading. 

 

 Lu and Liu (2009) proposed a critical plane model with the equivalent initial 

flaw size expressed in Eqs. (2.27)–(2.28). The critical plane is determined by the 

maximum normal stress plane and the ratio of mode II and mode I stress intensity factor 
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coefficients corresponding to a specific crack growth rate. This means that critical plane 

determination is dependent on stress states as well as material properties. 
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where N = fatigue life, Keq = equivalent stress intensity factor, Kth = threshold stress 

intensity factor, a = crack length, A, B, C, m = material parameters, 

Kmixed, eq = equivalent stress intensity factor under general mixed mode loading, k1, k2 

and kH = loading related parameters, s = ratio of stress intensity factors for mode II and 

mode I. 

 

 Shang et al. (2010) proposed a damage parameter based on a critical plane 

having maximum shear strain and a higher value of normal strain excursion, as 

expressed in Eq. (2.29). The proposed parameter shows good correlation with the 

multiaxial fatigue lives of different materials in low cycle loading cases. 
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where n
* = normal strain excursion between turning points on the critical plane, 

eff = effective Poisson ratio, max = maximum shear strain range. 

  Li et al. (2010) and Li et al. (2011) presented a simple critical plane type 

method to assess the fatigue life of metallic materials subjected to proportional and non-

proportional loading, and their model is expressed in Eq. (2.30). The model has 

maximum shear strain range (max), normal strain range (n) and the maximum 

normal stress (n,max) on the maximum shear strain range plane.  
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 Ince and Glinka (2014) proposed two different forms of fatigue damage 

parameter related to the maximum fatigue damage plane. The two forms are the 

generalized strain energy damage parameter expressed in Eq. (2.31) and the generalized 

strain amplitude damage parameter expressed in Eq. (2.32). 
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where W*
gen = maximum generalized strain energy, max = maximum shear stress, e 

and p = elastic and plastic strain range,  = shear stress range, n,max = maximum 

normal stress, n
e and n

p = elastic and plastic normal strain range, n = normal 

stress range, gen
* = maximum generalized strain amplitude. 

 

2.5.2 Enclosed Surface Models 

 

 Mamiya et al. (2005) proposed a multiaxial high-cycle fatigue endurance 

criterion for sinusoidal iso-frequency in-phase and out-of-phase loading conditions 

based on the idea of the minimum circumscribed ellipse in Illyushin’s deviatoric space, 

as expressed in Eq. (2.33). The mean stress effect is conservative on fatigue life results 

compared to other models used in the study. One limitation is that the model application 

is restricted to iso-frequency loading cases.  
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where ai(1-5) = amplitude of deviatoric stress, k = fatigue limit ratio, p,max = maximum 

principal stress,  = material parameter. 
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 Leila et al. (2010) proposed the enclosing path method with prismatic hulls on 

principal axes directions, as expressed in Eq. (2.34). This technique is effective in the 

sense that it is easy to capture the equivalent stress parameter with different loads 

causing the same value of stress parameter.  
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1,2 RRRRRJ a                                      (2.34) 

 

where R1 – R5 = amplitudes of stresses in principal directions in 5D Euclidean space, 

aJ ,2  = amplitude of second invariant of stress deviator. 

 

 Araujo et al. (2011) proposed the maximum rectangular hull method to define 

the equivalent shear stress amplitude, as expressed in Eqs. (2.35)–(2.36), where a 

rectangle is fitted on a complex loading path by maximizing its size. The method is 

capable of distinguishing between proportional and non-proportional loading. The 

method predicted better results than the minimum rectangular hull method when 

compared with experimental data. 

 

   ,maxmax

aa                                                (2.35) 

where 

    2

2

2

1max aaa                                         (2.36) 

 

where a
max = maximum equivalent shear stress amplitude, a (, θ) = equivalent shear 

stress on plane located by  and θ,  = angle locating rectangular hull on plane. 

 

 Mamiya et al. (2011) proposed a fatigue life estimation model in terms of a 

piecewise ruled S-N surface. The first surface is defined as the sum of deviatoric stress 

amplitude (a) and maximum hydrostatic stress (Hmax) as the exponential function of 

fatigue life, as expressed in Eq. (2.37); for the second surface only the deviatoric stress 

amplitude is used, as expressed by Eq. (2.38), for cases where hydrostatic stresses have 

a small magnitude. The maximum prismatic hull method is used to calculate the 

deviatoric stress amplitude. The proposed model performed in the same way as the other 
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earlier proposed model included in the study, but better in the situation of mean normal 

stress. 
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 fa N                                                    (2.38) 

 

where Nf = fatigue life, , , ,  = material parameters. 

 

 Meggiolaro and de Castro (2012a, 2012b) proposed an enclosing surface model 

with a modified Wang–Brown rainflow counting method. They identified discrepancies 

in the previously defined enclosing surface methods: only the minimum ball method has 

a physical foundation, the considered portion of the path should have more than one 

cycle or else, if it is considered as a single cycle, the actual damage might be 

underestimated, with a loss of information as the enclosing surface algorithms do not 

take into account the actual loading path, but only the convex hulls associated with 

them. For loading histories with more than one cycle counted by the rainflow method 

before applying the moment of inertia method, in the second part they have shown the 

shortcoming of the original Wang–Brown model, which can lead to non-conservative 

predictions by incorrectly filtering out significant events within a multiaxial loading 

cycle. The two improvements they proposed are, first, related to choosing the starting 

point of the cycle, so that the cycle counting is modified, and secondly that the 

algorithm implementation is simplified by formulating it in a reduced five-dimensional 

Euclidean space.  

 

2.5.3 Integral Type Models 

 

 Papadopoulos (1994) proposed an integral type fatigue life criterion where all 

components are integrated over all planes at the point of consideration, with an extra 

integration of resolved shear stress over shear plane as expressed in Eqs. (2.39)–(2.40). 

This places a high demand on computation time, thus preventing its use in commercial 

fatigue solvers (Papuga, 2011). This model is best suited for hard metals (Papadopoulos 

et al., 1997). 



27 
 

 
 

 

  max,

2

haT                                            (2.39) 

      

















2

0 0

2

0

2

2

2 sin,,
8

1
5 dddTT aa                 (2.40) 

 

where Ta = resolved shear stress amplitude,  and θ = angle locating the plane, χ = angle 

between major axis and resolved shear stress,  and  = material constant. 

 

 Lasserre and Palin-Luc (1998) proposed an energy density model expressed in 

Eq. (2.41), based on the idea of volumetric distribution of strain energy density around 

the critical point considered for fatigue failure. The model predicted results with good 

agreement with uniaxial and multiaxial experimental data of smooth cylindrical 

specimens.  
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where a
D = volumetric mean value of strain energy volumetric density, V*(Ci) = 

volume at critical point, Wa = strain energy volumetric density, Wa
* = strain energy 

volumetric density at critical point Ci. 

 

 Later, Palin-Luc et al. (2003) improved the volumetric density model by 

modifying the damage part of the model so as to overcome the limitation of fully 

reversed sinusoidal loading in the (Lasserre and Palin-Luc, 1998) model. Saintier et al. 

(2013) reformulated the model, as expressed in Eq. (2.42), and suggested improvements 

in the criterion for multiaxial variable amplitude loading, where originally only constant 

amplitude loadings are considered. The model also improved the incremental fatigue 

life assessment method for proportional and non-proportional multiaxial variable 

amplitude loadings. The proposed model estimated fatigue life results with good 

accuracy within the considered experimental cases, and it was also suggested that a 

more thorough study with variety of materials is required. 
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where Wgeqdam = damaging part of strain work density, Wgeq = equivalent strain work 

density, Pl = proportionality factor, M = represents evolution of stress / strain tensors 

and sequence duration, W*
g = minimum strain work volumetric density to create 

irreversible damage. 

 

 Zenner et al. (2000) proposed a fatigue life estimation criterion based on an 

integral type approach and shear stress intensity expressed in Eq. (2.43), which can 

result in good estimation in the case of complex periodical loadings. But due to stress 

quantities, this is not valid for a low-cycle fatigue regime, as strain-based parameters are 

required to deal with plastic deformations (Zenner et al., 2000).  
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where equ,a = equivalent stress amplitude, m, m = static shear and normal stress on 

plane , a, a = alternating shear and normal stress on plane , a, m, b, n = 

obtained from the tensile-compressive fatigue strength, torsional fatigue strength, 

pulsating tensile strength and pulsating torsional strength. 

 

 Papuga and Ruzicka (2008) proposed two criteria with a similar damage 

parameter with the emphasis on the effects of shear stress in comparison to normal 

stress. The criteria integrate a fatigue parameter over all planes, expressed in Eqs. 

(2.44)–(2.45). The two methods derived here are to study whether to integrate the load 

effect or to maximize it is the more effective approach. Both methods provide very 

similar results as regards the presented data set of 119 experimental results.  
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                                     (2.45) 

where k, a1, b1 = material parameter, Ca = shear stress on considered plane, Na = 

maximum normal stress, Nm = mean normal stress, t-1 = fatigue limit in fully reversed 

torsion, f0 = fatigue limit in repeated axial loading, f-1 = fatigue limit in fully reversed 

axial loading, ψ and  = Euler angles of planes examined in local coordinate system. 

 

2.5.4 Material Structure-Based Models 

 

 Luo and Chattopadhyay (2011) proposed a multi-scale damage criterion for 

initial stage crack prediction expressed in Eqs. (2.46)–(2.47). The local damage state is 

derived using optimization theory, and then passed on to grain level. The damage for a 

meso representative volume element (RVE), which contains several grains, is 

determined. The estimation results of RVE failure at a structural hotspot match the 

experimental results. Also, the damage criterion is working on microscale (grain level) 

thus it has the capability to provide the potential directions for crack growth. This model 

can be good for application in case studies, but due to its complex application method 

and dependence on grain structure, it may be not applicable in early stages of design 

process. Due to rapid changes in design prototypes with respect to shapes and materials, 

a quick analysis of various designs are required. Hence, the macroscale performance 

and behavior is preferable to perform a rapid and inexpensive analysis to select the best 

designs for detailed analysis. 
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where dD() = damage parameter increment on slip system (), dY() = plastic strains 

energy increment on slip system (), mr = memory stress, o = endurance limit, n
() = 

normal stress on slip system (), f = true fracture stress, m,  = material constants, dp 
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= plastic strain increment corresponding to n
(), s

() = shear stress on slip system (), 

dp = plastic strain increment corresponding to s(). 

 

2.5.5 Stress Invariants-Based Models 

 

 Horstemeyer and Gokhale (1999) proposed a void crack nucleation model for 

ductile metals with second phases, as expressed in Eq. (2.48). The model is a function 

of the fracture toughness of the aggregate material, length scale parameter, the volume 

fraction of the second phase, strain level and stress state. Later, Lugo et al. (2011), using 

an acoustic emission method, showed the effectiveness of the proposed model. 
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where η(t) =  void nucleation at time t, Ccoeff = material constant, (t) = strain at time t, d 

= length scale parameter, KIC = critical stress intensity factor, f = equivalent stress 

amplitude, a’, b’ and c’ = material constants determined from different stress states, I1 = 

stress invariant, J2 , J3 = deviatoric stress invariants. 

 

 Vu et al. (2010) proposed a fatigue life criterion based on stress invariants and 

they introduced a quantity J2,mean , shown in Eqs. (2.49)–(2.51), which captures the shear 

stress effect and phase shift effect. The model performed well within the considered set 

of experimental data. It was also suggested that a more detailed study is required to 

validate the model’s reliability. 
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where 

For low-strength metals 

  mamaf IIIII ,1,1,1,1 ,                                          (2.50) 
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For high-strength metals 
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where 1, 2, 3,  = material parameters, J2
’ = second invariant of deviator of the 

amplitude of stress tensor, J2,mean = mean value of J2
’(t) over a period, If = function of 

I1,a and I1,m, I1 = first stress invariant (a – amplitude and m – mean), f-1 = fatigue limit in 

fully reversed axial and bending, t-1 = fatigue limit in fully reversed torsion. 

 

2.5.6 Statistical Assessment Models 

 

 Pinto et al. (2010) proposed a Weibull regression model based on the Weibull 

model for statistical assessment of stress–life data for probabilistic definition of the 

strain–life field. This provides an analytical probabilistic definition of the whole strain–

life field as quantile curves, both in the low-cycle and high-cycle fatigue regions. The 

proposed model deals directly with the total strain, without the need to separate its 

elastic and plastic strain components, which represents a significant advantage over the 

classical approaches, permitting it to deal with run-outs, and it can be applied for 

probabilistic lifetime prediction using damage accumulation. 

 

2.5.7 Plasticity Framework Models 

 

 Emuakpor et al. (2012) developed a fatigue life assessment expression for 

multiaxial loading, shown in Eq. (2.52), incorporating non-linear plastic stress–strain 

relations in distortion theory for a case of cyclic loading. The idea behind the criterion is 

that the physical damage quantity for failure is equal to the accumulated strain energy in 

a monotonic fracture, which is also equal to the strain energy during fatigue failure. 
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where E = non-linear equivalent stress, C = material parameter for cyclic stress, p = 

principal stress (p = 1,2,3). 
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 Chaussumier et al. (2013) proposed a fatigue life prediction model based on 

experimental results, including multi-site crack consideration, coalescence between 

neighbouring cracks, a short crack growth stage and a long crack propagation stage. 

This model is built from experimental topography measurements of pickled surfaces 

which make it possible to detect pits and to characterize their sizes. The model was 

developed specifically for 7050 aluminium alloy, but its application and effectiveness 

should be tested for a greater variety of materials before considering it for widespread 

use. 

 

 Khandelwal and El-Tawil (2014)  proposed a damage mechanics-based model to 

simulate ductile fracture in structural steels. The model, expressed in Eqs. (2.53)–(2.55), 

is based on the concept of the principle of effective stress and strain equivalence in a 

plasticity framework. The proposed model is implemented in finite element code, the 

model parameters are mesh-dependent and the model has to be recalibrated if a different 

material or mesh size is employed. 
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where d and p = damage and plastic internal variables, T1 and T2 = threshold function, 

T = stress tri-axiality, a0, a1, a2, a3 = material parameters, n = nucleation strain, 

 = smoothing factor, c = coalescence strain  
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2.6 OPTIMIZATION ALGORITHM IN FATIGUE ANALYSIS 

 

 Bukkapatnam and Sadananda (2005) proposed a framework to model crack 

growth dynamics in materials under alternative service environments without resorting 

to extensive experimentation. The model structures are derived based on the unified 

approach (including all the observed effects of load ratio, short cracks, shielding of 

dislocations, overload and underload, surface crack, etc.), and a genetic algorithm is 

used to parameterize the models. The GAs allow reconciliation of the known, 

complicated physical relationships with empirical observations. The presence of 

physically motivated mathematical structures renders these phenomena predictive and 

easier to analyse than the use of purely empirical approaches such as neural networks. A 

fatigue crack growth model derived from the application of the proposed framework 

was found to predict crack growth rates to within 12% error. Thus they offer the 

potential to reduce the extent of the experimentation needed for fatigue crack growth 

analysis. 

 

 Liu (2006) proposed a simulation based calculation procedure for multiaxial 

fatigue life prediction, which combines a Monte Carlo simulation technique with 

stochastic process theory and a response surface method. The proposed method can 

include randomness in material properties, applied loading and geometry. Time-

dependent failure probability is evaluated, where the failure is defined as occurring 

when the accumulated damage exceeds an acceptable value or the crack exceeds a 

critical value. A Monte Carlo simulation method is used to calculate the probabilistic 

life distribution. A response surface method combined with design of experiments is 

used to obtain a simplified empirical formula for the damage accumulation process, 

considering several sources of variation. Field failure data was in very good agreement 

with numerically predicted results.  

 

 Vassilopoulos et al. (2007) proposed a procedure using an artificial neural 

network to model the fatigue life of multidirectional composite laminates made of 
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GFRP composite materials and tested these under constant amplitude loading patterns. 

The prediction accuracy of the artificial neural network (ANN) was validated using 

experimental data available from the literature. Only 50% of the experimental data is 

required by the ANN to model the fatigue life of the material in comparison to the data 

required by conventional methods.  

 

 Vassilopoulos et al. (2008) presented a comparative study of fatigue life 

estimation of composite materials using the GA tool, with conventional methods. They 

concluded that the fatigue life results are more accurate than the results produced by 

conventional methods. The advantages of GA highlighted in this paper are that the 

modelling is not based on any assumption, such as that the data follow a specific 

statistical distribution, or that the SN curve follows a power curve equation. It is a 

material-independent data-driven method which correlates input with output in order to 

establish a model describing the relationship between them. Thus the model can be 

applied to any material provided that an adequate amount of data is available. For future 

research related to GA-based fatigue modelling, they proposed to use more complex 

genetic programming configurations by introducing models with multiple inputs, e.g. 

stress amplitude, maximum stress, stress ratio and off-axis angle, and to try to assign a 

corresponding number of cycles to failure to every set of input. 

 

 Franulovic et al. (2009) proposed a material model describing the elasto-plastic 

behaviour of materials under cyclic loading. The material constitutive model for 

description of low-cycle fatigue behaviour is highly non-linear and therefore its 

parameter identification requires a complex numerical procedure, such as a genetic 

algorithm. A GA is a stochastic search method for obtaining good approximate 

solutions in complex problems. The calculation resulted in the identification of material 

parameters that are validated by comparing the material response of the numerical 

solution with experimental data. The GA for the parameter identification in a particular 

problem, using a finite element method to simulate the materials’ response, proved to be 

a very good choice. The use of suitable genetic operators in the GA calculation 

procedure made it possible to achieve very fast and reliable convergence to accurate 

results. 

 



35 
 

 
 

 Krishnapillai and Jones (2009) proposed a structural optimization procedure that 

integrates geometrical modelling, structural analysis and optimization into one complete 

and automated computer-aided design process. They illustrated a procedure for the 

design of lightweight structures using fatigue-based optimization in conjunction with a 

genetic algorithm. It provides a robust methodology and also has the potential to be 

applied to structures with complex structural configurations with multiple optimum 

peaks. 

 

 Brighenti and Carpinteri (2012) proposed a continuum mechanics-based 

endurance function which quantifies the damage accumulation in the material up to final 

failure, under an arbitrary multiaxial loading history. The proposed model is 

characterized by several parameters, so a genetic algorithm is employed to numerically 

evaluate their values once the effects of some experimental complex stress history on 

the fatigue life are known. The GAs have some advantages with respect to classical 

techniques, since they allow us to solve problems characterized by both multiple 

minima and non-convexity properties, avoiding numerical instabilities and the risk of 

missing the global optimum. Furthermore, the GAs can handle any kind of objective 

function, and simply operate by using basic concepts such as generation of random 

numbers, choice, switching and combination of such generated numbers. No critical 

plane or loading cycle counting algorithm is needed, as the proposed model simply 

analyses damage accumulation during the loading process. The fatigue life was assumed 

to be dominated by crack-nucleation, i.e., the fatigue life for crack propagation is 

negligible with respect to the total life. They concluded that the fatigue life results using 

the proposed endurance function show satisfactory agreement with the experimental 

data. Kamal et al. (2013) studied the endurance function model and suggested a 

simplification by reducing the number of parameters needed to calibrate the model and 

also developed a methodology to use FE analysis stress results to estimate fatigue life 

using the model. 

 

 Roux et al. (2013) proposed a method to define Equivalent Fatigue Loads (EFL) 

from in-service load measurement in the case of a structure subjected to multiple 

variable fatigue loadings. EFL can be used in order to define tests on full-scale 

structures for an experimental validation approach. A mathematical method is proposed 
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to find EFL, which uses a genetic algorithm in order to compute an accurate EFL for the 

whole structure. This method to find the best EFL for a structure can be used to perform 

a validation test on a bench and can also be used during the design phase to optimize the 

structure geometry for a specific use. 

 

 Lotfi and Beiss (2013) showed the application of an ANN as an effort to predict 

the effect of various powder metallurgy processing parameters on the endurance limit of 

powder metallurgy steel specimens. The study applies the existing data which was 

collected from published experimental investigations. Fabrication and testing 

parameters together with corresponding fatigue limit records were used as sets of data 

for network training. A genetic algorithm was also included to optimize the 

experimental conditions, subject to practical limitations, in order to achieve the desired 

fatigue strength values. The GA with a trained neural network is found to be a powerful 

optimization and cost reduction tool, as it makes it possible to select optimum material 

compositions and processing conditions for a specific fatigue strength. 

 

 Niesłony and Böhm (2013) presented a stress-based approach to take into 

account the influence of the mean stress value on the fatigue strength of constructional 

materials. The proposed fatigue life estimation model implemented a locally developed 

optimization algorithm to ensure maximum precision in the fatigue life calculations.  

The key assumption in the proposed solution is the use of fatigue strength amplitudes 

for calibration, gained for two boundary states: tension and compression with the stress 

ratio R = 1 and another one with a significant mean stress value, e.g. the popular 

unilateral tension R = 0, which is also mentioned by the authors as the main limitation. 

 

 Klemenc and Fajdiga (2012); Klemenc and Fajdiga (2013) proposed a technique 

for estimating -N curves and their scatter. They introduced five parameters: four 

parameters of the Coffin–Manson equation for the scale parameter of the Weibull 

distribution and the shape parameter of the Weibull distribution. Then they used GA and 

the differential ant-stigmergy algorithm (DASA) to estimate the five parameters on the 

basis of the known fatigue life data (mainly median EN curves) to obtain not only the 

trend of the -N curve, but also its scatter. Both algorithms were found to be capable of 
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estimating the five parameters correctly with as small a set as 25 data points of 

experimental data as input. GA was found to be faster than DASA. 

 

2.7 FINITE ELEMENT ANALYSIS IN FATIGUE LIFE ESTIMATION 

 

 Maksimovic (2005) defined a computation procedure in conjunction with 

Neuber rule and strain-life criterions in order to predict fatigue life using analytical and 

finite element analysis (FEA) methods. The analytical method is easier while FEM is 

adequate for application with complex structures. FEM is favorable for detection of 

critical locations. Additionally, FEM is reliable method for the stress analysis for linear 

as well as elastic-plastic domain. Liu (2006) applied the FEA to determine the stress–

strain response of rolling contact of rail head and railroad wheel and then used the S-N 

curves to predict the fatigue life. The parametric study was performed to study the effect 

of geometrical parameters and material parameters on fatigue damage. Ninic (2006) was 

used FEA to determine the stress–strain response around the critical areas of lubrication 

holes and shaft minor diameter transition of transmission shaft. These stress–strain 

results were  used for fatigue life estimation by fatigue life criterion i.e. McDiarmid’s 

criterion, Carpinteri and Spangoli’s criterion and fatigue damage function. Ås (2006) 

was used FEA simulation to determine the topography of rough surface from white light 

interferometry. The geometry of grooves were modelled and fine meshed for stress 

determination around the groove area. Finite element analysis of the rough surfaces 

showed a clear trend that crack initiation occurred in grooves where stresses are higher 

than for other grooves. The fatigue life was estimated with the stress fields from the 

surface geometry topography measurements. This detailed stress fields in turn improved 

the characterization of fatigue initiation life. 

 

 Krishnapillai and Jones (2009) applied FEA in fatigue based optimization study. 

A parametric study was performed on the geometric parameters and the effects were 

studied on the performance against fatigue life. Tarar (2008) proposed a new finite 

element procedure from an energy-based fatigue life prediction framework developed 

for prediction of axial, bending and multi-axial fatigue life. The prediction of fatigue 

life through energy analysis consists of constitutive laws, which correlate the cyclic 

energy to the amount of energy required to fracture. The energy expressions that 
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construct the new constitutive laws were integrated into finite elements for fatigue life 

prediction of structural components subjected to axial, bending and multi-axial cyclic 

loads. Miao et al. (2009) implemented FEA in a multi-disciplinary method to estimate 

fatigue for the railway car body. FEA along with multibody simulation was performed 

to simulate the rigid and flexible dynamic property of the full vehicle complex system. 

Then, optimization of the vehicle body was performed based on results of multi-body 

simulation. This method proved to be an alternative to expensive field dynamic tests. 

 

 Zhang et al. (2012) developed an FEA based method coupled with a non-linear 

continuum damage model and validated for uniaxial and multiaxial plain fatigue, un-

notched and notched conditions. The method was applied to a fretting fatigue of round 

on flat surface for the effect of slip on life.  Susmel et al. (2014a) applied the FEA with 

sub-modelling technique to generate the stress fields around the notch areas. Then, the 

fatigue life is estimated by post processing the stress results. Khandelwal and El-Tawil 

(2014) implemented coupling the plasticity damage model and explicit finite element 

analysis program. A set of model parameters are proposed for ASTM A36 steel and the 

simulation results. The finite element analysis was shown that the proposed constitutive 

model able to successfully predict the failure due to ductile fracture under varied stress-

states by comparing the with experimental results. 

 

 Ince and Glinka (2014) implemented a finite element-integrated simplified 

analytical modeling approach to determine the stress–strain response at notch area of 

notched shaft. It is used to assess the prediction capability of the proposed fatigue 

damage models by comparing with experimental results. Gates and Fatemi (2014) 

implemented the finite element analysis with linear elastic analysis with Neuber 

correction and elastic–plastic analysis for determining the notch root stress–strain 

quantities. It was used them to estimate fatigue life using the Fatemi Socie fatigue 

parameter and successfully correlate the predicted fatigue life results with experimental 

results. 

 

2.8 SUMMARY 
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 A review is presented about the periodic development of fatigue life estimation 

modelling. The reviewed models incorporate various methods to estimate fatigue 

damage, including different combinations of stress and strain quantities, mean stress 

effects, critical planes, micro-stresses, virtual strain energy, enclosing surface methods, 

5D Euclidean space, optimization algorithms, etc. New concepts developed in order to 

model the fatigue behaviour of materials are reviewed and it is observed that the 

proposed models are still limited to certain conditions, i.e., high-cycle or low-cycle 

fatigue, uniaxial and multiaxial loading, constant and variable amplitude loading and 

material type such as brittle, hard and ductile materials. However, no model can yet be 

declared as a universal or generalized model for various loading and material 

conditions, so additional research and development work is still needed for accurate and 

reliable multiaxial fatigue life estimation. The main objective of this review is to 

explore the new concepts and methods to estimate fatigue life, unlike the classical ones 

which do not lead to any universal or generalized fatigue models. The most promising 

methods for fatigue life estimation from the recently proposed models involve the 

application of evolutionary optimization algorithms like GA, ANN, DASA etc. The 

most attractive feature of these types of models is the inherent flexibility in model 

training/calibration due to the application of evolutionary algorithms. This can lead to 

more flexible formulation of model expressions with a higher number of parameters. 

The concept of using optimization algorithms should be explored in detail to utilize the 

full potential of this simple, versatile and easy to implement technique for fatigue life 

estimation modelling. In the next chapter a new method is proposed to incorporate the 

genetic algorithm in a fatigue life estimation method which is capable of handling a 

variety of loading and material conditions. 

 

 



 

 

 

CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

 This chapter describes the identification of the stress and strain parameters to 

be used in modelling the proposed fatigue model expressions. The two developed 

expressions and the process flow of the proposed model are explained. Details of the 

application of a genetic algorithm in the calibration of the proposed model equations 

and critical plane identification are presented. The validation procedure of the proposed 

model is described with the loading conditions, materials and details of FEA models 

being used and mesh convergence study is also presented. 

 

3.2 FLOW CHART OF THE STUDY 

 

 The flow chart of the study is presented in Figure 3.1. This flow chart shows the 

flow of steps in the development and evaluation of the proposed model. Stress and 

strain parameters are identified to include in the proposed model from stress–strain 

history results. These parameters are able to capture the effects of proportionality of 

stress, mean stress effects and strain hardening. The selected stress–strain parameters 

are assembled in fatigue parameter expressions in the form of strain energy named as 

Model-1 and summation of terms named as Model-2, an expression to account the 

evolution of stresses and an expression to quantify the damage. A genetic algorithm  

based calibration method is developed to determine the value of coefficients and 

material constants based on previously published experimental fatigue life results. A 

comparison of prediction accuracy and ease of calibration between the proposed model 

Model-1 and Model-2 are performed. Performance study of the proposed fatigue model 
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with the selected fatigue parameter expression is done against various material and 

loading conditions. Results are analyzed and findings of the study are concluded on the 

basis of the obtained results. 

 

Start

End
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no. of iterations for 

calibration

NO
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Literature review

Identification of stress-

strain parameters 

Check accuracy of fatigue life 

prediction and fewer iterations 

required for calibration
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application

Re-analysis and 
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Performance study of model in 

various loading and material 

conditions

Analysis of results

Conclusion

Formulation of Model
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(Summation of stress-

strain terms)

Model-1

(Strain energy form)

 
 

Figure 3.1: Flow chart of the study. 



42 

 
 

3.3 STRESS AND STRAIN PARAMETERS   

 

 From more than 50 years, researchers have put a great amount of effort into 

proposing new models to estimate fatigue life that can deal with various complex real-

world scenarios, as reviewed in Chapter 2. But in the end it all comes down to the fact 

that the proposed expressions to determine equivalent stress / strain or fatigue 

parameters are combinations of certain stress and strain quantities, a fact also identified 

by (Socie and Marquis, 2000). A list of highlighted parameters is given in Table 3.1. 

The variables mentioned in Table 3.1 are those that have been most commonly used to 

establish the fatigue models studied in chapter 2. As mentioned by (Socie and Marquis, 

2000; Ince, 2012), successful models have included features like being simple, efficient 

and applicable to various types of loading conditions, applicable in low and high cycle 

regimes, being able to include mean stress effect and able to handle non-proportional 

hardening effects, being physically correct from the continuum mechanics viewpoint, 

without any additional material coefficients, being load path dependent and able to 

determine failure planes and include tensile and shear failure modes. In their respective 

models, the stress / strain quantities identified in Table 3.1 define the mentioned 

features that are required for a model to able to be acknowledged as ready for real-world 

applications. 

 

3.3.1 Selection of Stress and Strain Parameters 

 

The first and most important requirement put forward for the proposed model is 

to keep the implementation procedure simple and easy to use. Thus the stress and strain 

quantities which are to be used in defining the proposed model should be easily 

determined. Keeping this in focus, stress–strain parameters are selected such that they 

can be directly calculated from the stress–strain tensor defining the state of stress and 

strain at a predetermined location. This avoids the extra calculation effort needed for 

secondary stress–strain quantities like 5D Euclidean stress, stress invariants, stress 

amplitudes derived from enclosing surface methods etc. 
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 Table 3.1: List of stress / strain components used in fatigue models. 

 

Stress / Strain parameter References 

τoct 
Octahedral stress 

(von Mises) 
Sines (1955, 1959), Crossland (1956) 

∆τ /2, τa 
Shear stress 

amplitude 

Findley (1959), McDiarmid (1991, 1994), Liu (1993), 

Glinka et al. (1995), Mahadevan and Liu (2005), 

Ninic and Stark (2007) 

∆τmax 
Maximum shear 

stress range 
McDiarmid (1991, 1994) 

∆γ , ∆γmax 
Maximum shear 

strain range 

Brown and Miller (1973); Kandil et al. (1982), 

Fatemi and Socie (1988), Liu (1993), Chu (1995), 

Glinka et al. (1995), Li et al. (2011), Ince (2012) 

τn,max 
Shear stress on 

considered plane 

Chu (1995), Glinka et al. (1995),                       

Papuga and Ruzicka (2008), Ince (2012) 

∆εn 
Normal strain 

range 

Smith et al. (1970), Brown and Miller (1973),          

Liu (1993), Chu (1995), Li et al. (2011), Ince (2012) 

σh 
Hydrostatic 

stress 

Sines (1955), Sines (1959), Crossland (1956),           

Dang Van (1993), Mahadevan and Liu (2005) 

σn,max 
Maximum 

normal stress 

Findley (1959), McDiarmid (1991),                       

Smith et al. (1970), Fatemi and Socie (1988),        

Chu (1995), Glinka et al. (1995) ,                      

Papuga and Ruzicka (2008), Li et al. (2011),         

Ince (2012) 

σm 
Mean normal 

stress 

Morrow and Socie (1980); Papuga and Ruzicka 

(2008) 

I1, I2,I3 

(a – amplitude, 

m – mean) 

Stress invariants 
Horstemeyer and Gokhale (1999), Vu et al. (2010), 

Brighenti and Carpinteri (2012) 

J1, J2, J3 
Deviatoric stress 

invariants 

Horstemeyer and Gokhale (1999), Vu et al. (2010), 

Brighenti and Carpinteri (2012) 

 

 According to the above-mentioned criteria, the stress–strain parameters selected 

for the proposed model are shear strain range (∆γ), maximum shear stress (τmax), normal 

strain range (∆ε), maximum normal stress (σn,max) and mean stress (σmean). These 

parameters are used in various already recognized models to define plasticity, non-

proportionality of load, mean stress effects, strain hardening etc. The shear strain range 

(∆γ) is the maximum shear strain range on a plane having the maximum fatigue 

parameter value, i.e. the critical plane. Brown and Miller (1973), Fatemi and Socie 
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(1988), and Liu (1993) used the cyclic shear strain in their models as it helps cracks to 

nucleate and also cyclic plasticity can be included through it. Maximum shear stress 

(τmax) is used by  Chu (1995), Glinka et al. (1995) and Ince (2012), to capture mean 

stress effects and for handling torsion test data. In the proposed model it is the 

maximum resultant shear stress of the two components acting on the critical plane. The 

normal strain range (∆ε) is the maximum normal strain range on the critical plane. It is 

used by Smith et al. (1970), Liu (1993), Ince (2012) and Ince and Glinka (2014) to 

include fatigue failure of the material failing on planes having the maximum tensile 

strain or stress. Maximum normal stress (σn,max), i.e. on the critical plane, is included to 

reflect mean stress effects and non-proportional hardening. As it was found by Fatemi 

and Socie (1988) that strain terms alone cannot reflect the mean stress effect, Smith et 

al. (1970) define load path dependent hardening, the difference between tension and 

torsion loading. Mean stress (σmean) on many occasions is included as Morrow 

correction (Morrow and Socie, 1980), but sometimes directly as a term of fatigue 

parameter, as by Papuga and Ruzicka (2008). In the proposed model, mean stress is 

included as shear (τmean) and normal (σmean) mean stresses on the critical plane. 

 

3.3.2 Stress and Strain on a Plane 

 

 To evaluate the fatigue damage caused by applied loads on an arbitrary plane, 

the local stress and strain components acting on that plane must be known. The fatigue 

damage parameter on a plane can be expressed in terms of stress and strain quantities as 

a function of the plane orientation. Stress and strain at a point are defined by an array of 

nine components each shown in Eqs. (3.1)–(3.2), where only six of each are needed 

because xy = yx, yz = zy, xz = zx for isotropic materials and similarly for strain. 
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 Now to define the stresses and strains on an arbitrary plane in three dimensions 

located by angle θ and , as shown in Figure 3.2. Two coordinate transformations are 

needed to transform stresses from the XYZ coordinate system to the X’Y’Z’ coordinate 

system. The direction cosines for these transformations are given in Table 3.2. 

 

3.3.3 Stress Strain Plasticity Modelling 

 

 Generally, components are designed such that the stresses should never exceed 

the yield stress. However, local plastic deformations are common in stress concentration 

areas under cyclic loadings. Even though the material behaviour in the net section area 

is in the elastic range, the stress–strain response at the concentration areas may often 

show elastic-plastic behaviour. The stress () strain () elastic-plastic relationship of 

materials for FEA is defined by the Romberg–Osgood relationship expressed in Eq. 

(3.5) or data acquired from stress–strain curves available in already published literature. 

 

n

KE

1












                                             (3.5) 

 

where K = strength coefficient, n = strength exponent and E = elastic modulus. 

 

Table 3.2: Direction cosines for coordinate transformation. 

 

 X Y Z 

X’ a11 = cosθ sin a12 = sinθ sin a13 = cos 

Y’ a21 = - sinθ a22 = cosθ a23 = 0 

Z’ a31 = - cosθ cos a32 = - sinθ cos a33 = sin 
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Figure 3.2: Plane location defined by angle θ and ϕ. 

 

 The following are the transformation equations in the form of matrices for stress 

Eq. (3.3) and strains Eq. (3.4): 

 

[
 
 
 
 
 
𝜎𝑥 ,

𝜎𝑦,

𝜎𝑧 ,

𝜏𝑥 ,𝑦,

𝜏𝑥 ,𝑧 ,

𝜏𝑦,𝑧 ,]
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑎11
2 𝑎12

2 𝑎13
2 2𝑎11𝑎12 2𝑎11𝑎13 2𝑎13𝑎12

𝑎21
2 𝑎22

2 𝑎23
2 2𝑎21𝑎22 2𝑎21𝑎23 2𝑎23𝑎22

𝑎31
2 𝑎32

2 𝑎33
2 2𝑎31𝑎32 2𝑎31𝑎33 2𝑎33𝑎32

𝑎11𝑎21 𝑎12𝑎22 𝑎13𝑎23 (𝑎11𝑎22 + 𝑎12𝑎21) (𝑎13𝑎21 + 𝑎11𝑎23) (𝑎12𝑎23 + 𝑎13𝑎22)

𝑎11𝑎31 𝑎12𝑎32 𝑎13𝑎33 (𝑎11𝑎32 + 𝑎12𝑎31) (𝑎13𝑎31 + 𝑎11𝑎33) (𝑎13𝑎32 + 𝑎12𝑎33)

𝑎21𝑎31 𝑎22𝑎32 𝑎23𝑎33 (𝑎21𝑎32 + 𝑎22𝑎31) (𝑎23𝑎31 + 𝑎21𝑎33) (𝑎22𝑎33 + 𝑎23𝑎32)]
 
 
 
 
 
 

[
 
 
 
 
 
𝜎𝑥

𝜎𝑦

𝜎𝑧

𝜏𝑥𝑦

𝜏𝑥𝑧

𝜏𝑦𝑧]
 
 
 
 
 

  (3.3) 

 

[
 
 
 
 
 
 
 
𝜀𝑥 ,

𝜀𝑦,

𝜀𝑧 ,

𝛾𝑥,𝑦,

2
𝛾𝑥,𝑧,

2
𝛾𝑦,𝑧,

2 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑎11
2 𝑎12

2 𝑎13
2 2𝑎11𝑎12 2𝑎11𝑎13 2𝑎13𝑎12

𝑎21
2 𝑎22

2 𝑎23
2 2𝑎21𝑎22 2𝑎21𝑎23 2𝑎23𝑎22

𝑎31
2 𝑎32

2 𝑎33
2 2𝑎31𝑎32 2𝑎31𝑎33 2𝑎33𝑎32

𝑎11𝑎21 𝑎12𝑎22 𝑎13𝑎23 (𝑎11𝑎22 + 𝑎12𝑎21) (𝑎13𝑎21 + 𝑎11𝑎23) (𝑎12𝑎23 + 𝑎13𝑎22)

𝑎11𝑎31 𝑎12𝑎32 𝑎13𝑎33 (𝑎11𝑎32 + 𝑎12𝑎31) (𝑎13𝑎31 + 𝑎11𝑎33) (𝑎13𝑎32 + 𝑎12𝑎33)

𝑎21𝑎31 𝑎22𝑎32 𝑎23𝑎33 (𝑎21𝑎32 + 𝑎22𝑎31) (𝑎23𝑎31 + 𝑎21𝑎33) (𝑎22𝑎33 + 𝑎23𝑎32)]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝜀𝑥

𝜀𝑦

𝜀𝑧
𝛾𝑥𝑦

2
𝛾𝑥𝑧

2
𝛾𝑦𝑧

2 ]
 
 
 
 
 
 
 

   (3.4) 

 

 Unlike the uniaxial cycle stress–strain curve, the multiaxial stress–strain state 

during cyclic plastic deformation requires a cyclic plasticity model to model the 

multiaxial stress–strain behaviour of a material. An appropriate cyclic plasticity model 

includes three major components: a yield function, flow rule and hardening rule. A yield 

function describes the combinations of stress that are needed to initiate plastic 
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deformation, a flow rule defines the relationship between stresses and plastic strains 

during plastic deformation, and a hardening rule describes how the yield surfaces are 

altered due to plastic strain. 

 

Yield Function 

 

 The yield criterion determines the stress level at which yielding is initiated. For 

multi-component stresses, this is represented as a function of the individual 

components, f(ij), and yield strength y. The yield function F(ij) is defined as 

Eq. (3.6). 

 

    0 yijij fF                                       (3.6) 

Flow Rule 

 

 The flow rule determines the direction of plastic straining and is defined as 

Eq. (3.7), as proposed by (Drucker, 1952), where dij is plastic strain increment, F is a 

yield function and d is a scalar valued function (which determines the amount of 

plastic straining). This postulate implies that the increment of plastic strain is in the 

normal direction to the yield surface during plastic deformation. 

 

ij

p

ij

F
dd






                                             (3.7) 

 

Hardening Rule 

 

 The hardening rule describes the changing of the yield surface with progressive 

yielding, so that the conditions (i.e. stress states) for subsequent yielding can be 

established. Generally, there are two alternatives to explain the evolution of the yield 

surface: isotropic hardening where the yield surface expands with plastic loading, and 

kinematic hardening where the yield surface translates without any expansion with 

plastic loading. In a general form, the hardening rule can be written as Eq. (3.8), where 

ij defines the movement of the centre of the yield surface, g(p) is a function relating 
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plastic strain to yield strength, and f() is commonly the von Mises yield function. When 

g(p) is a constant equal to ys
2, the hardening is kinematic. When ij = 0, it is isotropic. 

 

    0 p

ijij gfF                                     (3.8) 

 

 Isotropic hardening describes the expansion of the yield surface during plastic 

deformation. In other words, the yield surface grows. However, the centre of the yield 

surface remains fixed. Such behaviour for the stress–strain curve is plotted in 

Figure 3.3. In kinematic hardening, the yield surface is allowed to translate in stress 

space with no change in size or shape. Kinematic hardening on the stress–strain curve is 

shown in Figure 3.4. Real materials exhibit some aspects of both kinematic and 

isotropic hardening until they become cyclically stable. After stabilization, they exhibit 

only kinematic hardening. If transient behaviour is not of interest, as in most cases of 

fatigue analysis, a cyclically stable material is assumed and only kinematic hardening 

models are used (Socie and Marquis, 2000).  

 

 

 

Figure 3.3: Yield surface after isotropic hardening. 
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Figure 3.4: Yield surface after kinematic hardening. 

 

3.4 PROPOSED MULTIAXIAL FATIGUE MODELS 

 

 A significant work has been done in the last century to develop models to 

estimate multiaxial fatigue damage as discussed in Chapter 2. However, critical plane-

based damage parameters have gained wide acceptance due to their reasonably accurate 

life prediction capabilities. But, a universally acceptable model that can perform in 

various type of loading and stress-strain state conditions is not proposed till now 

(Mahadevan and Liu, 2005; Papuga, 2011). To fulfill the requirement of general 

acceptance with ease of application, a critical plane-based fatigue model is proposed 

that considers specific planes experiencing maximum fatigue damage. The proposed 

model use continuum damage mechanics approach and use incremental damage sum to 

quantify the fatigue damage. 

 

 The proposed fatigue model is described in two forms; energy type combination 

and summation of stress-strain terms. The energy type combination termed as Model-1 

is defined as a function of strain energy by Liu (1993); Chu (1995); Ince (2012).  The 

function can be expressed mathematically as Eq.(3.9); 

 

       fenergystrainnormalenergystrainshearfW ,             (3.9) 
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Similarly, the proposed fatigue parameter ‘P’ is defined as a function of normal and 

shear strain energy; 

 

   fP                                         (3.10) 

 

Expression for fatigue parameter ‘P’ can be written as Model-1 in Eq.(3.11); 
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The form with summation of stress-strain terms is termed as Model-2. It is defined as a 

function of normal and shear strain range and shear and normal stress similar to the 

concept defined by Li et al. (2010); Li et al. (2011); Ince (2012). On the basis of this 

theory, the function can be expressed mathematically as Eq.(3.12); 

 

  

  

 

f

stressnormalrangestrainnormalstressshearrangestrainshearfW ,,,

 (3.12) 

 

Similarly, the proposed fatigue parameter ‘P’ (Model-2) is defined as in Eq. (3.10); 

 

   fP                                        (3.13) 

 

Expression for fatigue parameter ‘P’ can be written as Model-2 in Eq.(3.14); 
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where fatigue material property ‘L’ is defined as a representation of material fatigue 

limit (Brighenti and Carpinteri, 2012) and its range of values is defined from available 

fatigue limit data. The fatigue parameter can now be written as in Eq. (3.11); 
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And Eq.(3.14) can be written as; 
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Stress evolution term ‘ev’ is added to account for hardening produced due to strain or 

non-proportionality during the applied loading (Ottosen et al., 2008; Noradila et al., 

2013). ‘ev’ is expressed through Eq.(3.17), including maximum and mean stresses, 

where stress evolution is proportional (through material parameter ‘V’) to the power ‘m’ 

of damage parameter increment (dP) during a load step. Normally it is safe to assume as 

(m=1) or linear relationship between ev and dP, if no specific information is available 

for rate dependence on induced hardness in material.  

 


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
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EE
dPVev mmm  maxmax.                                  (3.17) 

 

 Critical plane is defined for both cases with maximizing the value of “P” on a 

plane, with coefficients of stress-strain quantities (a1 –a4) taken as one and neglecting σL 

and ev terms. Based on the assumptions, all stress-strain components contribute in 

fatigue damage and plane with the maximum combined effect of these components are 

the plane with maximum fatigue damage. Elastic modulus ‘E’ and yield strength ‘σY’ is 

for normalizing. Finally, the proposed parameter expression for Model-1 and Model-2 

can be written as; 
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21 .               (3.19) 

 

 The incremental damage ‘Dn’ in each load step is defined as a function of 

damage parameter ‘P’ and its increment ‘dP’ (Ottosen et al., 2008). It can be 

mathematically expressed as; 

 

 PfdPDn                                               (3.20) 

 

where f(P) is assumed to increase nonlinearly with damage parameter ‘P’ (Ottosen et 

al., 2008). Hence, f(P) is expressed as in Eq. (3.21); 

 

  RPKPf                                               (3.21) 

 

where ‘K’ and ‘R’ are material parameters. Hence Dn is proportional (through ‘K’) to 

the fatigue parameter ‘P’ (to the power ‘R’) multiplied by increment in fatigue 

parameter ‘dP’ (Ottosen et al., 2008). Hence, substituting Eq.(3.21) in Eq.(3.20) we 

have the expression for damage Dn as Eq.(3.22). 

 

dPPKD R
n                                                   (3.22) 

 The process of fatigue estimation using the proposed model is highlighted in the 

subsequent section. The calibration and critical plane determination using the proposed 

methodology is explained in detail as follows. 

 

3.5 WORKING OF PROPOSED FATIGUE MODEL 

 

 In order to implement the equations defined in the previous section for any 

component subjected to a multiaxial loading, an algorithm has been developed. The 

fatigue life estimation process is presented in Figure 3.5.  The process starts with stress 
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analysis using FEA for each of the load cases under study. A macro in APDL was 

written to extract the required stress–strain values on the predetermined location 

susceptible to fatigue failure. As a first step, calibration of the model is conducted using 

the GA against the selected / experimental load cases. GA is used for calibration 

through an integrated software environment between the spreadsheet application and 

modeFrontier. The advantage of using  GA is that it can handle situations with multiple 

minima and non-convexity properties, thus avoiding numerical instability or missing the 

global optimum (Davis, 1991). It uses basic concepts like random number generation, 

choice, switching and combination of such generated numbers to get a new population 

which performs better than the previous generation (Franulovic et al., 2009). This 

process is repeated iteratively until the required tolerance is achieved or the set number 

of iterations are completed and thus the optimal condition can be achieved (Gantovnik 

et al., 2003). In the present research GA is implemented by using a Multi-objective 

Genetic Algorithm with II designating the proprietary version (MOGA-II). A macro 

written in Visual Basic programing language is added in MS-Excel to implement the 

proposed fatigue model equations. 

 

 Two methods for determining the critical plane are implemented. One is the 

conventional incremental angle with a certain step size to locate the maximum fatigue 

parameter plane, and the second is the newly developed method based on GA 

optimization. The calibrated model is then implemented in ANSYS using a macro 

developed in APDL to predict the fatigue life. ANSYS Parametric Design Language is a 

scripting language that can be used to build any FEA model in terms of parameters 

(variables). APDL encompasses all ANSYS commands as part of the scripting 

language, as well as a wide range of other features such as repeating a command, 

macros, if-then-else branching, do-loops, and scalar, vector and matrix operations. 

APDL combines ANSYS commands with FORTRAN-like functions and can be used to 

do many of the operations done by user-subroutines in other FE codes. 
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Figure 3.5: Fatigue life estimation process for the proposed model. 
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The fatigue life estimation process is summarized as follows: 

 

Determine the state of stress–strain time history at the location susceptible to fatigue 

failure through structural analysis using FEA.  

1. If applied load is to be used for calibration then determine coefficients as per 

procedure defined in Section 3.7. 

2. For fatigue life estimation, determine critical plane as per Section 3.7.1. 

3. For load step 1 to n; 

a. Get stress–strain values on critical plane from FEA results (Appendix 

A4). 

b. Calculate P using Model-1 or Model-2 : P defines the state of material 

at certain load step. 

c. If P > 0 then : The stress-strain state has overcome the material 

threshold defined by the fatigue material property term and evolution of 

stress term, and cause damage to the material. 

calculate P : Change in P from last load step 

else;  

Next load step (n+1) : For P < 0 there will be no damage. 

d. If P > 0 then : As P is defined as an incremental function and if P ≤ 0 

it shows that no damage occur in this step as there is no positive 

increment in P. 

calculate ‘ev’ as per Eq.(3.17) : With a damage occurred in material 

there is effects on the stress response in material 

calculate damage for each load step ‘Dn’ as per Eq.(3.22) 

else; 

Next load step (n+1). 

Next load step (n+1) 

4. Calculate total damage from the applied load profile (D= Dn.) 

5. Calculate fatigue life as 1/D (no. of repetitions of applied load profile) 
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3.6 MULTI-OBJECTIVE GENETIC ALGORITHM 

 

A multi-objective genetic algorithm (MOGA-II) is used for optimization. A 

randomly generated set between defined ranges serves as the “initial population”. This 

initial population consists of sets of chromosomes. The chromosomes evolve during 

several iterations called generations (Routara et al., 2012). The best individuals are 

evaluated, recombined and mutated to constitute a new population. MOGA was the first 

generation genetic algorithm (Fonseca and Fleming, 1993), while MOGA-II is a second 

generation evolutionary algorithm with elitism. The work flow chart for the MOGA-II 

is given in Figure 3.6. The basic concept of using a genetic algorithm for optimization is 

that the genetic collection of a given population contains better solutions to a given 

problem. The general operators applied in evolutionary algorithms are selection, 

mutation and crossover. The MOGA-II algorithm implements a fourth operator, i.e. 

multi-search elitism. The selection operator shifts designs to the next generation, 

selection being based on the best fitness of the function. Designs with a higher fitness 

value are more likely to be replicated into the next generation, ensuring a higher 

survival probability for the more fit solutions. The new generations are generated 

utilizing the crossover and mutation technique. Crossover splits chromosomes in two 

and then combines one half of each chromosome with the other pair. Mutation involves 

flipping a single bit of a chromosome (Routara et al., 2012). The chromosomes are then 

evaluated against certain fitness criteria and the best ones are retained while the others 

are rejected. The elitism operator is able to preserve all non-dominated solutions from 

the initial population, thus enhancing the convergence speed. Pseudo codes for the GA- 

based optimization algorithms are given as follows: 

 

Algorithm 1: Pseudo code for MOGA-II (overall algorithm main loop) 

 

Input:   Np (Population size) 

  G (Maximum number of generations) 

Output:  Non-dominated set A 

1. Objective functions 𝑓1(𝑥)…… . . 𝑓𝑘(𝑥), 𝑥 = (𝑥1 …… . . 𝑥𝑛)  

2. Initialize the population 𝑃𝑜 = (𝑥1 …… . . 𝑥𝑛) (Initial population = DOE) 

3. Elite set E =   (Null set). Set g = 0. 
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for  j =1 to N (points on Pareto frontier) 

while  (g < G) 

4. Evaluate fitness (objective values)  

5. Assign rank on the basis of Pareto dominance-‘Sort’ 

6. Generate next generation population 

a. Combine both population 𝑃𝑜 and elite set E into 𝑃′ = 𝑃𝑜𝑈𝐸  

b. If the cardinality of 𝑃′is greater than cardinality of 𝑃𝑜 reduce 𝑃′ by removing 

exceeding individuals. 

c. Perform the evolution of 𝑃′ to 𝑃′′ by applying MOGA reproduction operators 

randomly (selection, single-point crossover, directional crossover, bit flip 

mutation) (with regard to the pre-defined operator probabilities). 

7. If g > G or another stopping criterion is satisfied then set A equal to the set of 

decision vectors represented by the non-dominated individuals in 𝑃′′. Stop. 

8. Evaluate objective values of population 𝑃′′ . 

9. Assign ranks to 𝑃′′ individuals based on Pareto dominance. ‘Sort’. 

10. Copy all non-dominated designs from 𝑃′′ to E. ‘Sort’. 

11. Remove the duplicated and dominated designs from E. 

12. Resize the elite set E if it is bigger than generation size N by randomly removing the 

exceeding individuals. 

13. Repeat evaluation of the objective values (step 4) for the sets of 𝑃′′ with 𝑃′′ as the 

new population. 

14. Continue till termination. 

 

Algorithm 2: Pseudocode for reproduction used in MOGA-II 

 

with (individual Indi  generation G) do 

choose reproduction operator 

if (operator is one-point crossover) then 

j TournamentSelection, where j ≠ i 

NewIndi  OnePointCrossover (Indi, Indj ) 

else if (operator is directional crossover) then 

j  RandomWalk(i) 

k  RandomWalk(i), where k ≠ j ≠ i 
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NewIndi  DirectionalCrossover(Indi, Indj , Indk) 

else if (operator is mutation) then 

NewIndi  Mutation (Indi) 

else if (operator is selection) then 

NewIndi  Indi 

end if 

end with 

 

Initialize elite set as null 

set 

Selection of best designs 

from current population

Crossover and mutation 

on selected designs 

Initialization of the 

population 
Start

Endgen≥ max gen
YesNo

gen = gen+1

Fitness evaluation of 

each member of 

population

Combine selected 

designs with crossover 

and mutated designs

Combined designs are  

distributed into fronts

Select the best design 

from the front

Elitism in MOGA-II

 

 

Figure 3.6: MOGA-II algorithm flow chart. 

 

3.7 MODEL CALIBRATION METHOD 

 

 In order to calibrate the formulated model equations, the coefficients in Eq. (3.9) 

or Eqs. (3.10)–(3.12), i.e. a1-a4, σL, V, m, K and R, have to be calculated by using 

experimental life data for known loading conditions. The steps involved in the 

calibration process are as follows, and shown in Figure 3.7: 
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1. Determine the state of stress–strain time history at the location susceptible to 

fatigue failure through structural analysis using FEA.  

 

2. The location of the critical plane is determined by maximizing the fatigue 

parameter ‘P’, as per Section 3.7.1. 

 

3. Time histories of stress–strain quantities required for the fatigue model are 

projected on the critical plane and extracted through APDL code (Appendix A4). 

 

4. The extracted stress–strain time history data is imported into an MS Excel 

spreadsheet, as an integrated environment between MS Excel and modeFrontier 

is used to apply the GA for calibration of fatigue model coefficients. 

 

5. modeFrontier supplies the values of coefficients generated by the GA algorithm 

to MS Excel, where the damage per cycle is calculated from the stress–strain 

data and the coefficients supplied by the GA and sent back to modeFrontier for 

evaluating the objective function defined to be minimized by the GA. 

 

6. After the complete run of the GA, where the number of iterations to be 

performed is decided by the size of the initial population and number of 

generations to be generated by the GA, the sets of coefficients, i.e. generated by 

the GA, are selected with respect to the minimum value of the objective function, 

as per Section 3.8.2. 

 

7. The calibrated coefficients are determined by taking the weighted average of 

selected sets of coefficients, on the basis of the objective function, as per 

Section 3.9.3. 
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Figure 3.7: Calibration process flow chart for proposed model. 
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3.7.1 Incremental Angle Method  

 

 The conventional method of locating the critical plane is to calculate the fatigue 

parameter on each plane, i.e. located by θ and ϕ as shown in Figure 3.2, where θ and ϕ 

vary from 0 to 180° with a set step size. Then the plane with the maximum fatigue 

parameter, i.e. plane having the maximum effect of stress and strain, is declared as the 

plane having maximum damage. For this study, the step size for θ and ϕ is set as 5° as 

this gives reasonable accuracy in critical plane determination (Ince, 2012). The APDL 

code developed to implement the method in ANSYS is shown in Appendix A1 and the 

flow chart for the algorithm is shown in Figure 3.8. 
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Figure 3.8: Incremental angle method flow chart. 
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3.7.2 Critical Plane Method 

 

 One of the major drawbacks of the conventional method of locating the critical 

plane, i.e. the angle increment, is that the number of iterations rises rapidly if greater 

accuracy is required in determining the critical plane orientation. A solution to this 

problem is proposed by formulating a GA-based critical plane method, which can yield 

very accurate results for critical plane orientation with very few iterations. Another 

major benefit is that more than one criterion or fatigue parameter can be simultaneously 

used to locate the critical plane, using the multi-objective optimization capability of the 

GA. To demonstrate this feature, a two-parameter method is developed where the two 

parameters applied are the fatigue parameter from the current study and the maximum 

variance of shear stress, where variance is defined by Eq. (3.23) (Susmel, 2010). 

 

      
T

miii dtt
T

tVar
0

2

,

1
                                       (3.23) 

 

 The GA set-up generates the θ and ϕ values (Figure 3.2), a VB code is 

developed to handle the incoming θ and ϕ values, and projects the stress–strain response 

time history at the susceptible location for fatigue failure, acquired from the FEA 

simulation, on the plane defined by θ and ϕ using direction cosines, as shown in 

Eq. (3.8) (Socie and Marquis, 2000), and then calculates the fatigue parameter. The 

calculated fatigue parameter is sent back to the GA. The GA set-up is shown in 

Figure 3.9, the VB coding is shown in Appendix A2 and the flow chart of the process is 

shown in Figure 3.10. For the two-parameter method a modified GA set-up is shown in 

Figure 3.11 and additional VB code to implement the maximum variance parameter is 

shown in Appendix A3. Note that the inherent optimization module of the maximum 

variance method (Susmel, 2010) is excluded here as the GA is being used for 

optimization. A combined flow chart highlighting the difference between the 

conventional incremental angle method, GA-based method and multi-parameter model 

is shown in Figure 3.12. 
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Figure 3.9: GA based critical plane set-up diagram. 
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Figure 3.10: GA-based critical plane method flow chart. 
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Figure 3.11: Two-parameter GA-based critical plane set-up diagram. 

 

3.8 DEVELOPMENT OF DAMAGE ESTIMATION CODE 

 

 As the critical plane has been located at the susceptible location for fatigue 

failure, with the help of the APDL code stated in Appendix A4, the angles θ and ϕ 

locating the critical plane are now used to extract the response time history of stress–

strain quantities projected on the critical plane, required in Eq.(3.17-3.19) and Eq.(3.22) 

for fatigue model calibration. The extracted response time histories with the VB code 

stated in Appendix A5, developed to implement the fatigue model, receives the values 

of coefficients generated by the GA and returns the fatigue damage per cycle. The 

process flow chart is shown in Figure 3.13. As the whole time history has been used for 

calibration, the predicted values of coefficients are the best possible representation of 

the fatigue behaviour under the considered calibration loading profile. 

 

 

 

 

- GA generator

- Maximize objective function

(fatigue parameter and 

variance of shear stress)

PHI ()

Fatigue parameter and 
variance of shear stress 

calculation

THETA (θ)



65 

 
 

Stress / Strain results from FEA and 

critical location for fatigue failure 

identified 

For θ, ϕ = 0 to 180 

step 5ᵒ

Stress projected on 

each plane located 

by θ and ϕ

Calculate fatigue 

parameter

Sort θ and ϕ values 

on the basis of max 

fatigue parameter

Record θ, ϕ and 

fatigue parameter 

values

Critical plane identified   

θ and ϕ generated 

through GA

Fatigue parameter and 

variance of shear stress

Fatigue parameter

Calculate fatigue 

parameter and 

variance of shear

Sort values on the basis 

of max fatigue parameter 

and variance of shear

Record θ, ϕ, fatigue 

parameter and variance 

of shear values

Critical plane identified 

w.r.t. fatigue parameter 

and variance of shear  

Incremental angle 

setup 

Single parameter setup 

(Fatigue parameter)

Two parameter setup (Fatigue 

parameter and variance of shear)

Start

End

 

 

Figure 3.12: Combined flow chart for incremental angle and GA-based critical plane  

                        methods. 
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Figure 3.13: Process flow chart for calibration of fatigue model. 
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3.9 DEVELOPMENT OF GENETIC ALGORITHM MODEL 

 

 The GA set-up generates coefficient values and sends them for damage per cycle 

calculation. The amount of damage calculated is returned to the GA where the objective 

function is minimized, i.e. the difference of damage per cycle calculated and the 

experimental damage per cycle. The workflow diagram of the GA set-up is shown in 

Figure 3.14. 

 

 

(a) 

 

(b) 

Figure 3.14: GA workflow diagrams for calibration of fatigue model: (a) Model-1, 

                         (b)  Model-2. 
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3.9.1 Initialization 

 

 To start the GA simulation, the limits of the input variables have to be defined, 

between which the GA will work and attempt to achieve the condition defined in the 

objective function. For the current research, the coefficients are initialized by assuming 

values within a range of one to two decimal places of values which can balance the 

model equations. This will narrow down the limits of the coefficients which can later be 

modified to represent the calibrated model coefficients. L is a material constant 

equivalent to the fatigue limit and its limits for GA can be assumed from the fatigue 

limit values determined for the loading profile, as similar as possible to the profile that 

for which the calibration is going to be done. If the fatigue limit is not available for the 

specific loading conditions, uniaxial fatigue limits can also be used by assuming the 

limits of L below the uniaxial fatigue limit, which can be modified later as needed. 

 

3.9.2 Convergence Criteria 

 

 Due to the random nature of the GA, a well-defined termination criterion to stop 

GA simulation cannot be pre-determined and no conditional stop can be set. This is 

because if, for the current research, the minimum value of the objective function ‘error’ 

is set to be a convergence criterion, expressed in Eq. (3.24), there is a chance that it can 

result in declaring the wrong coefficient set as calibrated if the set has resulted in the 

minimum value of ‘error’, when actually the coefficient set is a random combination 

generated by the GA which, by chance, resulted in the minimum error while in reality it 

is not the correct representation of the fatigue behaviour. 

 

alexperimentcycleperdamagecalculatedcycleperdamageerror            (3.24) 

 

 To solve this problem, the method adopted in the current situation is that, after 

every predetermined number of GA iterations (Eq. (3.15)) the value of minimum error 

is checked. For the current study, a rule is adopted that the error should be two orders 

less than the corresponding damage value to be considered as a selected solution. Now, 

from this short-listed group we select the top coefficient sets (approximately ten in 

number) with respect to the minimum value of ‘error’. Coefficient values near the 
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global minimum of ‘error’ must be close with respect to the corresponding value in the 

selected sets. A deviating value for any model coefficients suggests that the set does not 

belong to the global minimum sets and the minimum error resulting from that 

coefficient set arises because it is a random combination and should thus be discarded 

from further processing. If the total number of selected sets is small, for example less 

than ten, then the GA simulation should continue to the next predetermined number of 

iterations until the required number of resulting selected sets is acquired. If, after the 

GA iterations, none of the coefficient sets results in an ‘error’ value of less than two 

orders of damage per cycle, this means that the limits set for coefficients in the 

initialization phase have to be modified. The limits are modified for those coefficients 

that have reached the earlier defined limiting values at minimum ‘error’. The number of 

GA iterations, as expressed in Eq. (3.25), is decided by the size of the initial population 

and the number of generations set for the GA to generate during the process run. The 

number of generations is set to 50 (ESTECO, 2003) and the initial population size is to 

be generated randomly from the ranges defined for coefficients; thus the number is set 

to 150, decided by hit and trial which can make the number of GA iterations sufficient 

to get the required convergence of coefficients. 

 

sgenerationofnumberpopulationinitialofsizeiterationsGAofnumber        (3.25) 

 

3.9.3 Determination of Calibrated Coefficients 

 

 Now the limits are modified accordingly to determine the fatigue model 

coefficients values at the global minimum. We select the top ten or more (as required) 

coefficient sets with respect to the minimum value of ‘error’, and take the weighted 

average of the coefficients among the selected sets with respect to the reciprocal of 

‘error’, as this will give the highest weight for the coefficients set with the lowest ‘error’ 

value. This weighted average is to compensate for the randomness in determination of 

coefficient sets by the GA. 
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3.10 FATIGUE LIFE ESTIMATION PROCEDURE 

 

 After the calibration process coefficients defining the proposed model equations 

have been determined, as stated in the previous section, the next step is to estimate the 

fatigue life using the calibrated model. The process flowchart of the fatigue life 

estimation process was shown in Figure 3.5. The loading conditions against which the 

fatigue life is to be determined are simulated in an FEA environment to get the stress–

strain response time history. The critical plane is determined through the process 

explained in the previous section during calibration of the fatigue model. These 

calibrated coefficients are now used with the APDL code developed to predict fatigue 

life using the proposed model. The process flow chart and APDL code are shown in 

Figure 3.15 and Appendix A6. Generally, two types of case are encountered during 

fatigue life estimation. The first is where the model is calibrated with a load profile at a 

certain magnitude, and the loading for which the fatigue life is to be determined is only 

different in magnitude. In this type of situation, an interpolation scheme is proposed, 

where more than one calibration load is used with respect to magnitude, the coefficients 

set for each load is determined, and then each coefficient’s value is interpolated with 

respect to the load value at which the fatigue life has to be determined. Here it is 

recommended that the calibration loads are selected such that they can cover as much of 

the working range for the fatigue life estimation model as possible, so that any error due 

to extrapolation can be avoided. To accommodate any change in slope of S-N curve 

when moving from low to high cycle fatigue regime, more calibration load points are 

required. Such that at-least two load points can cover each region of curve divided with 

respect to slope of the curve. 

 

The second type is where the fatigue estimation model is calibrated with a load 

profile of a certain shape, assumed to be a characteristic profile which can represent a 

range of different shapes of load profiles. Here care should be taken when selecting 

calibration profiles that those selected should have similar shape and load variations to 

the load profiles for which the fatigue life has to be determined. As can be seen in 

Figure 3.16, the profile shown in Figure 3.16(a) can be used as the calibrating profile for 

the fatigue life predicted for the profile in Figure 3.16(b) as it is nearly proportional 
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(Itoh et al., 1995; Kida et al., 1997). Interpolation of coefficients is not applicable in this 

case, as there is no reference quantity against which coefficients can be interpolated. 
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Figure 3.15: Flow chart of fatigue life estimation process. 
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(a)                                                                 (b) 

Figure 3.16: Normal strain (x-axis) and shear strain (y-axis) loading profile: (a) fully 

                        proportional, (b) nearly proportional with small steps. 

 

 For block loads, after the calibration of the model, the general step is to get the 

stress–strain response history for the block loading and then estimate the fatigue life. 

Simplification can be made for handling of the block loading so to reduce the 

processing time and storage requirement, where allowed by the material and loading 

conditions. For example, the block loading can be dealt with in segments of constant 

amplitude loads of different magnitude and phase difference (Fatemi et al., 2010). And 

if the material does not experience any effect of the sequence of loading segments, then 

these segments can be analysed separately and the cumulative fatigue damage can then 

be calculated. In the current study, the linear damage rule is applied and for each 

segment of load, the damage is estimated for one cycle of load then multiplied by the 

number of cycles in that load segment to estimate the total damage done by that load 

segment. Then the cumulative damage is determined by summing the damage of all 

segments included in the block load, as expressed in Eq. (3.26). 

 

 
n

n

1

segmentincyclesofno.)(segmentofcycle1bydamagedamagecuml.Tot.    (3.26) 

 

3.11 VALIDATION OF MODEL 

 

 To validate and assess the performance of the proposed model, the fatigue life 

obtained from the model is compared with various sets of published experimental data 

to analyse the prediction capabilities. The model is checked for in-phase, out-of-phase 

and complex multiaxial loading cases, including different materials to check the ability 



73 

 
 

to handle various load cases and material behaviour. Two types of cases defined in 

previous section including first case, the data sets from published literature with 

continuous data are used. Each set is divided into two subsets, one is used for 

calibration and the other is used for validation of the proposed model’s fatigue life 

prediction capability with effectiveness of interpolation of coefficients. For second case, 

the data from published literature consists of various profile shapes and block loads. The 

proposed model fatigue life estimation was validated with the concept of load profiles 

representing the characteristics of the applied load are used for calibration and fatigue 

life estimated for other complex load profiles and blocks.   

 

3.11.1 Load Cases 

 

 For the above-mentioned activity, Table 3.3 is the tabulated list of published 

experimental data used for assessing the correlation between predicted and experimental 

fatigue life. The applied loads are in the form of applied normal and shear stress or 

strain load histories with the profile shape as sinusoidal or complex with normal and 

shear stress / strain with  = 0° to 90° phase difference. The sinusoidal profile for 

applied stress or strain is defined by Eq. (3.27-3.28), where a, a are normal strain / 

stress amplitude and a, a are shear strain / stress amplitude. Table 3.4 state the various 

profile paths of different shapes used in study. 

 

 toror aaappapp  sin                                    (3.27) 

   toror aaappapp sin                                 (3.28) 

 

3.11.2 Materials Properties 

 

 Table 3.5 and Table 3.6 list the mechanical and material properties including the 

fatigue limits considered for the materials involved in the validation exercise. In the 

case of any missing data, other published literature sources or general properties for the 

group of materials are used. 
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Table 3.3: Loading and material detail used in the study. 

 

Type of Loading Profile Materials involved Reference 

Fully reversed in-phase and 

out-of-phase, with zero and 

positive mean  

EN3B 
Susmel and Taylor 

(2008) 

Fully reversed in-phase and 

out-of-phase, with zero and 

positive mean  

C40 Atzori et al. (2006) 

Various loading paths of 

different shapes (Table 3.4) 
SS304 

Itoh et al. (1995); 

Meggiolaro and de 

Castro (2012)  

Constant amplitude axial and 

torsion, and block loading  

Low carbon steel (steel 20) 

(0.24% C, 0.25% Si, 0.45% 

Mn, 0.2% Cr)  

Fatemi and 

Gladskyi (2013) 

Block loading of axial, 

torsion and 90° out-of-phase 

axial and torsion 

Titanium alloy (BT9) 

(0.081% Fe, 0.06% C, 0.3% 

Si, 3.4% Mo, 0.018% N, 

6.5% Al, 1.58% Zr, 0.006% 

H) 

Fatemi et al. (2010) 

 

Table 3.4: Profile paths for SS 304 (ε – x axis and γ – y axis). 

 

Path no. Path shape Path no. Path shape Path no. Path shape 

1 

 

6 

 

11 

 

2 

 

7 

 

12 

 

3 

 

8 

 

13 

 

4 

 

9 

 

  

5 

 

10 
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Table 3.5: Properties of materials used in the study. 

 

Material 

Elastic 

modulus, E 

(MPa) 
Poisson ratio () 

Tensile strength 

(MPa) 

Ultimate tensile 

strength (MPa) 

Strain 

hardening 

Exponent (n) 

Strength 

coefficient (K) 

(MPa) 

EN3B 

208500 

Susmel and 

Taylor (2010) 

0.3 571 

Susmel and 

Taylor (2010) 

622  

Susmel and 

Taylor (2010) 

0.1635 

Susmel and 

Taylor (2010) 

890.7 

Susmel and 

Taylor (2010) --- 

C40 

206000 

Atzori et al. 

(2006) 

0.3 537 

Atzori et al. 

(2006) 

715  

Atzori et al. 

(2006) 

0.131 

SAE-J1009 

(2002) 

915 

SAE-J1009 

(2002) --- 

SS304 

197000 

Meggiolaro and 

de Castro (2012) 

0.29 240 

Narayanasamy 

and Loganathan 

(2007) 

898 

Narayanasamy 

and Loganathan 

(2007) 

0.276 

Meggiolaro and 

de Castro (2012) 

1754 

Meggiolaro and 

de Castro (2012) --- 

Low carbon 

steel (steel 20) 

185000 

Fatemi and 

Gladskyi (2013) 

0.3 365 

Fatemi and 

Gladskyi (2013) 

506 

Fatemi and 

Gladskyi (2013) 

0.159 

Fatemi and 

Gladskyi (2013) 

838 (MPa) 

Fatemi and 

Gladskyi (2013) Fatemi and 

Gladskyi (2013) 

Titanium alloy 

(BT9) 

118000 

Fatemi et al. 

(2010) 

0.37 910 

Fatemi et al. 

(2010) 

1080 

Fatemi et al. 

(2010) 

Stress-strain 

curve 

Fatemi et al. 

(2010) 

Stress-strain 

curve 

Fatemi et al. 

(2010) 
Fatemi et al. 

(2010) 
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Table 3.6: Fatigue limit of materials. 

 

Material  
Fatigue limit 

(MPa) 

Loading 

conditions 
Reference 

EN3B 

Combined 

tension-torsion 

@106 cycles 

192.4 / 148.7 / 

188.2 / 141.3 

R=-1 ϕ=0 / R=0 

ϕ=0 / R=-1 ϕ=90 / 

R=0 ϕ=90 

Susmel and 

Taylor (2008) 

C40 

Combined 

tension-torsion 

@2x106 cycles 

101 / 99.6 / 67.9 

/ 66.8  

R=-1 ϕ-0 / R=-1 

ϕ=90 / R=0 ϕ=0 / 

R=0 ϕ-90 

Atzori et al. 

(2006) 

SS304 
@106-107 

cycles 
240 Reverse bending 

B.S.S.A. 

((Undated)) 

Low carbon 

steel (Steel 20) 

Smooth 

specimen 

@106 cycles 

200 Fully reversed 
Fatemi and 

Gladskyi 

(2013) 
Notched 

specimen 

@106 cycles 

90 Fully reversed 

Titanium alloy 

BT9 
@107 cycles 654  

AZoM.com 

(2013) 

R= minimum stress / maximum stress, ϕ = phase angle 

 

3.12 FINITE ELEMENT ANALYSIS MODELLING 

 

 To get the stress distribution response time history for the applied loadings on 

the test specimens considered in this study, structural analysis using FEA was 

conducted. Details of the simulation models and meshes developed for the said purpose 

are given in the following. 

 

3.12.1 EN3B Specimen 

 

 A solid bar with a notch is used for testing, with the geometry shown in 

Figure 3.17 (Susmel and Taylor, 2008). The FEA model with applied load as moment 

(N.mm) and normal force (N) along axis and fixed support (Ux = Uy = Uz = URx = 

URy = URz = 0) and mesh with 10 node tetrahedrons are shown in Figure 3.18. Stresses 

are monitored at the notch root as this is a stress concentration zone and a critical 

location for fatigue life estimation. 
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Figure 3.17: Geometry detail of EN3B specimen with notch radius 1.25 mm. 

 

          

 

(a) Loading and constraints                                            (b) Finite element model  

 

 
 

(c) Fine mesh around notch 

 

Figure 3.18: Structural and finite element model for EN3B specimens with loading and  

                      boundary conditions. 

 

3.12.2 C40 Specimen 

 

 A notched solid bar is used with geometry details shown in Figure 3.19 (Atzori 

et al., 2006). The FEA model with applied load as moment (N.mm) and normal force 

(N) along axis and fixed support and mesh with 10 node tetrahedrons are shown in 

All dimensions are in mm 
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Figure 3.20. Stresses are monitored at the notch root as this is a stress concentration 

zone and a critical location for fatigue life estimation. 

 

 

 

Figure 3.19: Geometry detail of C40 specimen with length 200 mm. 

 

    

    (a) Loading and constraints                                            (b) Finite element model  

 

 
 

(c) Fine mesh around notch 

 

Figure 3.20: Structural and finite element model for C40 specimen with loading and  

                         boundary conditions. 

 

3.12.3 SS304 Specimen 

 

 Hollow cylinder specimens are used with geometry details in Figure 3.21 (Itoh 

et al., 1995). The FEA model with applied load as torsional displacement (mm) and 

axial displacement (mm) along axis and fixed support and mesh with 20 node 

hexahedrons are shown in Figure 3.22, with flanges removed as they are only for 

All dimensions are in mm 



79 

 
 

physical clamping. Stresses are monitored at the centre of the gauge length for fatigue 

life estimation. 

 

 

 

Figure 3.21: Geometry detail of SS304 specimen. 

 

    

 

    (a) Loading and constraints                                            (b) Finite element model  

 

 
 

(c) Mesh around gauge length 

 

Figure 3.22: Structural and finite element model for SS304 specimen with loading and  

                       boundary conditions. 

 

 

All dimensions are in mm 
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3.12.4 Low Carbon Steel (Steel 20) Specimen 

 

 A thin-walled tubular specimen is used with geometry shown in Figure 3.23. 

The specimen had a 3.4 mm diameter through thickness transverse hole at the middle of 

the gauge length (Fatemi and Gladskyi, 2013). The FEA model with applied load as 

moment (N.mm) and normal force (N) along axis and fixed support and mesh with 10 

node tetrahedrons are shown in Figure 3.24, where stresses are monitored on the hole 

circumference at the locations identified by (Fatemi and Gladskyi, 2013) 

experimentally.  

 

 

Figure 3.23: Geometry detail of low carbon steel (Steel 20) specimen. 

 

 

    

 

    (a) Loading and constraints                                            (b) Finite element model  

 

Figure 3.24: Structural and finite element model for low carbon steel (Steel 20)  

                             specimen with loading and boundary conditions. 

 

All dimensions are in mm 
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(c) Fine mesh around hole 

 

Figure 3.24: Continued. 

 

3.12.5 Titanium Alloy (BT9) Specimen 

 

 Tubular specimens are used for titanium alloy BT9 with geometry details shown 

in Figure 3.25 (Fatemi et al., 2010). The FEA model with applied load as torsional 

displacement (mm) and axial displacement (mm) along axis and fixed support and mesh 

with 20 node hexahedrons are shown in Figure 3.26, where stresses are monitored at the 

centre of the gauge length. The solid specimen is shown in Figure 3.27, with 4 mm 

diameter, gauge length of 19 mm and a sweep mesh of 20 node hexahedrons with size 

of 0.75 mm. 

 

 

 

Figure 3.25: Geometry detail of titanium alloy BT9 tubular specimen 

 

All dimensions are in mm. 
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      (a) Loading and constraints                                       (b) Finite element model  

 

 
 

(c) Mesh around gauge length 

 

Figure 3.26: Structural and finite element model for titanium alloy BT9 tubular  

                            specimen with loading and boundary conditions.  

 

   

    (a) Loading and constraints                                            (b) Finite element model  

 

Figure 3.27: Structural and finite element model for titanium alloy BT9 solid specimen  

     with 4 mm diameter and 19 mm gauge length with loading and                          

                       boundary conditions. 
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3.13 MESH CONVERGENCE OF FINITE ELEMENT MODELS 

 

 Finite element models of specimens generated in Section 3.12 are verified for 

the mesh convergence by examining the von Mises stress, Tresca stress and maximum 

principal stress with respect to the mesh size. To reduce both the solution cost (CPU 

time) and limitation of storage space, the number of nodes and elements has to be kept 

to the minimum with acceptable convergence of the stress magnitude. The minimum 

mesh size is set for either gauge length or notch, depending on the shape of the 

specimens. There follow the details of the mesh type selection and convergence of mesh 

tests for the respective specimens with the minimum mesh size selected for each FEA 

model. 

 

3.13.1  Mesh Type Selection 

 

 Selection of the right techniques for meshing is based on the geometry, model 

topology, analysis objectives and engineering judgement. The geometries of the 

specimens (Section 3.12) consist of radial notch, hollow tubular geometry and tubular 

with a hole. It is generally accepted that at stress concentration areas the mesh quality 

should be high. As quadratic hexahedral elements (20 nodes) are robust and preferred 

for good and accurate results (Bishop and Sherratt, 2000; Wang et al., 2004), they are 

the preferred choice to mesh the specimen geometries. Quadratic tetrahedral (10-node) 

are also good and can be used in any condition (Wang et al., 2004), but usually result in 

a larger number of elements compared to hex mesh, although tetrahedral elements can 

capture the typical geometry features easily. In this study hexahedral elements are only 

used where the geometry allows the sweep meshing scheme to generate hex mesh. The 

sweep meshing scheme is the easiest method to create structured hexahedral mesh along 

a body having a topologically uniform cross-section. In this scheme where the geometry 

is characterized by source and target faces which are topologically similar, the 

hexahedral mesh is swept (extruded) between the source and target along a single 

logical axis bounding the swept hexahedra between the source and target surfaces (Scott 

et al., 2005). For other specimen geometries where there is a sharp change of area, as in 

radially notched specimens, or a non-symmetric feature like a hole in the circumference, 

tetrahedral (10-node) mesh is used because it is quicker to generate, as there is no need 
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to simplify the geometry to accommodate hexahedral mesh and provide results with 

good accuracy. 

 

For this study, specimens of five different materials are considered and to mesh 

their FEA models the mesh type is selected as follows: the EN3B and C40 specimens, 

which have a radial notch, are meshed with 10-node tetrahedral elements, the steel 20 

specimen, which has a notch hole in its circumference, is meshed with 10-node 

tetrahedral elements, the SS304 and titanium alloy BT9 specimens have uniform cross-

sectional areas with respect to the area topology, and are thus meshed with 20-node hex. 

elements using a sweep meshing scheme. 

 

3.13.2 Identification of Mesh Size 

 

 The convergence of the stress was considered as the main criterion to select the 

mesh size, with the number of nodes and elements small enough to keep the FE analysis 

within the limitations of computational time and storage capacity. The finite element 

mesh for each specimen model was generated using the hexahedral and tetrahedral 

elements, as mentioned in the previous section. The maximum principal stress, Tresca 

stress and von Mises stress are checked for convergence at the critical locations of the 

respective specimens. Figure 3.28 shows the variation of the stresses for the different 

specimens at critical locations, as well as change in the FE model size for each 

specimen, in terms of the number of nodes and elements, with respect to element size. 

For the EN3B specimen, the variation in the stresses and size of the FE model as a 

function of mesh size around the critical region are shown in Figures 3.28(a) and 3.28(f) 

respectively. The maximum percentage difference between stresses for mesh size 

smaller than 0.175 mm is approximately 0.24%. However, as the mesh size decreases 

from 0.175 mm to 0.15 mm, the FE model size increases by 1.5 times with respect to 

the number of nodes as well as elements. Thus the mesh size of 0.175 mm is selected 

for the critical region and 2 mm global mesh size for FE analysis of the EN3B specimen 

in order to keep the FE model efficient in stress estimation as well as computational 

time and storage capacity. Similarly, for the C40 specimen, variation of the stress and 

size of the FE model as a function of mesh size is shown in Figures 3.28(b) and 3.28(g) 

respectively. After the mesh size of 0.3 mm, the stress corresponding to the lower mesh 
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size of 0.25 mm has a difference of 0.24% with the stress obtained for 0.3 mm, and the 

FE model size increases by approximately 1.4 times in the number of nodes and 

elements. Thus the mesh size of 0.3 mm is selected for the critical region and 4 mm 

global mesh size to keep the FE model smaller in size for stress approximation as well 

as to lessen the computational time and storage capacity. For the SS304 specimen, the 

stress variation and the size of FE model with respect to mesh size are shown in 

Figures 3.28(c) and 3.28(h) respectively. For mesh sizes smaller than 1.0 mm, the 

maximum difference between stress values is approximately 0.2%. However, the FE 

model size for the mesh size of 0.5 mm increases by 5 times in node numbers and 6 

times in element numbers, so the 1.0 mm mesh size is the most appropriate size for the 

gauge length and 1.5 mm for the global mesh size to keep the CPU time and storage 

capacity requirement at the minimum.  

 

 For the steel 20 specimen, variation of the stress and size of FE model with 

respect to mesh size is shown in Figures 3.28(d) and 3.28(i) respectively. For stresses at 

mesh sizes less than 0.25 mm, the maximum difference between stress values is 

approximately 0.24%. The FE model size increases by a factor of 2.0 for the number of 

nodes and elements when the mesh size is reduced from 0.25 mm to 0.15 mm. Hence, 

the mesh size of 0.25 mm is selected for the critical region of the notch hole and 3 mm 

for the global mesh size, so that the converged stresses are obtained with reduced CPU 

load and storage requirement. 

 

 For the titanium alloy BT9 specimen, the stress and FE mode size variation with 

respect to mesh size are shown in Figures 3.28(e) and 3.28(j). The stress variation chart 

shows no variation of stress values with change in mesh size. This is due to the low 

elastic modulus of the material which makes the material hard enough to show only 

very small deflections against applied loads, leading to very small distortions in the 

geometry. Thus with the combination of the applied load and mesh size, the model is 

already in the converged stress region (NAFEMS, (Undated)). Hence, to keep the CPU 

time and storage requirement low with mesh not to be distorted around the gauge 

length, the mesh size of 1.0 mm is selected, because, compared with the size of FE 

model for 0.75 mm mesh size, the number of nodes and elements increased by a factor 

of approximately 2.0. 
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Figure 3.28: Mesh size versus calculated FEA stresses (a–e) and mesh size versus  

                           no. of  nodes and elements of FEA model (f–j). 
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3.13.3 Verification of FEA Models 

 

 The developed FEA models are verified by comparing the calculated stress 

values by FEA from the applied stress, and stress reported in source data in case of 

applied strain. The calculated stresses are within 4% error is shown in Table 3.7. 

 

Table 3.7: Comparison of calculated and actual stresses in considered specimens. 

 

Material of 

specimen 

Stress value in 

source data (MPa) 

Calculated stress 

from FEA (MPa) 
error (%) 

EN3B 150 150.4 0.27 

C40 119.3 123 3.0 

SS304 732 740 1.0 

Low carbon steel 

(Steel 20) 

106 105.95 0.04 

Titanium alloy BT9 735 707 3.8 

 

3.14 SUMMARY 

 

 In this chapter, the selection of parameters for the proposed model equation has 

been discussed and the selected parameters are highlighted. The two proposed equations 

for fatigue parameters are defined on the basis of strain energy type combination and 

separate stress–strain terms combined in summation form. The working of the proposed 

model is explained in detail, and the calculation process for critical plane determination 

with the incremental angle method and newly proposed GA-based method is explained. 

The development of tools like interactive spreadsheets used in the calibration set-up 

with the GA is discussed. The process of calculating the calibrations from the GA is 

explained in detail, and the fatigue life estimation procedure is described using the 

proposed fatigue life estimation method. Finally, details of the experimental data from 

already published literature used for validation of the proposed model are given, and 

details of the loading cases, material used and data of the FEA models used in the 

validation exercise are presented with mesh convergence and validation of the FEA 

models. Performance analysis of the proposed fatigue life models and new critical plane 

estimation method against various material and loading conditions is presented in 

Chapter 4. 

 



 

 

 

CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

 

 

4.1 INTRODUCTION 

 

 This chapter presents the performance analysis for the proposed multiaxial 

fatigue life estimation model. The experimental fatigue life results from published 

literature are used for the purpose of validating the developed model. A comparative 

analysis between the two fatigue parameter models is presented. Performance is 

analysed by comparison with the experimental fatigue life data of various materials 

against different loadings, taken from the published literature. The results of the 

proposed model are compared with the fatigue life models available in commercial 

fatigue life code, including the Fatemi–Socie and endurance function models. The 

efficiency of the genetic algorithm-based critical plane estimation methods is analysed 

in comparison with the conventional incremental angle method.  

 

4.2 COMPARATIVE ANALYSIS OF PROPOSED MULTIAXIAL FATIGUE 

MODELS 

 

 The proposed fatigue life prediction model is formulated with two fatigue 

parameter expressions based firstly on the strain–energy approach, having shear and 

normal strain energy terms (Model-1), and secondly on summation of the stress and 

strain terms (Model-2) using the discrete contribution of stress–strain terms, as 

described in Section 3.5. The comparative performance of the proposed fatigue life 

prediction models is evaluated against a set of complex profiles representing various 

levels of proportional, non-proportional and multiaxial loading conditions, according to 

the loading profiles in Table 3.4. The experimental fatigue life results of SS304 (Itoh et 

al., 1995) for the above-mentioned loadings are utilized for comparative analysis. Two 
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sets of axial and shear strain loads are applied, as given in Table 4.1 and designated as 

Set 1 and Set 2 (Itoh et al., 1995).  

 

The experimental fatigue life for each axial and shear strain set and loading path 

(Table 3.4) is given in Table 4.2. From the profile paths (Table 3.4), Path 5 and Path 12 

are selected for calibration as they characterize in-phase, i.e. fully proportional, and 

completely out-of-phase, i.e. non-proportional loading, Figure 4.1. (Kida et al., 1997). 

Set 1 and Set 2 of the axial and shear strain loads (Table 4.1) are used for the Path 5 

proportional (in-phase) and Path 12 non-proportional (out-of-phase) loading conditions 

for calibration with the two proposed multiaxial fatigue models, Model-1 and Model-2. 

Hence, eight sets of calibrated coefficients are obtained in order to predict fatigue life 

with different combinations of load sets and profile paths, as presented in Table 4.3.  

 

   

 

                                    (a) Path 5                                   (b) Path 12 

 

Figure 4.1: Normal and shear strain with respect to time. 

 

Table 4.1: Applied axial and shear strain load sets for SS304 specimen. 

 

 Set 1 Set 2 

Axial strain (%) 0.5 0.8 

Shear strain (%) 0.87 1.39 
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Table 4.2: Predicted fatigue life by Model-1 and Model-2 with respective loading for 

SS304 specimen. 

 

Path 

no. 

Load 

set no. 

Experimental 

life (cycles) 
(Itoh et al., 1995) 

Predicted fatigue life (cycles) 

Model-1 Model-2 

Path 5 
Proportional 

(in-phase) 

Path 12 
Non-

proportional 

(out-of-phase) 

Path 5 
Proportional 

(in-phase) 

Path 12 
Non-

proportional 

(out-of-phase) 

1 1 9500 88019 6162 14469 4227 

 2 1400 8423 746 2623 639 

2 1 20000 71932 5441 14318 4140 

 2 2100 7586 659.5 2231.6 549 

3 1 
2400          

(1200 blocks) 
16920 1806 11541 3456 

 2 
820              

(410 blocks) 
2785 242 2187 514 

4 1 
3400          

(1700 blocks) 
17825 1868 12112 3742 

 2 
900              

(450 blocks) 
2751 238 2421 532 

6 1 9700 18731 1911 14372 4382 

 2 2600 2749 239 2435 633 

7 1 18000 18582 1935 13456 3874 

 2 1700 2842 246 2498 586 

8 1 2050 12987 1435 14559 5025 

 2 470 4551 394 6735 1177 

9 1 2950 25744 2851 11363 3867 

 2 660 2696 234 2442 492 

10 1 2600 26073 2822 24215 8204 

 2 320 4525 388 7611 1198 

11 1 14400 26493 2593 13810 4256 

 2 1200 3513 304 3186 592 

13 1 
3200          

(1600 blocks) 
33272 3201 10567 3096 

 2 
1000            

(500 blocks) 
4662 423 2035 435 

Paths used for calibration 

5 1 17500 ---- ---- ----- ---- 

 2 3200 ---- ---- ----- ---- 

12 1 4750 ---- ----- ---- ---- 

 2 710 ---- ----- ---- ---- 
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Table 4.3: Calibrated coefficients from genetic algorithm for SS304. 

 

  Calibrated coefficients 

Model-1 

  K (10-01) R V a1 a2 m L 

Set 

1 

Path 5 4.12201 1.040395 24.8 0.205004 0.267898 1 169 

Path 12 3.83043 1.022177 12.3 0.484119 0.527805 1 178 

Set 

2 

Path 5 9.25598 0.35938 32.1 0.571430 0.073620 1 172 

Path 12 9.16228 0.76214 29.2 0.235450 0.335700 1 191 

Model-2 

  K (10-05) R V a1 a2 a3 a4 m L 

Set 

1 

Path 5 3.05670 0.099895 888 0.219796 0.369444 0.546368 0.53614

4 
1 225 

Path 12 6.90730 0.177681 907 0.087341 0.666236 0.595491 0.65008

8 
1 216 

Set 

2 

Path 5 7.27490 0.105526 902 0.383121 0.874629 0.519770 0.59175

0 
1 214 

Path 12 29.9000 0.226573 880 0.024449 0.420024 0.579126 0.91491

2 
1 218 

 

Table 4.4: No. of iterations for calibration of model using GA. 

 

Path no. Strain set no. 
Number of iterations for calibration 

Model-1 Model-2 

5 
1 6750 13500 

2 6750 13500 

12 
1 6750 13500 

2 6750 6750 

 

The number of iterations required to calibrate the fatigue model coefficients for 

each developed multiaxial fatigue model with both of the profile paths selected for 

calibration and applied strain load sets are presented in Table 4.4. It is observed that the 

proposed fatigue life Model-1 requires fewer iterations compared to the number of 

iterations required for Model-2, hence leading to reduced CPU resource consumption 

and processing time. This is attributed to the higher number of variables (a3 and a4) 

needing to be calibrated in Model-2 in order to find the optimized values of variables 

when applying the genetic algorithm (GA) approach. However, for a combination of the 

non-proportional loading condition (Path 12) and strain Set 2, the number of iterations 

for Model-2 is equal to the number of iterations required by Model-1 for the calibration 

of the proposed fatigue model. This is due to the inherent randomness in GA, resulting 

in fewer iterations being needed to achieve the objective of minimum error defined for 
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calibration of the model coefficients by the GA. The results of fatigue life estimation 

using Model-1 and Model-2 are presented in Table 4.2, which gives the predicted 

fatigue life determined from each set of calibrated coefficients (Table 4.3) by the 

respective load Sets 1 and 2. The comparison between the predicted and experimental 

fatigue life (Itoh et al., 1995) is shown in Figure 4.2. The solid line on Figure 4.2 

represents perfect correlation between the experimental and predicted fatigue life, and 

the dotted lines represent factor of two and five goodness bands. It is observed that the 

estimated fatigue life from the proposed model with Model-1 and Model-2 shows good 

correlation with the experimental fatigue life results (minimum difference with 

experimental results is 0.4% and 3.5%) when using the coefficients calibrated from 

profile Path 12. The improved results with minimum error are due to the fact that 

Path 12 is a better approximation of non-proportional and complex loading compared to 

the proportional loading case (Path 5).  

 

Comparing the predicted fatigue life using the proposed fatigue model with 

Model-1 and Model-2, less scatter is observed in the predicted fatigue life results using 

Model-2 than when using Model-1. This is attributed to the discrete stress–strain terms 

present in Model-2, contributing individually to calibration as well as fatigue life 

prediction. The benefit of using discrete terms is in accommodating small variations in 

the loading path due to the increased number of variables included in Model-2 

compared to Model-1. However, calibration of the model from a characteristic profile 

and the subsequent fatigue life prediction using different profiles become more difficult 

with the application of Model-2 due to additional coefficients. For different profiles, the 

individual contribution of each stress and strain parameter in Model-2 changes. 

Consequently, maintaining accuracy is more difficult when applying Model-2 than 

Model-1, where two stress–strain terms are combined together into one term, so that 

only a single coefficient is to be dealt with. 

 

 For profile Paths 1, 2 and 11, when the fatigue life is estimated by Model-2 with 

both sets of applied axial and shear strains loading given in Table 4.1, and for 

calibration of the fatigue model coefficients with profile Path 5, more accurate 

estimations result, with a minimum difference of 0.4% with respect to the experimental 

results. The reason is that Paths 1, 2, 5 and 11 have rotation of the principal strain  
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(a) Model-1 and Set 1                                             (b) Model-1 and Set 2 

 

  
 

(c) Model-2 and Set 1                                          (d) Model-2 and Set 2 

 

Figure 4.2: Predicted fatigue life (cycles) versus experimental fatigue life for SS304  

                       specimen against various loading profiles and applied strain loadings. 

 

direction as a common factor, while Paths 1, 2 and 5 also have two principal strain 

directions in common (Itoh et al., 1995). Hence Path 5 is a suitable candidate to be a 

characteristic profile for Paths 1, 2 and 11. Therefore the model coefficients determined 

by using Path 5 estimated the fatigue life with good accuracy. In profile Paths 1 and 2, 

the maximum principal strain alternates between 0° and 45°, while in profile Path 11 the 

planes of maximum principal strain continuously rotate (Itoh et al., 1995). Since the 

proposed fatigue model gives accurate results with Model-2, it can be observed that 

application of proposed fatigue life Model-2 efficiently handles the rotation of the 

principal strain directions in fully reversed loading. For profile Paths 3 and 4, when the 

fatigue life is predicted by Model-1 using the coefficients calibrated from strain Set 1 
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and profile Path 12 (Table 4.3), very good accuracy is observed with a minimum 1.0% 

difference. 

 

 The predicted fatigue life is compared with the number of blocks instead of the 

number of cycles in the experimental results, as profile Paths 3, 4 and 13 are counted as 

two cycles per block, because one cycle is defined as a full straining for both axial and 

shear cycles (Itoh et al., 1995). This shows that Model-1 can better capture the direction 

of strain changing at zero strain, as happens in profile Paths 3 and 4 (Itoh et al., 1995). 

This is due to the combined terms containing stress and strain quantities, where the 

direction (sign) of the stress will drive the effect of the whole combined term. Hence 

Model-1 can better capture the effect of changing directions of strains from compressive 

to tensile and vice versa.  

 

 Profile Paths 6 and 7 are nearly proportional, especially Path 6, as a large 

number of small loading steps results in nearly proportional loading (Itoh et al., 1995; 

Kida et al., 1997). For Paths 6 and 7, fatigue life prediction from the proposed fatigue 

life Model-1 and Model-2 shows better accuracy with model coefficients calibrated by 

profile Path 5 than by Path 12, with minimum differences of 0.3% and 8% respectively. 

Profile Paths 8,  9 and 10 have rectangular or box-strain history; Paths 8 and 9 retrace 

the loading path after one half cycle while Path 10 characterizes a continuous path (Itoh 

et al., 1995; Kida et al., 1997). The results of the estimated fatigue life from Model-1 

show agreeable accuracy, with coefficients of the model calibrated with Path 12 

showing a minimum of 0.4% difference from the experimental results. Profile 11 and 12 

show the phase difference between normal and shear strains (Kida et al., 1997), while 

Path 13 has a retrace of strain-path added from Path 12. For the estimated fatigue life 

for Path 11, the proposed fatigue life model with Model-1 and Model-2 results in a 

mixed response for model coefficients calibrated with Path 5 and Path 12. The resultant 

mixed effect is attributed to the 45o phase difference between the axial and shear strain 

for Path 11, which is  intermediate between Path 5 and Path 12, as Path 5 is in-phase 

and Path 12 is out-of-phase (Kida et al., 1997). For Path 13, the proposed fatigue model 

application with model coefficients calibrated with profile Path 12, for both Model-1 

and Model-2, predicted the fatigue life with good accuracy, with a minimum 1% and 

3% difference respectively against the experimental data. 
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 Hence, it can be concluded that the predicted fatigue life from the proposed 

fatigue Model-1 and Model-2 is in good agreement with the experimental results. The 

number of iterations required for Model-1 is approximately 50% less than for Model-2 

due to the smaller number of variables to be calibrated. Relatively scattered results are 

obtained with Model-1. Scattered results are also reported for the energy-based fatigue 

parameter (Ince and Glinka, 2014). However, the smaller number of iterations required 

for model coefficients calibrated with Model-1, as well as the complexity involved in 

dealing with various profiles using Model-2 containing separate stress-strain terms, 

make Model-1 a better candidate for fatigue parameter estimation. Therefore, the model 

with combined stress–strain terms, i.e. Model-1, will be used for fatigue life prediction 

as well as the proposed fatigue life model performance analysis. 

 

4.3 PERFORMANCE OF PROPOSED MODEL WITH DIFFERENT 

MATERIALS AND LOADING CONDITIONS 

 

 In this section the performance of the proposed model is analysed against different 

materials and loading conditions. These include experimental results from already 

published literature for carbon steel C40 (Atzori et al., 2006), low carbon steel EN3B 

(Susmel and Taylor, 2008), low carbon steel (steel 20) (0.24% C, 0.25% Si, 0.45% Mn, 

0.2%Cr and balance Fe) (Fatemi and Gladskyi, 2013), stainless steel SS304 (Itoh et al., 

1995) and titanium alloy (BT9) (0.081% Fe, 0.06% C, 0.3% Si, 3.4% Mo, 0.018% N, 

6.5% Al, 1.58% Zr, 0.006% H) (Fatemi et al., 2010). The performance is analysed 

against loading conditions with, in-phase and out-of-phase tension and torsion load, 

complex loadings with various non-proportional factors involved and block loads 

containing axial, torsion and out-of-phase loading segments. 

 

4.3.1 C40 Carbon Steel with In-Phase and Out-of-Phase Loading 

 

 The experimental fatigue life results for C40 carbon steel (Atzori et al., 2006) 

under in-phase and out-of-phase loading with zero and positive mean is used to verify 

the accuracy of the proposed fatigue life model in fatigue life prediction. The specimen 

is a notched solid bar shown in Figure 3.19. The objective of this analysis is to evaluate 

the performance of the proposed model for loading with the mean stress effect as well 

as to validate the newly proposed method of linear interpolation of fatigue model 
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calibrated coefficients on the basis of applied load amplitude in order to improve the 

prediction accuracy of fatigue life. Table 4.5 presents the applied load with loading 

conditions and experimental and predicted fatigue life with respect to the number of 

calibration points. The predicted fatigue life is analysed against the experimental results 

for applied loads and the number of calibration points, where R is the ratio of min and 

max, where min and max are minimum and maximum stress respectively. 

 

Table 4.5: Predicted fatigue life of C40 steel. 
 

Normal and shear 

stress at net area     

(σa, τa) (MPa) 

Experimental 

cycles to failure 

(Nf) 106 

(Atzori et al., 2006) 

Predicted cycles to failure (Np)106 

One calibration 

point (CP1) 

Two calibration 

points (CP1 and CP2) 

R= -1 and phase = 0 

101 (CP2) 2.0 2.32 1.43 
129.75 0.18 0.109 0.347 
159.92 0.072 0.06 0.105 

179 0.21 0.041 0.054 
200 (CP1) 0.027 0.0268 0.0268 

221 0.012 0.02 0.0157 
R=-1 and phase = 90 

99.6 (CP2) 2.0 0.06 1.182 
119.5 0.94 0.032 0.24 

140 0.285 0.02 0.072 

160.25 0.044 0.0128 0.028 

180 0.016 0.0113 0.016 

199.7 (CP1) 0.011 0.009 0.0094 

R=0 and phase = 0 

67.9 (CP2) 2.0 0.217 1.98 
79.72 0.79 0.15 0.664 
99.56 0.35 0.12 0.478 
119 0.157 0.056 0.069 

138.58 0.0477 0.046 0.06 
158.1 (CP1) 0.026 0.0234 0.023 

R=0 and phase = 90 

66.8 (CP2) 2.0 0.102 1.84 
89.55 0.34 0.064 0.287 
119.3 0.094 0.036 0.07 
138.75 0.034 0.026 0.036 

158.1 (CP1) 0.022 0.021 0.0215 
 

 In the case of loading with zero mean, min = max with min having a negative 

sign, R is -1. Similarly, in the case of loading with a positive mean, min = 0 and 

amplitude = max/2, and R is 0. From each load set (with respect to R and phase), two 
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loads are selected for calibration, identified as CP1 and CP2 in Table 4.5. Fatigue life is 

estimated for the other load sets, initially using one calibration point CP1. Furthermore, 

Table 4.6 presents the calibrated coefficients determined from the proposed GA-based 

calibration method for CP1 and CP2, where the calibrated coefficients are determined for 

each load by interpolation with respect to the magnitude of loading between the two 

limits CP1 and CP2. 

 

Table 4.6: Calibrated coefficients from genetic algorithm for C40 carbon steel. 

 

 Calibrated coefficients 
Load 
point 
(MPa) 

K (10-01) R V a1 a2 m L 

R = -1 and phase = 0 
101 3.42547 0.599584 21.7 0.206696 0.324086 1 87 
200 4.12513 0.493662 40.3 0.116364 0.284852 1 80 

R = -1 and phase = 90 
99.6 6.55282 0.799797 38.4 0.205202 0.525045 1 83 
199.7 3.52097 0.230151 48.5 0.270758 0.232341 1 79 

R = 0 and phase = 0 
67.9 1.82930 0.68675 25.7 0.22701 0.449320 1 53 
158.1 5.50956 1.031381 22.6 0.462611 0.734568 1 47 

R = 0 and phase = 90 
66.8 3.22295 0.860883 28.3 0.541942 0.175393 1 51 
158.1 4.18124 0.554612 36.7 0.753561 0.251289 1 48 

 

 The results of fatigue life from the proposed fatigue life model predicted with 

CP1 only, as well as with the interpolation scheme with CP1 and CP2, are presented in 

Figure 4.3, against the experimental fatigue life by Atzori et al. (2006). In the case of R 

= -1 in-phase load, the predicted results from the proposed model (Figure 4.3(a)) are in 

good agreement with the experimental results when the calibrated coefficients are 

determined using CP1 only. Similarly, the results from the proposed model using 

calibrated coefficients obtained from the interpolation scheme between CP1 and CP2 are 

also in good correlation with the experimental results. Both calibration schemes give a 

minimum difference of approximately within 3% (R2 value of 0.96) between the 

predicted and experimental results. Similarly, for out-of-phase load, with the CP1 

calibrated coefficients, i.e. single load point calibration, the predicted fatigue life shows 

significant variations compared to the experimental data (Figure 4.3(b)). The variations 

are more pronounced at the load points away from the calibration load point CP1 and the 

predicted life is greatly underestimated with decreasing loads. This confirms the 
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ineffectiveness of a single load point calibration in capturing the fatigue life behaviour 

completely for a range of loads. The results of the two load point calibration method, 

i.e. interpolation of coefficients between CP1 and CP2, are in good agreement with the 

experimental data. The predicted fatigue life from the proposed model with the 

interpolation scheme shows approximately within 4% difference (R2 value of 0.96) from 

the experimental fatigue life. Variations in the predicted fatigue life results for the 

middle range of the applied load domain are due to the observed scatter in the 

experimental data. Brighenti and Carpinteri (2012) reported that variations are observed 

in predicted fatigue life against experimental data with scatter in the endurance function 

model for loading conditions with zero mean. 

 

   

 

(a) R= -1 and Phase=0°                                (b) R= -1 and Phase=90° 

 

   

 

(c) R=0 and Phase=0°                             (d) R=0 and Phase=90° 

 

Figure 4.3: Predicted versus experimental life for C40 steel with respect to stress ratio 

(R) and phase difference. 
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For the conditions having R = 0 with in-phase and out-of-phase loading, the 

predicted fatigue life results from the proposed model with single point CP1 calibration 

show a deviation from the experimental results. At decreased loads, i.e. away from the 

calibration point CP1 load, a gradually diverging trend is observed in the predicted 

fatigue life. The predicted life is on the conservative side but with 15 to 20% difference 

(R2 value of 0.87) from the experimental fatigue life, when shifting from the low-cycle 

to high-cycle region. As the selected load point CP1 has fatigue life in the low-cycle 

region. This shows the inability of the single point calibration method to accurately 

predict fatigue life. With coefficients obtained from the interpolation scheme, i.e. 

interpolation between two load points (CP1 and CP2), the predicted fatigue shows good 

agreement with experimental fatigue life data, but on the slightly conservative side. The 

predicted fatigue follows the trend of experimental life accurately with a difference of 

approximately 2% (R2 value of 0.99). The order of magnitude is similar for the 

proposed model and experimental data at corresponding load points. 

 

The results obtained show the effectiveness of using more than one load point 

for the calibration of the proposed model coefficients. The effectiveness of the proposed 

model is evident for proportional as well as non-proportional loading cases. Estimation 

of the coefficients of the proposed model using GA (Table 4.6) is accompanied with an 

inherent flexibility of accommodating any kind of loading condition, as well as iterative 

improvement of the solution by applying the evolutionary algorithm (Brighenti and 

Carpinteri, 2012).  

 

4.3.2 EN3B Steel Alloy with In-Phase and Out-of-Phase Loading 

 

 The performance of the proposed fatigue life model for EN3B steel alloy against 

the experimental results (Susmel and Taylor, 2008) for zero and positive mean as well 

as in-phase and out-of-phase tension and torsion loadings are presented. The specimen 

used for fatigue life prediction is a solid notched bar with a diameter of 8.0 mm, shown 

in Figure 3.17. The performance is analysed for loading with mean stress as well as 

scatter in the experimental results by Susmel and Taylor (2008). The proposed model 

coefficients calibrated using the proposed GA-based calibration method for two and 
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three load points are shown in Table 4.7. Accurate fatigue life prediction results are 

obtained in the case of three load points with the proposed interpolation scheme, 

compared to the two load point calibration of the model coefficients. The additional 

calibration point is selected at a load point in between the two extreme load points 

within the studied range for R = 0 and phase = 90 case, as shown in Table 4.8. Fatigue 

life is predicted for the applied normal and shear stress, where R has the same meaning 

as defined in the previous section. From each load set (with respect to R and phase) as 

in Table 4.8, two load points are selected for calibration and identified as CP1 and CP2. 

A third load point CP3 is selected for the R= 0 and phase = 90  load set, as this set has 

enough load points to be used for performance analysis life after three are selected as 

calibration points. Fatigue life is estimated using interpolated coefficients based on the 

normal stress data for each load.  

 

Table 4.7: Calibrated coefficients from genetic algorithm for EN3B steel alloy. 

 

 Calibrated coefficients 

Load 

point 

(MPa) 
K (10-01) R V a1 a2 m L 

R = -1 and phase = 0 
180 9.30498 0.724 20.8 0.480175 0.443722 1 138 

275 12.0781 0.517 31.9 0.529860 0.318603 1 134 

R = -1 and phase = 90 

200 10.8000 0.811 27.3 0.42238 0.527092 1 138 

285 11.3507 0.396 18.5 0.49135 0.331566 1 136 

R = 0 and phase = 0 

150 12.2399 0.952 26.8 0.273191 0.523005 1 104 

190 11.7468 0.750 23.0 0.509624 0.484350 1 123 

R = 0 and phase = 90 

145 9.12036 0.843 21.3 0.21777 0.44642 1 139 

170 8.81021 0.359 20.1 0.207048 0.289171 1 138 

235 9.63454 0.457 31.1 0.330776 0.249027 1 137 

 

 Results of predicted fatigue life from the proposed fatigue life model using two-

point and three-point interpolations of coefficients are presented in Figure 4.4 along 

with the experimental life by Susmel and Taylor (2008). For the case of the load set 

with R = -1 and phase = 0, it is observed that the fatigue life predicted by the proposed 

fatigue life model is on the conservative side. The predicted life for a load point of 200 

MPa normal stress is higher than the experimental life. This increase in the predicted 
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fatigue life for the mentioned load point is due to the slight scatter in the experimental 

data, resulting in a deviation from the model behaviour at other load points. Results 

from the proposed fatigue life model are in good agreement with the experimental data, 

showing approximately 2% difference in estimating the fatigue life for the R = -1, 

phase = 0 case. For the case of the load set with R = -1 and phase = 90, the predicted 

fatigue life from the proposed fatigue life model is in good correlation with the 

published experimental results. 

 

Table 4.8: Predicted fatigue life for EN3B steel. 

 

Normal 

stress at net 

area (σa) 

(MPa) 

Shear 

stress at 

net area 

(τa) (MPa) 

Experimental fatigue life 

(cycles) 

(Susmel and Taylor, 2008) 

Predicted fatigue life (cycles) 

Two 

calibration 

points     

(CP1 & CP2) 

Calibration 

points          

(CP1 - CP3 & 

CP3-Cp2) 

R = -1 and phase = 0 

180 (CP2) 103.9 2174897 1786431 --- 
190 109.7 1400006 807181 --- 

200 115.5 437907 445531 --- 

230 132.8 188480 135909 --- 

259.6 155.9 82952 58167 --- 

275 (CP1) 158.8 46254 42878 --- 

R = -1 and phase = 90 

200 (CP2) 115.5 2100000 1869827 --- 
230 132.8 245935 184465 --- 
250 144.3 79328 79388 --- 
260 150.1 314817 68753 --- 
270 155.9 59622 42365 --- 

285 (CP1) 164.5 34338 28869 --- 
R = 0 and phase = 0 

150 (CP2) 150 844615 759879 --- 
160 160 370618 169407 --- 
165 165 249286 119982 --- 
170 170 110056 86524 --- 
180 180 28108 51294 --- 

190 (CP1) 190 34298 31123 --- 
R = 0 and phase = 90 

145 (CP2) 145 2581210 2303300 2303300 
150 150 2500000 1317299 839787 
155 155 367445 704303 363447 

160 160 304439 444139 195065 

170 (CP3) 170 112944 230905 81354 
180 180 49200 131045 58199 
190 190 52000 84352 45785 
200 200 67873 48555 31242 
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235 (CP1) 135.7 59243 53559 53559 

 The predicted fatigue life is lower than the experimental fatigue life, resulting in 

safe mechanical designs. The minimum difference between the predicted fatigue life 

and the experimental data is less than 1%. The difference in the predicted fatigue life 

and the experimental data at the load point with 260 MPa normal stress load is 

attributed to the scatter in the experimental results The experimental fatigue life shows a 

higher than expected fatigue life as compared to the behaviour of fatigue lives from 

other load values, as observed in Figure 4.4(b). In general, the results of predicted 

fatigue life from the proposed model are accurate with respect to experimental data for 

the load set with R = - 1 and phase = 90. 

 

        

(a) R = -1 and Phase = 0°                                (b) R = -1 and Phase = 90° 

 

   

 

(c) R = 0 and Phase = 0°                             (d) R = 0 and Phase = 90° 

 

Figure 4.4: Predicted versus experimental life against applied normal stress for EN3B  

                     steel with respect to stress ratio (R) and phase difference. 
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 For the load case of R = 0, phase = 0, the predicted fatigue life results are 

presented in Table 4.8. The results are on the conservative side, as the predicted fatigue 

life is lower than the experimental fatigue life, which is generally favourable for safe 

designs. However, at a normal stress load value of 180 MPa, the experimentally 

obtained fatigue life is lower than the predicted life. This is attributed to scatter in the 

experimental data, as shown in Figure 4.4(c). This is not representative of the typical 

behaviour of EN3B material with respect to other load points. For the remaining load 

values, the estimated fatigue life from the proposed model is in good agreement with the 

experimental data, showing a difference of approximately 2%. For the load set with R = 

0 and phase = 90, the fatigue life is estimated using model coefficients determined from 

two and three calibration points. The results for predicted and experimental fatigue life 

are presented in Figure 4.4(d). The fatigue life predicted by interpolating the model 

coefficients between the two calibration points, CP1 and CP2, is generally 

overestimated, especially in the region away from CP1 and CP2, with more than 10% 

difference. A significant improvement in fatigue life prediction accuracy is obtained 

when three-point calibration is used, with an additional calibration point CP3 at 

170 MPa load in the interpolation scheme. The predicted fatigue life resulting from the 

three-point calibration shows good agreement with the experimental fatigue life within a 

minimum 1% difference. The estimated fatigue lives provide a good averaged 

representation of the EN3B behaviour even with the scatter in the experimental results. 

Hence, in summary, the use of additional calibration points improves the fatigue life 

prediction accuracy. Greater fatigue life prediction efficiency can be achieved with 

fewer calibration points for a range of load magnitudes. Hence, the number of 

experiments is reduced, leading to cost-effective experimental testing for generating the 

calibration data. 

 

4.3.3 Low Carbon Steel (Steel 20) with Axial and Torsion Loading 

 

 The experimental fatigue life results of low carbon steel (steel 20 alloy) with a 

chemical composition 0.24% C, 0.25% Si, 0.45% Mn, 0.2%Cr and balance Fe  

(Ukranian-Standard, 1988; Fatemi and Gladskyi, 2013), under fully reversed, load-

controlled fatigue tests with sinusoidal load waveforms are used for performance 

analysis of the proposed model. In a load-controlled fatigue test, a sequence of stress 
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amplitudes is obtained by applying cycles of stress amplitudes to the test specimen until 

failure (Gale and Totemeier, 2003). The sinusoidal load waveform is a combination of 

fully reversed axial and torsion cycles applied as a set of repeating blocks. In this 

section, the fatigue life prediction results for axial and torsion load cycles are discussed. 

The performance of the proposed fatigue life model for notched components in cases of 

axial and torsion loading is evaluated with interpolation of the calibration coefficient 

technique. A thin-walled tubular specimen with a circular hole as a notch in the centre 

of the gauge length (shown in Figure 3.23) is used for the analysis. 

 

 The critical location for fatigue failure in the specimen in the case of axial and 

torsion load is dependent on the stress distribution around the notch hole for both axial 

and torsional loading conditions, as shown in Figures 4.5(a) and 4.5(b). The critical 

fatigue failure location is determined by applying axial and torsion load in the FEM. 

The stress distribution is obtained around the periphery of the notch hole showing stress 

concentration regions. Angles around the circumference of the notch hole are according 

to Figure 4.5(c). As seen from the stress distribution patterns obtained on the notch hole 

circumference, the critical location for fatigue failure in tension and torsion loading is 

observed at different orientations around the circumference. For axial loading, the 

critical locations are at 0° and 180° while for torsion loading the critical locations are 

observed at 45° and 135° around the hole circumference. The results are in agreement 

with the experimentally observed crack locations for the respective loading, as shown in 

Figures 4.5(d) and 4.5(e) (Fatemi and Gladskyi, 2013). The magnitudes of applied 

normal (axial) and torsion stress used for the analysis of the experimental and predicted 

fatigue life with the experimental and predicted orientations of the critical plane are 

presented in Table 4.9. From each of the axial and torsion load set, calibration points are 

selected at two load values labelled as CP1 and CP2 in Table 4.9, assuming that the 

range of experimental data is completely defined by the selected load values. The 

calibration coefficients for low carbon steel determined from the proposed GA-based 

calibration method are shown in Table 4.10. From the axial load set, the stress 

amplitude of 106 MPa is not selected as the calibrated load. This is in order to check the 

possibility of extrapolation in determination of the calibration coefficient in addition to 

the interpolation scheme. Extrapolation with respect to CP1 and CP2 in the normal stress 

load set is used for determining the calibrated coefficients for the 106 MPa load. 



105 
 

 
 

 

 

    
 

                       (a) For axial load                  (b) For torsion load 

 

 
 

(c) Angle designation 

 

                        

 

               (d)   Crack location for axial load      (e) Crack location for torsional load  

 

Figure 4.5: Stress distribution, angle designation and crack locations around notch  

                        hole. 

 

 The results of the predicted fatigue life for axial and torsion loading conditions 

using the proposed fatigue life model are given in Figure 4.6. In the case of axial 

loading, application of the proposed model with the interpolation technique for the 

model coefficients predicted fatigue life results that are in good agreement with 

published experimental fatigue life results (Fatemi and Gladskyi, 2013) with a 

difference of approximately 2%. The model coefficients are also determined using 
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extrapolation of the calibrated coefficients for a load of 106 MPa. However, the results 

obtained from the extrapolation show a smaller value of coefficient ‘K’ than the 

coefficient value determined from calibration scheme, as shown in Table 4.10. This can 

lead to negative value of the coefficient at lower load values. Negative coefficients are 

unrealistic and contrary to the definition of the model. Hence the extrapolation 

technique is not recommended to determine the model coefficients. In order to use two 

load points for the calibration of the model coefficients, the selected load points must 

cover the range of studied loads for interpolation, i.e., the selected loads points must be 

at the extremes of the studied range of loads. 

 

Table 4.9: Predicted fatigue life for low carbon steel (steel 20). 

 

Applied nominal 

stress (MPa) 

Experimental 

life (cycles) 

(Fatemi and 

Gladskyi, 2013) 

Predicted life 

(cycles) 

Critical plane orientation (deg.) 

Experimental 

(Fatemi and 

Gladskyi, 2013) 

Predicted 

Normal stress 

269 (CP1) 315 302 5 0 

250 495 441 4 0 

200 2115 1466 2 0 

144 (CP2) 20900 19618 2 0 

106 140500 135551 0 0 

Shear stress 

149 (CP1) 5659 5502 45 45 

121 34700 15963 45 45 

87 198000 107501 45-48 45 

65 (CP2) 1150000 906000 -- 45 

 

Table 4.10: Calibrated coefficients from genetic algorithm for low carbon steel (steel 20). 

 

 Calibrated coefficients 

Load 

point 

(MPa) 
K (10-01) R V a1 a2 m L 

Normal stress 
269 15.23 0.075118 20.8 2.612265 1.77667 1 81 

144 6.937 0.303484 21.9 2.485315 2.20052 1 84 

106 9.934 0.301521 24.1 1.957164 1.730195 1 76 

Shear stress 
149 9.838 0.348106 17.3 1.236188 1.154545 1 88 

65 4.231 0.226825 17.7 1.038966 1.274541 1 84 

Extrapolated 
106 4.415 0.372907 22.2 2.446722 2.329704 1 85 
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(a) Normal stress     (b) Shear stress 

 

Figure 4.6: Predicted versus experimental fatigue life for low carbon steel (steel 20)  

                      with applied normal and shear stress. 

 

The predicted fatigue life for the load of 106 MPa in Table 4.9 is determined by 

using model coefficients calibrated from the proposed calibration scheme (Table 4.10). 

Critical plane orientations estimated on critical locations identified earlier, i.e. 0° and 

45°, using the proposed model are presented in Table 4.9. The results are in good 

correlation with experimental observations, showing a maximum 5 difference between 

the predicted critical angles and the experimental data for the normal load of 269 MPa. 

For other loading conditions, the predicted critical plane angles are similar to the 

experimental results. 

 

For torsional loading the estimated fatigue lives are on the conservative side 

with a difference of approximately 5% from the experimental results. Scatter in the 

experimental results leads to underestimated fatigue life, especially at 121 MPa load. 

Underestimation of the predicted fatigue life may be attributed to the use of fewer 

cycles for the load of 65 MPa as the experimental fatigue life, i.e. 1.15106 cycles. 

According to the results reported by Fatemi and Gladskyi (2013), the experimental 

fatigue life is greater than 1.15106 cycles. Critical plane orientations estimated using 

the proposed multiaxial fatigue model are presented in Table 4.9. The results are in 

good agreement with experimental observations, showing a maximum 3 difference 
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between the predicted critical angles and the experimental data for the shear load of 87 

MPa. The predicted critical plane orientation is accurate, showing only a difference of 

3–5 compared with the experimentally obtained critical plane orientation results. 

Hence, it can be observed that the predicted orientation of critical planes has no effect 

on the underestimation of the predicted result. Therefore, it can be concluded that the 

conservative estimation of fatigue life is due to the scatter in the experimental results for 

the fatigue life in the torsional loading case. 

 

4.3.4 Low Carbon Steel (Steel 20) with Blocks of Axial and Torsion Loads 

 

 Experimental fatigue life data for various combinations of axial and torsional 

loading cycles (Fatemi and Gladskyi, 2013) are presented in Figure 4.7. Axial cycles of 

144 MPa normal stress and torsion cycles of 149 MPa shear stress are applied. Blocks 

of loads are identified as ‘A’ for axial and ‘T’ for torsion with the respective number of 

cycles in the block. The calibrated coefficients for the proposed model for the above-

mentioned normal and torsion load are shown in Table 4.10. The estimated fatigue life 

from the proposed model using Eq. (3.26) is reported in Table 4.11. It is observed that 

for the loading block with 1000 axial and 100 torsion cycles (A1000-T100), the fatigue 

life estimated by the axial calibrated model is on the conservative side compared with 

the experimental data. It is observed that this load block is dominated by axial load 

cycles (Fatemi and Gladskyi, 2013). Hence, the number of axial cycles with respect to 

the number of blocks observed in Table 4.11 for A1000-T100 is very similar to the 

fatigue life obtained with axial loads only for the same magnitude of 144 MPa 

(Table 4.9). Hence, when the fatigue life is predicted by the proposed model, damage 

due to torsion cycles is added to the cumulative damage that occurred due to the axial 

cycles in the block, resulting in a smaller number of blocks to failure. In the case of 

fatigue life with torsion calibration, the predicted fatigue life is overestimated with 

relatively good accuracy. However, the resultant higher accuracy is an anomalous result 

in this case. This is attributed to the fact that the critical points for torsion loading, i.e. 

45° and 135°, as seen in Figure 4.5(b), are different from the critical points for axial 

loading, i.e. 0° and 180°. The stress distribution is different at the critical point locations 

for axial and torsion loadings, so the calibrated coefficients determined using torsion 
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load are based on a different stress distribution from that actually present at the critical 

location for the A1000-T100 load block, i.e. 0° and 180°.  

 

 

Figure 4.7: Predicted and experimental fatigue life for block loading for low carbon  

                       steel (steel 20). 

 

Table 4.11: Fatigue life for block loads with respect to each calibration for low carbon  

                      steel (steel 20). 

 

Loading 

combination 

Applied nominal 

stress (MPa) 
Fatigue Life(blocks) 

Normal Shear 

Experimental 

(Fatemi and 

Gladskyi, 2013) 

Predicted, calibrated by: 

Axial load Torsion load 

A1000-T100 

144 149 

17.9 12.1 22.4 

A1000-T1000 7.4 2.7 4.8 

A100 / T1000 6.0 3.1 5.42 

 

In the case of the load block with A1000-T1000, the number of cycles with 

respect to the number of blocks to failure (Table 4.11) shows the beneficial effects of 

axial loading on the torsion cycles in the experimental fatigue life. More torsion cycles 

are required to fail the material compared to the pure torsion case (Table 4.11) (Fatemi 

and Gladskyi, 2013). When fatigue life is estimated using the proposed model with axial 

calibration and the cumulative fatigue life calculated by Eq. (3.26), conservative results 

are obtained. The reason for this reduced accuracy is attributed to the observed 

beneficial effect of axial loading in the experimental results on the number of torsion 

cycles required to fail the specimen. A factor contributing to this observed phenomenon 

due to the T-stress from axial loading, which can extend the plastic zone size beyond 
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that present in pure torsion tests and another factor due to the increased friction during 

the compression part of the axial cycles. Therefore, both the plasticity and roughness 

induced closures may explain retardation effect of axial loading on torsion fatigue life 

(Fatemi and Gladskyi, 2013). This in turn leads to more applied load blocks being 

needed before failure. However, in the case of the fatigue life predicted from the 

proposed model, cumulative damage is determined by summing up the damage from 

each segment. Hence, the effects of axial loading on torsion cycles are not included in 

the cumulative damage obtained. An improved result is obtained from the proposed 

fatigue model with coefficients calibrated by pure torsion, in terms of better accuracy in 

predicting the required number of blocks to failure. This improvement in accuracy is 

due to the torsion calibrated coefficients, as the torsion cycles are more damaging then 

axial cycles, as observed from the number of cycles required to failure in Table 4.11. 

 

Both axial and torsion cycles are equal in number when the interaction of the 

axial and torsion loadings is ignored. The torsion loading causes more damage than the 

axial with the same number of cycles. Hence, this load block is more similar to the pure 

torsion case.  Therefore, the calibrated coefficients determined from pure torsion load 

predicted the fatigue life with better accuracy than the case for calibrated coefficients 

from pure axial load. 

 

 For the A100-T1000 load block, the number of loading blocks to failure 

predicted by the proposed model is conservative. This is because the locations of the 

critical points for torsion loading (45° and 135°) are different from the axial loading 

locations (0° and 180°), as shown in Figure 4.5(b). Hence the stress state is changed at 

both locations, i.e., the location of the critical point in axial and torsion load is different. 

As the block is dominated by the more damaging torsion loading cycles, the difference 

in estimated fatigue life between the axial calibrated model and the experimental fatigue 

life is as expected (Table 4.11). With the torsion calibrated model coefficients 

the predicted fatigue life has a minimum 14% difference from the experimental fatigue 

life. This is due to the fact that the A100-T1000 block primarily consists of torsion 

cycles, and experimental results have shown that there is no effect of axial cycles on 

torsion fatigue behaviour for this block load (Fatemi and Gladskyi, 2013). Thus, the 

predicted fatigue life has shown good agreement with the experimentally observed 



111 
 

 
 

fatigue life. Axial cycles cause less damage than torsion cycles, as well as being 

dominated by the torsion cycles. Hence there is no appreciable effect of axial cycles on 

the total cumulative damage in this case. 

 

 From the above discussion, it can be summarized that the inaccuracy in fatigue 

life estimation for block loadings is mainly due to the assumptions made to simplify the 

handling of block loads as segments. The damage caused by each segment is calculated 

by a linear cumulative rule. As the model is calibrated using pure torsion and pure axial 

profiles, the sequential effect of axial and torsion loadings is not captured. This can be 

seen from the fatigue life result of the A1000-T1000 block, where the effect of axial 

load on the torsion fatigue life is most prominent in the experimental results. Hence, to 

improve the fatigue life estimation by the proposed model, the selected calibration 

profiles should represent the characteristics of the loading profile under consideration 

(axial as well as torsion loading). The assumption of using the damage of one cycle to 

estimate the damage for the segment of block, resulting in an average prediction 

accuracy difference of 9%, is insufficient to capture the sequential effect of axial and 

torsion loadings. Hence, calibration is to be performed using a full or filtered profile so 

that only high damage cycles remain and the sequence effect of previous loading cycles 

can be captured. 

 

4.3.5 Stainless Steel SS304 with Complex Profiles 

 

 The experimental fatigue life results of SS304 (Itoh et al., 1995) under complex 

loading profile paths are shown in Table 3.4 to evaluate the prediction accuracy of the 

proposed multiaxial fatigue life model. The specimen with a hollow-cylinder geometry 

was shown in Figure 3.21, and is evaluated against the set of complex loading profile 

paths in order to validate the application of simpler characteristic profiles for calibration 

of the proposed model coefficients. Simpler characteristic profiles are used to represent 

the complex profiles for the calibration of the proposed model from the experimental 

fatigue life results, thus making the experimental testing easier and more economical 

(Shamsaei and McKelvey, 2014). Hence, the validation results can be used to justify the 

application of simpler characteristic profiles, resulting in low-cost experiments for 

calibration of the proposed model in predicting fatigue life against in complex real-
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world loading conditions. Profile Paths 5 and 12, characterizing in-phase and out-of-

phase loading conditions, are considered as simpler profiles used for calibrating the 

model coefficients shown in Table 4.3 for Model-1. The capability of the proposed 

fatigue life model is evaluated for predicting fatigue life against other profile paths 

(Table 3.4) representing complex loadings. The results of fatigue life prediction are 

compared with the experimental fatigue life results. Loads with profile paths are applied 

with two sets of axial and shear strain ranges, Set 1 and Set 2, as presented in Table 4.1. 

 

The application of two sets of strain magnitudes results in emphasizing the effect 

of the applied strain magnitude on fatigue life prediction by the proposed model. The 

predicted fatigue life results are presented in Table 4.12, determined with the four sets 

of calibrated coefficients for Model-1 (Table 4.3) with Set 1 and Set 2 of applied strain 

for profile paths other than Paths 5 and 12. A factor of 2–5 is generally used to describe 

the goodness band (Fatemi et al., 2010; Ince and Glinka, 2014). Hence the predicted 

fatigue life results with a superimposed goodness band are used, as presented in 

Figure 4.8. In order to evaluate the effect of magnitude on the prediction accuracy when 

the magnitude of load is different for calibration and at the time of fatigue life 

estimation. The fatigue life is estimated with Set 1 of applied strain when the model 

coefficients are calibrated using Set 2 of applied strain with Paths 5 and 12. Similarly, 

fatigue life is predicted with Set 2 of applied strain when the model coefficients are 

calibrated using Set 1 of applied strain with Paths 5 and 12. For the considered profile 

paths, one cycle is defined as a full straining for both axial and shear cycles. Thus the 

profile Paths 3, 4 and 13 represent two cycles per loading block (Itoh et al., 1995; Kida 

et al., 1997). For Paths 1, 2, 3 and 4, representing load paths with two principal strain 

directions and fully reversed loading, the fatigue life results show that the proposed 

model has successfully captured the multiaxiality present in the stresses. The proposed 

fatigue life model with coefficients calibrated using Path 12 predicted the fatigue life 

more accurately than the fatigue life predicted with coefficients calibrated using Path 5, 

with differences of 5–8% and 13–24% respectively. This is also clear from the profile 

path shapes, as the applied normal and shear strain are in-phase for Path 5, resulting in 

the minimum possible non-proportionality of stresses (Itoh et al., 1995), making this a 

less damaging path than Path 12. The proposed model calibrated from profile Path 5 

predicts a higher number of cycles than the experimental results in the case of more 
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severe multiaxial profile paths. In contrast, the fatigue life prediction results from the 

proposed fatigue life model with model coefficients calibrated with profile Path 12 are 

in good agreement with the experimental results. This is due to the fact that prediction 

with Path 12 (i.e. with axial and shear strain 90° out-of-phase) generates a mutlitiaxial 

response. Hence, the proposed model is capable of predicting fatigue life more 

accurately for other profile paths having a multiaxial response.  

 

Table 4.12: Fatigue life predicted for SS304. 

 

Path no. 

Experimental 

life (cycles) (Itoh 

et al., 1995) 

Predicted life with calibration by 

Set 1 Set 2 

Path 5 Path 12 Path 5 Path 12 

Set 1 as applied load 

1 9500 88019 6162 26139 2156 

2 20000 71932 5441 22710 1880 

3 2400            

(1200 blocks) 
16920 1806 7160 617 

4 3400            

(1700 blocks) 
17825 1868 7364 645 

6 9700 18731 1911 7429 657 

7 18000 18582 1935 7553 664 

8 2050 12987 1435 5572 488 

9 2950 25744 2851 11108 968 

10 2600 26073 2822 10912 959 

11 14400 26493 2593 10264 892 

13 3200            

(1600 blocks) 
33272 3201 13048 1127 

Set 2 as applied load 

1 1400 19739 2138 8423 746 

2 2100 17703 1930 7586 659.5 

3 820                

(410 blocks) 
5855 719 2785 242 

4 900                

(450 blocks) 
5898 712 2751 238 

6 2600 6216 714 2749 239 

7 1700 6320 737 2842 246 

8 470 9905 1182 4551 394 

9 660 5612 699 2696 234 

10 320 9921 1170 4525 388 

11 1200 7809 906 3513 304 

13 1000              

(500 blocks) 
10026 1208 4662 423 
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       (a) 0.8 axial 1.39 shear strain (Set 2)     (b) 0.8 axial 1.39 shear strain (Set 2) applied 

        applied load and calibration load          load and 0.5 and 0.87 (Set 1)calibration load 

 

         
 

      (c) 0.5 axial 0.87 shear strain (Set 1)     (d) 0.5 axial 0.87 shear strain (Set 1) applied  

           applied load and calibration load      load and 0.8 and 1.39 (Set 2) calibration load 

 

Figure 4.8: Predicted versus experimental life for SS304 with respect to applied strain  

                     load, calibration load and load profile used for calibration. 

 

 Paths 6 and 7 are similar to Path 5 with respect to the characteristics of 

proportional loading. The predicted fatigue life results by the proposed fatigue life 

model with coefficients calibrated using Path 5 are in good agreement with the 

experimental fatigue life results, with a minimum difference of 1%. Similarly, profile 

Paths 8, 9, 10 and 13 have loading characteristics similar to Path 12. The estimated 

fatigue life from the proposed fatigue life model is in good accuracy, with a minimum 

1–4% difference compared to the experimental results. However, the predicted fatigue 

life from the proposed model with Path 11 using the model coefficients calibrated with 

Paths 5 and 12 shows mixed results in both cases. This is due to the fact that Path 11 has 

a 45° phase difference between applied axial and shear strain (Kida et al., 1997), i.e. its 
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loading is in between Paths 5 and 12, which are fully proportional in-phase and non-

proportional out-of-phase respectively. Thus Path 11 is similar to both Paths 5 and 12 

with respect to the characteristics of the profile. Additionally, the fatigue life prediction 

accuracy of the proposed fatigue life model is evaluated for the effects of applied loads 

with different magnitudes used for calibration and fatigue life estimation. Hence, strain 

Set 1 (Table 4.1) with Paths 5 and 12 is used to calibrate the proposed model, and strain 

Set 2 is used to predict the fatigue life for the remaining profile paths. Similarly, strain 

Set 2 (Table 4.1) with Paths 5 and 12 is used to calibrate the proposed model and strain 

Set 1 is used to predict the fatigue life for the remaining profile paths. From the results 

obtained from Table 4.12, it is clear that the magnitude has a noticeable impact on the 

fatigue life prediction accuracy of the proposed fatigue life model. From Table 4.12, 

with the fatigue life predicted with Set 1, it is observed that fatigue life predicted from 

proposed fatigue life model with model coefficients calibrated with applied strain load 

Set 2 is lower than when predicted with Set 1 calibration. Calibration with the higher 

magnitude strain load Set 2 results in model coefficients causing more damage per 

applied unit load. Hence, a lower fatigue life is predicted with the smaller magnitude 

strain load Set 1. A combination of Path 2 and strain loading Set 2 with model 

coefficients calibrated using Path 5 gives more accurate predicted fatigue life than the 

combination of Path 2 and loading Set 1. However, the result is a mathematical 

coincidence without any direct technical explanation. 

 

Fatigue life predicted by the proposed fatigue life model with strain loading 

Set 2 as applied load is presented in Table 4.12. The predicted life from the proposed 

fatigue life model with coefficients calibrated using strain loading Set 1 is higher than 

that predicted with model coefficients calibrated with strain loading Set 2. For Paths 2 

and 9, the model coefficients are calibrated with strain loading Set 1 and Path 12. The 

results of the predicted fatigue life are more accurate than the results with calibration 

done with strain loading Set 2 and Path 12. However, this result is anomalous and 

purely due to the mathematics involved, lacking a direct theoretical explanation. Hence, 

this result cannot be used as justification of the proposed model performance. From the 

results obtained, it can be observed that calibration of the proposed fatigue life model is 

preferably performed with load magnitudes similar to the applied loads for fatigue life 

estimation. 
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 From the results presented in Table 4.12, it is evident that the proposed fatigue 

life model is capable of handling complex multiaxial profiles. The concept of using 

simpler profiles representing the characteristics of the complex profiles for the 

calibration of the proposed model from experimental fatigue life data is verified. A fully 

proportional in-phase (Path 5) and non-proportional out-of-phase (Path 12) profiles are 

used for calibrating the proposed model coefficients and predicting the fatigue life for 

more complex profiles (Table 3.4). Non-proportional factors examined in the considered 

profiles are the two principal strain directions, fully reversed loading, rotational 

principal strain direction, step length and direction of loading path (Itoh et al., 1995). 

The proposed fatigue life model handled these factors with good accuracy (i.e. 

minimum 1% difference). This shows the inherent flexibility of the proposed fatigue life 

model with the application of the genetic algorithm. Furthermore, for application of the 

model, no new material constant needs to be determined, and only the FEA material 

model needs to be defined. A non-linear material model is essential in order to 

accommodate plasticity. A significant feature of the proposed fatigue life model is its 

simplicity in application, as only the fatigue limit is required as a material fatigue 

property. It is preferable that the fatigue limit used is similar to that of the loading 

profile used for calibration. In case of unavailability of the fatigue limit data, the model 

is flexible, as the fatigue limit for simple cyclic loading can be applied with a reduced 

fatigue limit value. This flexibility of the model is inherent due to the application of a 

GA capable of estimating correct behaviour with this assumption. 

 

4.3.6 Titanium Alloy BT9 with Combination of Axial, Shear and Out-of-Phase 

Axial and Shear Load  

 

 The block loading used for titanium alloy BT9 (chemical composition 0.081% 

Fe, 0.06% C, 0.3% Si, 3.4% Mo, 0.018% N, 6.5% Al, 1.58% Zr, 0.006% H and balance 

Ti) consists of axial, torsion and axial–torsion out-of-phase loading segments, as shown 

in Figure 4.9 (Fatemi et al., 2010). The proposed model is calibrated using the axial, 

torsion and axial–torsion out-of-phase loadings with the experimental fatigue life 

presented in Table 4.13. The calibrated coefficients are presented in Table 4.14 with 

coefficients from the axial loads determined using a solid specimen, as the experimental 

fatigue life for axial load is determined using a solid specimen. Experimental fatigue life 

results for titanium alloy BT9 are given in Table 4.15, and were determined using the  
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Figure 4.9: Loading blocks composed of different combinations of axial, torsion, and  

                      90° out-of-phase axial–torsion strain paths. 
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tubular specimen (Fatemi et al., 2010). The mechanical properties of the alloy are listed 

in Table 3.5. Hollow tubular and solid bar specimens are used for the analysis and their 

geometry is shown in Figure 3.26 and Figure 3.27 respectively. The predicted and 

experimental fatigue lives for blocks of loading are presented in Table 4.15.  

 

Table 4.13: Specimen and loads used for calibration for titanium alloy BT9. 

 

Specimen Load type 
Applied strain Cycles to failure 

(Fatemi et al., 2010) Axial Shear 

Solid Axial 0.01 --- 960 

Tubular 
Torsion --- 0.0173 498  

90° out-of-phase 0.01 0.0173 142 

 

Table 4.14: Calibrated coefficients from genetic algorithm for titanium alloy BT9. 

 

 Calibrated coefficients 

Applied strain K(10-01) R V a1 a2 m L 

Solid specimen with axial load 

0.01 axial 4.3411 0.4017 161 0.1924 1.0756 1 557 

Tubular specimen with torsion  

0.0173 shear 5.0075 0.0930 130 0.1285 1.245 1 506 

Tubular specimen with OOP 

0.01 axial and 

shear 0.0173 
4.6277 0.2806 94 0.2147 2.153 1 518 

 

 Block loading is considered in the form of load segments with constant 

amplitude loadings with magnitudes according to Table 4.15. For each block load, the 

critical plane is determined by evaluating the damage by each segment of the block load 

and then the cumulative damage is evaluated for each plane. The plane with maximum 

damage is selected as the critical plane (Fatemi et al., 2010). The stress–strain response 

of titanium alloy BT9 is not sensitive to the loading sequence and change in strain path 

(Fatemi et al. (2010). Thus, the fatigue life prediction is simplified by calculating the 

damage for each segment of the block loads individually. Cumulative damage is then 

determined by summing up the individual load segments (Eq. (3.26)). Hence, the fatigue 

life is calculated in terms of the number of blocks required for failure. 
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Table 4.15: Fatigue life for block loads with respect to each calibration for titanium  

                       alloy BT9. 

 

Load 

block 
Phase 

Applied strain 

Cycles 

No. of blocks 

Axial Shear Experimental 

(Fatemi et al., 2010) 

Solid 

axial 

Tubular 

torsion 

Tubular 

OOP 

B1 --- 0.01 --- 97 1 3.2 1.1 0.9 

--- --- 0.0173 301 

B2 --- --- 0.0173 398 1 2 0.7 0.57 

--- 0.01 --- 205 

B3 --- 0.01 --- 98 1 4.1 1.45 1.17 

90 0.01 0.0173 86 

B4 90 0.01 0.0173 80 1 2.1 0.66 0.55 

--- --- 0.0173 384 

B5 --- --- 0.0173 282 1 2.23 0.7 0.6 

90 0.01 0.0173 108 

B6 90 0.01 0.0173 61 1 5.8 2 1.65 

--- 0.01 --- 70 

C1(1) --- 0.01 --- 40 2.5 7.5 2.6 2.11 

--- --- 0.0173 130 

C1(2) --- 0.01 --- 65 1.8 4.5 1.55 1.27 

--- --- 0.0173 219 

C2(1) --- --- 0.0173 176 1.9 5.1 1.8 1.46 

--- 0.01 --- 66 

C2(2) --- --- 0.0173 209 1.4 4.6 1.6 1.3 

--- 0.01 --- 65 

C3 90 0.010 0.0173 50 1.6 2.54 0.9 0.72 

--- 0.01 --- 50 

--- --- 0.0173 50 

90 0.01 0.0173 50 

--- --- 0.0173 50 

--- 0.01 --- 50 

 

From Table 4.15, it can be concluded that the concept of calibration of the 

proposed model from characteristic profiles, which are simpler than actual loading 

conditions but represents their behavior, can be used in the case of fatigue life 

estimation of block loads. As for the block loading considered in the study, blocks 

consists of segments of constant amplitude axial, torsion and out-of-phase axial–torsion 

load (Table 4.15) are used for fatigue life prediction. The proposed model is calibrated 

using axial, torsion and out-of-phase axial–torsion profiles as mentioned in Table 4.13. 

Small error in fatigue life estimation is expected, as the profiles used for calibration 

have only axial, torsion or out-of-phase axial–torsion load and the block loads have a 

mixture of the three load types (Figure 4.9). But still the fatigue lives, i.e., the number of 
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blocks to failure, predicted by the proposed model are reasonably accurate with 

differences of 4–7%, as shown in Figure 4.10. Any improvement in the profiles used for 

calibration which can better represent the characteristics of the block loads will further 

improve the accuracy of fatigue life prediction. 

 

 

 

Figure 4.10: Experimental and predicted fatigue life of titanium alloy BT9 for block  

                        loads with different calibrations. 

 

An important aspect related to selection of the specimen geometry for 

calibration of the proposed model is identified from the fatigue life results (Table 4.15) 

in the case of calibrated coefficients from the axially loaded solid specimen. The fatigue 

life results from this specimen show that the geometry of the specimen used for 

generating fatigue life data from experiments should either be similar or more precisely 

have a similar stress distribution to the component under study. The experimental 

fatigue life for the axially loaded specimen is determined by applying axial strain loads 

on the solid specimen shown in Figure 3.27 (Fatemi et al., 2010), and torsion as well as 

out-of-phase loads are applied on the tubular specimen shown in Figure 3.26. Hence, the 

fatigue life results from the calibration performed by the axially loaded specimen 

resulted in non-conservative fatigue life results for all cases.  
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From Table 4.15, B1 and B2, B3 and B6 and B4 and B5 are pairs of blocks that 

have similar segments but in the opposite order, thus the sequence effect is highlighted 

by examining the fatigue life results. For all cases, the predicted fatigue life is within 

acceptable limits, where the coefficients calibrated by the hollow specimen with torsion 

and out-of-phase axial–torsion load are used as shown in Figure 4.10. With reference to 

the experimental observation by Fatemi et al. (2010) that the material is not affected by 

the loading path, the damage predicted by the proposed model for each load segment is 

estimated separately and summed up to determine the total damage by the load block 

and thus the fatigue life as the number of load blocks. 

 

For loading blocks C1 and C2, the fatigue life prediction is more accurate, which 

can be attributed to the number of cycles in the block segments. C series loading blocks 

have fewer cycles than B series loading blocks. As already mentioned in Section 3.10, 

the damage to the load segment is determined by multiplying the damage from one 

cycle by the number of cycles in that load segment. Then the damage of each load 

segment is summed up to determine the total damage to the loading block. This may 

affect the accuracy of fatigue life prediction when there are more cycles in the loading 

segment, because more cycles include more effects of previous loading cycles for the 

experimentally determined fatigue life. Hence it can be deduced that, to improve the 

accuracy of the proposed model and to better handle the sequence and damage 

accumulation effects, a full response history is required for fatigue life estimation. To 

reduce the size of the loading history, a filtered response history (with the most 

damaging cycles included) may also be an acceptable alternative to a full response 

history, as in general approximately 10% of filtered histories can account for 90% of the 

total damage (Stephens et al., 2000). 

 

 Comparison of the variation of the proposed fatigue model parameter and the 

Fatemi–Socie model parameter (Fatemi et al., 2010) with respect to the plane angle is 

shown in Figure 4.11(a) for torsion loading, and in Figure 4.11(b) for out-of-phase 

axial–torsion loading. The clear difference is due to the reliance of the proposed model 

parameter on normal and shear stress–strain to determine the parameter value, but the 

Fatemi–Socie model parameter follows the shear strain range to locate planes with the 

maximum value of strain range and then identify the critical plane among the located 
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planes having the maximum normal stress (Fatemi and Socie, 1988). In the case of out-

of-phase axial–torsion load, the trend of the proposed model parameter has shown a 

clear peak to identify the critical plane, while the Fatemi–Socie model parameter has 

shown clear variation from the torsion case due to the applied axial load, although the 

identified plane is approximately the same, within ± 5°, as the proposed model 

parameter.  

 

 
 

(a) Torsional loading 

 

 
 

(b) Axial–torsional loading 

 

Figure 4.11: Fatigue parameter variation for proposed and Fatemi–Socie model for  

                          titanium alloy BT9 with respect to plane angle. 
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The critical plane orientations predicted by the proposed model parameter, for 

block loads (Table 4.15), are presented in Figure 4.12, side by side with the orientations 

predicted by the Fatemi–Socie model parameter and observed experimentally (Fatemi et 

al., 2010). By comparing the orientations of the critical plane with the experimental data 

as shown in Figure 4.12, the proposed model predicted the critical plane orientation 

within approximately ±10°, which is also similar to the accuracy of predictions made by 

the Fatemi–Socie model. In case of B1 block, the difference between experimental and 

predicted values of critical plane is observed as 15°, while for blocks B2 and C2, the 

difference is 10°. This is due to the fact that the material Titanium alloy BT9 is a brittle 

material and with the application of normal, shear and out of phase normal and shear 

load, different mechanisms are competing with each other in causing the failure (Becker 

and Lampman, 2002). This results in an uncertainty in the experimentally observed 

critical plane orientation as it depends on the mechanism which most probably cause the 

actual crack to form. The fatigue parameter models are used for estimating the critical 

plane according to a defined criteria due to which the load block with similar load 

sequence resulted in similar estimation of critical plane orientation such as in case of B1 

- C1 and B2 - C2. However experimentally the plane orientation is different like for B1 

- C1 and for B2 - C2. This shows that the experimental critical plane results have 

uncertainty due to competing failure mechanisms which are resulting in deviation from 

the predicted results. Thus with the consideration of experimental uncertainty it can be 

assumed that the proposed model is able to predict the location of the critical plane and 

fatigue life with reasonable accuracy for block loading, even with the assumptions made 

to simplify the analysis, namely that the block loads consist of segments and the damage 

to each segment can be calculated with reference to the damage done by one cycle in 

that segment. The accuracy of the proposed model can be further improved by applying 

the block loading as a full or filtered profile so that only high damage cycles remain and 

the sequence effect of previous loading cycles can be captured. 
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Figure 4.12: Critical plane orientation for each block loading by proposed model,  

                           Fatemi–Socie model and experimentally determined for titanium alloy 

                           BT9. 

 

4.4 EVALUATION OF PROPOSED MODEL RESULTS WITH COMMON 

MULTIAXIAL FATIGUE MODELS 

 

 In this section the performance of the proposed fatigue life model is evaluated 

with the fatigue life models available in commercial fatigue life codes. The performance 

is also evaluated with the Fatemi–Socie model, which is widely accepted among 

researchers, and the endurance function model which uses GA for calibration. The 

estimated fatigue life results are compared with the experimental fatigue life for in-

phase, out-of-phase and complex load paths, available from published literature. 

 

 The equivalent stress determination methods in commercial fatigue life code are 

absolute maximum principal, signed von Mises, signed shear, a critical plane parameter 

and the Wang–Brown method. In the absolute maximum principal method, the principal 

stress with the largest amplitude is used. For the signed von Mises method, von Mises 

stress with the sign of the absolute maximum principal stress is used. Maximum shear 

stress as per the Tresca criterion with the sign of absolute maximum principal stress is 

used in the signed shear method. The critical plane parameter is expressed in Eq. (4.1), 

while the orientation of the critical plane is defined by angle  with the plane having the 

highest value of , as shown in Figure 4.13 (HBM, 2011). The Wang–Brown method 

employs the parameter as defined in Eq. (2.7). The above-mentioned methods are 

applied with Morrow mean stress correction and Neuber elastic–plastic correction. The 
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Fatemi–Socie parameter as expressed in Eq. (2.9) and the endurance function model are 

coded for use in the study. 

 

 

 

Figure 4.13: Resolution of normal stress for critical plane. 

 

For testing with in-phase and out-of-phase loading, the experimental fatigue life 

results for the C40 specimen are used (Atzori et al., 2006). In the case of evaluating 

with complex paths, the experimental fatigue life results for SS304 are used (Itoh et al., 

1995). The estimated fatigue lives from the studied models with the respective 

experimental life are presented in Tables 4.17 and 4.18. The experimental fatigue life 

results for carbon steel C40 against in-phase and out-of-phase loading with zero and 

positive mean, alongside the predicted fatigue life by the fatigue life estimation methods 

under consideration, are presented in Table 4.16. Table 4.17 presents the experimental 

fatigue life results for the profile paths shown in Table 3.4 and strain load Set 1 and 

Set 2 as presented in Table 4.1, along with the predicted fatigue life by the fatigue life 

estimation models under study. The critical plane locations estimated by the critical 

plane parameter from commercial code, the Fatemi–Socie model and the new proposed 

model are presented in Table 4.18. The critical plane method from commercial code 

does not provide variation of the fatigue parameter with plane angles data. 
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Table 4.16: Predicted fatigue life for C40 specimen. 

 

Applied 
stress 
(MPa) 

Fatigue life (104) cycles 

Absolute 
max. 

principal 

Signed 
von 

Mises 

Signed 
shear 

Critical 
plane 

Wang 
Brown1  

Fatemi 
Socie2 

Endurance 
function3 

Proposed 
model 

Experi
mental4 

R = -1, phase = 0 

221 1.28 1.364 1.04 1.288 1.421 1.79 -- 1.57 1.2 

200 1.3 1.37 1.132 1.308 1.518 3.84 2.7 2.68 2.7 

179 1.43 1.48 1.259 1.444 1.64 8.83 3.2 5.4 22 

160 1.427 1.412 1.377 1.447 1.63 23 4.5 10.5 7.2 

129.75 1.37 1.362 1.343 1.317 1.567 140 11 34.7 18 

101 3.3 3.338 3.274 3.336 4.369 733 175 143 200 

R = -1, phase = 90 

199.7 1.4 1.59 0.84 1.4 0.552 28 0.92 0.94 1.1 

180 1.55 1.5 0.77 1.571 0.63 78 1.4 1.6 1.4 

160.25 1.5 1.49 0.77 1.598 0.745 133 2.3 2.8 4.1 

119.5 8.8 8.47 3.59 9.282 2.89 1442 14 24 94 

99.6 34.45 33 11.8 36.57 7.649 7562 120 118.2 200 

R = 0, phase = 0 

158 1.558 1.64 1.29 1.58 1.75 0.352 2.5 2.3 2.6 

138.5 1.76 1.7 1.22 1.79 1.96 0.936 4.8 6 4.7 

119 2.27 2.13 1.45 2.28 2.9 3.359 10 6.9 15 

99.5 6.19 5.7 3.65 6.2 7.89 14.1 23 47.8 35 

67.9 63.3 60 53.6 63.6 105 135 140 198 200 

R = 0, phase = 90 

158 2.22 1.76 0.9 2.365 1.114 4.48 2 2.15 2.1 

138.75 4.8 3.5 1.657 4.974 2.582 7.69 3.5 3.6 3.6 

119.3 8.5 5.49 2.5 15.59 5.651 16 6.6 7 8.5 

89.55 13 8.5 4.7 121.8 31.29 95.6 21 28.7 34 

66.8 200 200 200 200 200 566 85 184 200 
1- (Wang and Brown, 1993), 2- (Fatemi and Socie, 1988; Fatemi and Gladskyi, 2013),           3- 

(Brighenti and Carpinteri, 2012), 4- (Atzori et al., 2006). 

 

 The fatigue life results of the C40 specimen (Atzori et al., 2006) are shown in 

Figure 4.14, where it is observed that the proposed model demonstrated a steady 

performance in predicting the fatigue life for all four load types and magnitudes with 

good accuracy with differences of 1–3% against the experimental fatigue life. The 

fatigue life results from the models used with commercial fatigue life codes are 

conservative, especially at lower magnitudes. The results from the Fatemi–Socie model 

generally overestimated the fatigue life for both load cases, with R = -1. The fatigue life 

predicted by the endurance function model shows good accuracy for all load types and 

magnitudes. Variations in the fatigue life predicted from the above-mentioned models,  
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Table 4.17: Predicted fatigue life for SS304 specimen. 

 

Path 

no. 

Fatigue life cycles 

Absolute 

max. 

principal 

Signed 

von 

Mises 

Signed 

shear 

Critical 

plane 

Wang 

Brown1 

Fatemi 

Socie2 

Proposed 

model 
Experimental3 

For 0.5 axial and 0.87 shear strain load (Set 1)     

1 6128 4248 2050 6128 626 158 6162 9500 

2 6249 3043 1228 6464 1042 165 22710 20000 

3 1061 942 756 2216 296 132 1806 1200 

4 1655 1311 905 2173 454 331 1868 1700 

5 2102 1783 1318 2137 2215 310 14596 17500 

6 2200 1991 1157 2338 1423 188 7429 9700 

7 2268 2104 1161 2391 1122 327 18582 18000 

8 2429 1828 1106 2848 556 387 1435 2050 

9 2545 2392 1468 4417 502 310 2851 2950 

10 2622 1831 955 2894 575 405 2822 2600 

11 4756 3333 1576 4897 1803 1123 10264 14400 

12 6866 3599 1471 6932 1063 667 4987 4750 

13 3396 2001 889 4766 305 761 1127 1600 

For 0.8 axial and 1.39 shear strain load (Set 2) 
    

1 1399 506 233 1676 216 15 746 1400 

2 1675 651 270 1712 261 16 1930 2100 

3 342 264 151 718 136 31 242 410 

4 499 350 189 708 176 32 238 450 

5 685 518 285 699 786 33 3278 3200 

6 744 567 264 768 454 29 2749 2600 

7 764 535 231 780 352 17 2842 1700 

8 968 749 493 1118 230 45.7 394 470 

9 931 685 424 1104 149 34 699 660 

10 944 533 244 1062 189 21 388 320 

11 1326 870 360 1362 588 126 906 1200 

12 1979 761 325 2061 382 84 689 710 

13 995 396 17 1579 131 84 423 500 

1- (Wang and Brown, 1993), 2- (Fatemi and Socie, 1988; Fatemi and Gladskyi, 2013),            

3- (Itoh et al., 1995). 

 

 

 

 



128 
 

 
 

Table 4.18: Estimated locations of critical planes for SS304 specimen. 

 

Path no. Critical plane Fatemi–Socie Proposed model 

Set 1 (0.5 axial and 0.87 shear strain load) 

1 90 90 90 

2 90 90 90 

3 60 110 110 

4 60 110 110 

5 60 85 100 

6 60 85 80 

7 70 80 80 

8 60 110 120 

9 120 75 110 

10 110 110 100 

11 70 90 80 

12 80 100 80 

13 90 80 80 

Set 2 (0.8 axial and 1.39 shear strain load) 

1 90 90 90 

2 90 90 90 

3 120 105 115 

4 60 75 110 

5 60 95 100 

6 70 90 80 

7 70 90 80 

8 70 80 80 

9 110 75 80 

10 60 110 105 

11 70 90 80 

12 80 95 80 

13 70 95 80 

 

except the endurance function model and the proposed model, are mainly due to the 

dependence on many material properties like fatigue strength exponent, fatigue strength 

coefficient, fatigue ductility coefficient and fatigue ductility exponent. These properties 

are not commonly available and in the current case are taken from more than one 

source, as mentioned in Table 3.5. This emphasizes the benefit of the calibration scheme 

introduced in the proposed model, where the model coefficients are tailored according 

to loading and material conditions. Thus, there is no requirement for a number of 

fatigue-related material properties in order to estimate the fatigue life (Shamsaei and 

McKelvey, 2014). In addition to this simplification, the interpolation scheme introduced 

for the model coefficients with the newly proposed model improved the accuracy of the 
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fatigue life prediction. The predicted fatigue life values from the proposed model are 

nearly equal to the results from the endurance function model. The similarity in results 

for the two models is due to the GA-based calibration scheme for the model coefficients 

in both cases. Fatigue life results with complex profiles for the SS304 specimen are 

presented in Figure 4.15. The results show that the proposed model predicted the fatigue 

life with good accuracy for all profile paths and magnitudes of applied loads, with 

differences of 1–4%.  

 

 In general, for all methods from commercial code as well as the Fatemi–Socie 

model, the difference in loading step size is difficult to identify, i.e., the difference in 

Paths 5 to 7, resulting in approximately similar predicted fatigue life for the three load 

paths. This simply shows that the models available in commercial fatigue life codes and 

already published models cannot be used universally for every type of loading 

condition, as identified by researchers (Mahadevan and Liu, 2005; Fatemi and 

Shamsaei, 2011; Macha and Niesłony, 2012; Ince and Glinka, 2014). A possible reason 

for the resulting inaccuracy of the Fatemi–Socie parameter is the failure of SS304 in 

planes experiencing maximum normal stress rather than shear in certain loading 

conditions (Socie and Marquis, 2000), while the Fatemi–Socie model defines the plane 

with the maximum shear strain range as the critical plane. The critical planes identified 

by the Fatemi-Socie model and the proposed model are very similar in most cases, as 

observed from Figure 4.16. The variation of predicted fatigue life by the Fatemi–Socie 

model with respect to experimental life is attributed to the definition of the parameter 

itself, i.e. the dependence on the maximum shear strain range only to locate the critical 

plane. The requirement for a number of material properties is another reason for fatigue 

life variation, as these material properties are defined using many variables that need to 

be determined from experimental data prior to fatigue life estimation. Experimental 

errors can be introduced when determining these variables experimentally. This 

highlights the drawbacks associated with different models in predicting fatigue life 

accurately. 
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(a) R = -1, phase = 0                                                                                        (b) R = -1, phase = 90 

 

   

(c) R = 0, phase = 0                                                                                          (d) R = 0, phase = 90 

 

Figure 4.14: Fatigue life of C40 from various models versus experimental life.
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(a) (Set 1) 0.5% axial and 0.87% shear strain.  

 

 
 

(b) (Set 2) 0.8% axial and 1.39% shear strain 

 

Figure 4.15: Fatigue life of SS304 from various models versus experimental life.  
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 Critical plane estimation results are presented in Table 4.18 for the models with 

the critical plane location data. Figure 4.16 shows the variation of the fatigue parameter 

with plane angle (), as shown in Figure 3.2, which is the plane angle with the axis of 

the specimen. Since no variation of the parameter data is available for the critical plane 

model from the commercial code, the results from the critical plane model are not 

included in Figure 4.16. The critical plane location (Table 4.18) as well as the variation 

of the fatigue parameter with plane angle for the Fatemi–Socie model and the proposed 

model are approximately similar, except for Paths 6, 7 and 11, where Paths 6 and 7 

represent the steps size in loading and Path 11 is an intermediate case between Path 5 

and Path 12. For the critical plane model and Fatemi–Socie parameter, Paths 6 and 7 

resulted in approximately the same location of the critical plane as Path 5. But in the 

case of the proposed model there is a clear shift of 20° in the critical plane location for 

both Set 1 and Set 2 of magnitudes of applied loading (Table 4.18). The reason for this 

behaviour lies in the definition of the fatigue life parameters. The critical plane model 

searches for the plane having the maximum resultant stress from the surface stresses 

along the plane normal (Figure 4.13). The Fatemi–Socie model defines the critical plane 

in two steps; firstly, searching for planes having the maximum shear strain range and 

secondly selecting from among these planes the one with the maximum normal stress as 

the critical plane. For Paths 5, 6 and 7, the applied strain range is the same, which 

results in the same critical plane location, as the initial selection of planes is made on 

the basis of the shear strain (Itoh et al., 1995). In the case of the proposed model, the 

fatigue parameter consists of strain and stress terms.  

 

 The plane with the maximum fatigue parameter is selected as the critical plane. 

Hence, the effect of step loading on the location of the critical plane is captured 

efficiently. For Path 11, the variations of the fatigue parameter with plane angle are 

different for the Fatemi–Socie model compared to the proposed model, as shown in 

Figure 4.16. The Fatemi–Socie model shows clear peaks in the fatigue parameter, while 

the proposed model shows a plateau behaviour for the fatigue parameter. This is 

attributed to the definition of the fatigue parameters. Fatemi–Socie searches for the 

maximum shear strain range planes and then adds the normal stress on the selected 

planes to determine the fatigue parameter, while the proposed model searches for planes 

having a combined effect of shear and normal stress and strain terms. 
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Figure 4.16: Proposed and Fatemi–Socie parameter variations with plane angle for 

SS304 and Set 2. 
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 In the case of Path 11 the phase difference is 45°, which causes a mixed effect 

of in-phase and out of phase normal and shear stress–strain load (Kida et al., 1997). The 

proposed model is better able to capture that combined stress–strain effect. Hence, a 

wider range of planes is identified as having high fatigue parameter values compared to 

Fatemi–Socie, which shows a distinct peak, as seen in Figure 4.16. For Paths 1, 2, 3 and 

4 the fatigue parameter variations for the proposed model and the Fatemi–Socie model 

are very close to each other (Figure 4.16), as are also the estimated critical plane 

locations as presented in Table 4.18.  This shows that both models show excellent 

agreement in critical plane estimation for profile paths with two principal strain 

directions and fully reversed loading (Itoh et al., 1995). In the cases of Paths 8, 9, 10, 12 

and 13, which represent load cases having a box loading path and rotation in the 

principal strain directions, the observed fatigue parameter variation (Figure 4.16) as 

well as the estimated critical plane locations (Table 4.18) are in close agreement. 

Hence, it can be observed that the proposed model performed in good agreement with, 

and in certain situations performed even better than, the fatigue life models already used 

in commercial codes and established in published literature. 

 

4.5 PERFORMANCE OF DEVELOPED CRITICAL PLANE ESTIMATION 

TECHNIQUE 

 

A new approach has been developed to determine the critical plane orientation 

using an optimization technique with a genetic algorithm. This approach is helpful in 

finding the critical plane according to one or more criteria simultaneously describing 

the critical plane properties. The performance of the proposed technique is verified by 

comparing the critical plane location predicted by the conventional incremental angle 

method with the GA-based method. The comparison is made by estimating the critical 

plane location for in-phase and out-of-phase loading for the C40 carbon steel specimen, 

given in Table 4.19, as well as for the complex loading for SS304 steel given in 

Table 4.20. In Table 4.19 and Table 4.20 the critical plane location predicted by the 

incremental method and GA-based method are presented side by side with the value of 

the calculated fatigue parameter. This is to show the benefit of the GA method in 

identifying planes with higher value fatigue parameters, which were missed by the 

incremental angle method.  
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Table 4.19: Critical planes for C40 specimen. 

 

Loading Theta (θ) Phi (ϕ) Fatigue parameter 

Condition Stress 

(MPa) 

Incremental GA Incremental GA Incremental GA 

R-1 Ph0 
101 165 

18 /  

165 
100 

45 /  

100 
1.11054 

1.11059 / 

1.11057 

200 180 178 145 143 1.41773 1.41980 

R-1 Ph90 
99.6 180 180 95 93 1.07621 1.07840 

199.7 0 179 90 88 1.81711 1.82106 

R0 Ph0 

67.9 170 164 140 138 1.32631 1.32647 

158.1 0 
179 /    

0 
40 

141 /  

39 
1.52013 

1.52113 / 

1.52085 

R0 Ph90 
66.8 180 

0 /    

180 
95 

85 /    

97 
1.45247 

1.45248 / 

1.4513 

158.1 0 
179 /    

0 
95 

85 /    

95 
1.88255 

1.88317 / 

1.88262 
 

The proposed technique based on GA optimization is applied with the objective 

function defined so as to maximize the fatigue parameter according to the considered 

fatigue life criteria. The technique coupled with GA works with a decision-based 

approach for the generation of critical plane orientation angles. The critical plane angles 

are then used to calculate the fatigue parameter for every iteration. This approach 

results in reduced resource consumption, avoids extra calculations on planes with 

smaller fatigue parameter values and decreases the effort needed to find the critical 

plane at the required accuracy. From the results (Tables 4.20 and 4.21), it is observed 

that GA-based critical plane estimation shows a least count of one degree (1°) instead of 

the commonly used 5° (Ince, 2012).  

 

 The technique requires only approximately 1800 iterations to locate the critical 

plane, i.e., the initializing set for the GA has 180 angle values with reference to the 1° 

least count for a range of angles from 0°–180° and the number of generations for the 

GA is set at 10. The total iterations that result are nearly equal in number to the 

iterations used for the incremental angle method with a 5° step size. However, for the 

incremental angle approach using the same least count, i.e. 1° step size, the number of 

iterations increases 18 times, to more than 32000 iterations, i.e. 181 steps for each value 

of θ and ϕ angles in order to locate the critical plane for the maximized fatigue  
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Table 4.20: Critical planes for SS304 specimen. 

 

Path 

no. 

Strain cases Theta (θ) Phi (ϕ) Fatigue parameter 

Axial Shear Incremental GA Incremental GA Incremental GA 

1 0.5 0.87 0 0 90 90 3.59584 3.59585 

0.8 1.39 0 0 90 90 4.33277 4.33277 

2 0.5 0.87 0 180 90 91 3.58936 3.59028 

0.8 1.39 0 0 90 89 4.33162 4.33223 

3 0.5 0.87 0 179 /   

0 

110 68 /   

112 

3.63267 3.64229 / 

3.64147 

0.8 1.39 0 0 115 115 4.31325 4.31370 

4 0.5 0.87 180 179 110 110 3.78136 3.78215 

0.8 1.39 180 179 110 111 4.45319 4.45605 

5 0.5 0.87 175 0 /   

176 

35 144 /   

37 

2.91461 2.91645 / 

2.91785 

0.8 1.39 175 174 /   

0 

35 37 /   

144 

3.45054 3.45605 / 

3.45206 
6 0.5 0.87 180 178 80 80 3.308001 3.30986 

0.8 1.39 180 178 80 81 3.99819 4.004143 

7 0.5 0.87 180 179 80 79 3.40371 3.40552 

0.8 1.39 180 179 /   

0 

80 80 /   

100 

4.09305 4.09326 / 

4.09305 

8 0.5 0.87 0 179 /   

0 

120 62 /   

116 

3.54503 3.54953 / 

3.53698 
0.8 1.39 180 179 /   

0 

80 79 /   

101 

4.53368 4.53555 / 

4.5346 
9 0.5 0.87 0 179 /   

0 

110 70 /   

109 

3.5469 3.5481 / 

3.54489 
0.8 1.39 180 179 /   

0 

80 78 /   

103 

4.46761 4.47809 / 

4.47752 
10 0.5 0.87 180 180 /   

0 

100 103 /   

78 

3.82634 3.83397 / 

3.83366 
0.8 1.39 180 179 /   

0 

105 104 /   

76 

4.55532 4.55786 / 

4.55744 
11 0.5 0.87 180 179 80 80 3.093013 3.093647 

0.8 1.39 180 180 /   

0 

80 79 /   

101 

3.71974 3.72325 / 

3.72312 

12 0.5 0.87 180 180 80 82 3.34163 3.346288 

0.8 1.39 180 180 /   

0 

80 80 /   

100 

3.943375 3.94338 / 

3.94319 
13 0.5 0.87 180 180 80 82 3.36139 3.366025 

0.8 1.39 180 180 /    

0 

80 80 /   

100 

3.95408 3.95423 / 

3.95423 
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parameter. This difference in the required number of extra iterations performed in the 

incremental angle method is shown in Figure 4.17. Figure 4.17(a) shows the fatigue 

parameter results from the incremental angle set-up for C40 steel for the load set with 

R = -1, Phase = 90 and load point of 199.7 MPa.  

 

The incremental angle approach results in extra calculations on points with low fatigue 

parameter values on the corresponding θ and ϕ, which are not needed for critical plane 

determination. The reduction in extra calculation effort when using the GA-based 

critical plane estimation technique is shown in Figure 4.17(b). For the same loading 

case, the critical plane angles θ and ϕ with the maximum fatigue parameter value from 

every generation are selected for further optimization by the GA to reach the maximum 

fatigue parameter value and avoid θ and ϕ values with small fatigue parameter values. 

This results in enhanced efficiency for determining the critical plane orientation in 

terms of the time required for long complex multiaxial and variable amplitude loading 

due to the smaller number of iterations required. Another advantage of using the GA-

based approach is observed from the results in Tables 4.20–4.22, showing that the 

approach leads to the critical plane with higher fatigue parameter values than with the 

incremental angle method. 

 

 

      

 

(a)                                                                                (b) 

Figure 4.17: Fatigue parameter estimation for C40 steel with R-1-Ph90-199.7 MPa 

loading case with (a) incremental angle, (b) GA. 
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Due to the larger step size applied in the incremental angle method, i.e. 5°, it is possible 

that a plane with a higher value fatigue parameter may be missed. Where the results 

from the incremental angle method and GA-based method are similar, this is due to the 

fact that the loading profiles considered for study have small and non-random 

variations. Hence, few planes have maximum damage so both methods give similar 

results for the orientation of the critical plane. 

 

The capability of the GA, when using the multi-objective optimization 

technique in order to find the critical plane with respect to more than one objective 

functions, is explored. The two objective functions include maximization of the 

proposed fatigue parameter and maximization of the variance of shear stress on the 

candidate plane (Susmel, 2010). The results of two-parameter critical plane estimation 

with the proposed parameter and maximum variance of shear using complex profiles 

with SS304 steel are presented in Table 4.21. Theta (θ) and phi () are reported for the 

maximum proposed fatigue parameter value as well as the maximum variance of shear 

stress, against the respective loading profiles from Table 3.4 and loading strain Set 1 

from Table 4.1. The results show the advantage of using this approach that more 

candidate planes are identified from the two criteria for maximum damage. For Paths 3, 

4, 5, 8, 9 and 10, the critical plane locations identified by maximizing the proposed 

parameter and variance of shear are different, and thus additional to the planes 

identified by the proposed model. The benefit of the extra plane identification is also 

clear from the fatigue parameter values for Paths 3 and 4, where for angle values  = 3° 

and 178° for the case of maximized variance of shear, the value of the proposed fatigue 

model parameter is noticeably lower than the maximum proposed fatigue parameter 

value. This shows that the critical planes identified at  = 3° and 178° are additionally 

identified and would be missed by the proposed fatigue model parameter. Hence, the 

additional number of candidate critical planes reduces the probability of missing the 

plane with maximum damage (Araujo et al., 2011). 

 

Figure 4.18 shows the comparison of variation of the proposed fatigue 

parameter and the variance of shear stress with respect to plane angles theta (θ) and phi 

(). For Paths 1 and 2 (Figures 4.18 (a) and 4.18(b)), the shear stress and normal load 

act alternately; hence the proposed parameter which depends on both normal and shear 
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stress–strain terms showed a clear peak with respect to . On the other hand, the 

maximum variance of shear stress showed two peaks. This is due to the dependence of 

the maximum variance parameter on shear stress, as shear stress has no compressive or 

negative value so there is a chance of more than one plane having the maximum value 

of stress. For Paths 3 and 4 (Figures 4.18(c) and 4.18(d)) the shear and normal load is 

acting simultaneously. The proposed parameter showed two peak values with respect to 

angle . This is due to the shear load acting in different directions when the normal load 

is acting as tensile. The maximum variance of shear parameter has a similar shape for 

Paths 1 and 2, with a shift in peak location with respect to . This may be due to the 

shear load acting in a similar pattern for Paths 1 to 4. For Paths 5, 6 and 7, the shear and 

normal load are applied in-phase in Path 5 and with different step sizes in Paths 6 and 7. 

The variation of the proposed fatigue parameter and variance of shear with respect to 

plane angles θ and  are approximately the same for all three paths.  

 

 For Paths 8, 9 and 10, the difference is the compressive and tensile stress during 

the shear cycle and box shape continuous loading for Path 10. The proposed fatigue 

parameter identified more planes with high damage with Path 9 than with Path 8, while 

there was a definitive peak for Path 10. There is no significant difference in behaviour 

in variance of the shear parameter for the three paths. The proposed parameter results 

are logical in the sense that tensile stress causes cracks to open and helps the cracks to 

grow, thus causing more damage (Stephens et al., 2000). Paths 11, 12 and 13 have out-

of-phase continuous loading load paths of normal and shear load. The variation of the 

proposed fatigue parameter for Path 11 is approximately in between the cases of Paths 5 

and 12. This is due to the fact that Path 11 has a 45° phase difference, while Path 5 has 

0° and Path 12 has 90°. It can be seen from Figures 4.18(e), 4.18(k) and 4.18(l) that, as 

the phase angle increases, the number of planes with high fatigue parameter values also 

increase. This is due to the rotation of the planes of maximum principal strain such that 

all planes are strained during some portion of the cycle (Itoh et al., 1995). Path 13 as 

seen from Figure 4.18(m) caused the peak with respect to phi () to grow wider, i.e. 

more planes are facing damage due to the addition of retracing of the load path to 

Path 12. 
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Table 4.21: Critical plane with fatigue parameter and variance of shear stress maximized on SS 304 specimen. 

 

Path 

no. 

Strain cases  Theta (θ)  Phi (ϕ)  Value of fatigue parameter / Variance 

Axial Shear 

 Fatigue 

parameter 

maximized 

Variance of 

shear 

maximized 

 Fatigue 

parameter 

maximized 

Variance of 

shear 

maximized 

 
Fatigue parameter 

maximized 

Variance of shear 

maximized 

1 0.5 0.87  180 180  90 92  3.59586 / 1916372 3.59172 / 1920103 

2 0.5 0.87  0 0  89 89  3.59028 / 491969 3.59027 / 491971 

3 0.5 0.87  179 /              

0 

0 /                      

0 

 68 /               

112 

94 /                        

3 

 (3.64221 / 572544) / 

(3.64128 / 566281) 

(3.05496 / 741350)  / 

(1.70573 / 741335) 

4 0.5 0.87  0 /              

180 

0 /                      

0 

 69 /               

111 

88 /                    

178 

 (3.78169 / 573812) / 

(3.781601 / 571695) 

(3.23537 / 755789) / 

(1.63726 / 755789) 

5 0.5 0.87  0 /              

180 

0 /                      

0 

 144 /               

36 

167 /                    

77 

 (2.91645 / 1000228) / 

(2.91641 / 1016364) 

(2.28644 / 2057109) / 

(2.29998 / 2057075) 

6 0.5 0.87  178 /              

0 

0 /                  

180 

 80 /               

100 

78 /                      

11 

 (3.30974 / 1910576) / 

(3.30804 / 1928486) 

(2.65714 / 3504013) / 

(2.15744 / 3502552) 

7 0.5 0.87  0 /              

180 

180 /                  

0 

 100 /               

80 

100 /                    

80 

 (3.40408 / 1014914) / 

(3.40399 / 1024516) 

(2.9106679 / 1615255) 

/ (2.91041 / 1615246) 

8 0.5 0.87  180/               

0 

0 /                  

180 

 62 /               

119 

84 /                      

96 

 (3.54935 / 301002) / 

(3.54915 / 291789) 

(2.71653 / 1237445) / 

(2.71330 / 1237415) 

9 0.5 0.87  179 /              

0 

0 /                  

180 

 71 /               

110 

97 /                      

83 

 (3.54776 / 523944) / 

(3.54579 / 519767) 

(3.29491 / 570816) / 

(3.30665 / 570795) 

10 0.5 0.87  180 /              

0 

0 /                  

180 

 102 /               

77 

96 /                      

84 

 (3.83389 / 877440) / 

(3.83374 / 869146) 

(3.38469 / 1196083) / 

(3.38125 / 1196032) 

11 0.5 0.87  180 /              

0 

0 /                  

180 

 80 /               

100 

77 /                    

103 

 (3.09337 / 238782) / 

(3.09301 / 245077) 

(2.41156 / 492025) / 

(2.44128 / 491816) 

12 0.5 0.87  0 /              

180 

180 /                  

0 

 98 /                 

82 

96 /                      

84 

 (3.34628 / 499757) / 

(3.34628 / 499698) 

(3.07728 / 582456) / 

(3.07864 / 582455) 

13 0.5 0.87  180 /              

0 

0 /                  

180 

 82 /                 

98 

89 /                      

91 

 (3.36598 / 869464) / 

(3.36597 / 867814) 

(3.29182 / 927009) / 

(3.28955 / 926999) 
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The variance of shear showed variations in the region with lower parameter values, 

which is insignificant with respect to prediction of the critical plane location. The 

different behaviour of the two maximized parameters with respect to the critical plane 

angles shows that the two objective functions result in different planes for each of the 

two criteria in order to estimate the maximum damage according to the respective 

definitions of the two parameters.   

 

A newly proposed critical plane estimation technique using GA optimization is 

analysed. Direct comparisons of the incremental angle method and GA-based method 

have been made. The newly proposed GA-based method is found to be more efficient, 

reducing the required number of iterations by a ratio of 18 (approx.) and improving the 

accuracy from 5° to 1° for the critical location. Moreover, two fatigue parameters, the 

proposed parameter and variance of shear, are used simultaneously to locate the critical 

plane. The results show that the benefit of having more than one parameter is the 

identification of different critical planes from those identified when only one parameter 

is used. This is especially useful in the case of random and complex loadings where 

more than one criterion can identify candidate planes which are left out when using only 

one criterion. 

 

      

 

(a) Path 1 

 

Figure 4.18: Proposed fatigue parameter and variance of shear with plane angles for 

SS304 specimen, Set 1 strains for profile Paths 1–13. 
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(b) Path 2 

 

      

(c) Path 3 

 

      

(d) Path 4 

 

Figure 4.18: Continued. 
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(e) Path 5 

 

    

(f) Path 6 

 

      

(g) Path 7 

 

Figure 4.18: Continued. 
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(h) Path 8 

 

     

(i) Path 9 

 

      

(j) Path 10 

 

Figure 4.18: Continued. 
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(k) Path 11 

 

      

(l) Path 12 

 

      

(m) Path 13 

 

Figure 4.18: Continued. 
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4.6 SUMMARY 

 

 The performance and accuracy of the proposed model is analysed by comparing 

the results with previously published experimental fatigue life results for different 

materials and complex loading cases. The results are found to be within reasonable 

accuracy. The proposed model is independent of the loading path shape in estimating 

the fatigue life. The damage is determined directly from the stress–strain response 

history, so considering different materials with the same loading is not beneficial in 

highlighting the features and capability of the proposed model. Hence, the experimental 

results for this analysis are selected in order to have various complex loading cases for 

different materials. The results with the proposed model are also compared with the 

models available in literature and commercial codes. The proposed model is found to be 

consistent in performance and with better accuracy in the various loading conditions. 

The proposed GA-based critical plane estimation method is found to more accurate than 

the conventional angle increment method, with the capability to use more than one 

critical plane criterion. A summary of these findings, contributions and 

recommendations for future research work will be presented in Chapter 5. 

 

 



 

 

 

CHAPTER 5 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 INTRODUCTION 

 

 Understanding the multiaxial fatigue problem is essential for reliability 

assessment and for design against multiaxial fatigue failure for mechanical components 

in realistic service conditions. Fatigue life evaluation of mechanical components based 

on experimental assessments is expensive and time-consuming. Therefore, numerical 

and analytical methods are essential approaches for conducting fatigue and durability 

analyses. The main objective of this study is to develop a multiaxial fatigue life 

estimation methodology which has a universal or general-purpose application for 

various material and loading conditions. This chapter summarizes the most important 

findings from the work carried out in this study. It also includes suggestions for further 

work. 

 

5.2 SUMMARY OF FINDINGS  

 

5.2.1 Modelling of Fatigue Parameter Expressions 

 

 The proposed fatigue parameter is modelled in two forms of stress–strain terms. 

The first form is the strain–energy type (Model-1), with the products of the strain and 

stress terms of normal and shear stress summed to define the fatigue parameter. The 

second form is the summation of normal and shear stress and strain terms (Modle-2), 

separately summed to define the fatigue parameter. Each term in both expressions has a 

coefficient associated with it that is to be calibrated using the experimental fatigue life 

results. This resulted in fewer coefficients needing to be calibrated for parameter 
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expression with Model-1. The comparative study between the two forms is performed 

by using the experimental fatigue life results for various complex multiaxial profiles and 

comparing the predicted fatigue life with the experimental results. Based on analysis of 

the results, both forms of parameter expression provided approximately the same level 

of accuracy of 1–6% for fatigue life prediction. The strain–energy form (Model-1) 

resulted in 50% reduction in the number of iterations required for the calibration process 

to determine the coefficients, compared with what is required for the summation of the 

stress–strain terms. Therefore, based on reduced effort and ease in calibration, the strain 

energy form (Model-1) is selected to be used. 

 

5.2.2 GA-based Model Calibration  

 

 A calibration methodology is proposed to calibrate the coefficients of the 

proposed model based on a genetic algorithm. The major advantage of the proposed 

calibration method is that it only requires material data related to the stress–strain curve 

to generate the stress–strain response using FEM and the fatigue limit as a fatigue-

related material property. The proposed methodology for calibration uses the full 

loading-response history in the calibration process, which means that it is independent 

of the loading path shapes and that the coefficients determined are the best possible 

representation of the fatigue behaviour. The calibration method is flexible enough to 

accommodate any modification in model expressions and the introduction of new 

coefficients without any change in the application procedure. Hence, it can be 

concluded that the proposed calibration method is robust to handle various loading path 

shape. 

 

5.2.3 Performance Analysis  

 

 The performance of the proposed model is analysed and validated by 

comparative analysis with the fatigue life results for various materials and loading 

conditions from the published literature. The experimental fatigue life data used are 

based on EN3B steel alloy, carbon steel C40, SS304, titanium alloy (BT9) and low 

carbon steel (steel 20), with in-phase and out-of-phase loading, and applied magnitudes 

of loading with zero and positive means, complex loading profiles and block loads. 
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Including this, the proposed fatigue life model is compared with commercially available 

fatigue life models, i.e., absolute maximum principal, signed von Mises, signed shear, a 

critical plane parameter and the Wang–Brown method, including the Fatemi–Socie 

model and endurance function model from the published literature. Comparison with the 

experimental fatigue life results shows that the proposed model has predicted the fatigue 

life with an approximate difference of 1–5% for the loading profiles. In addition to the 

prediction accuracy, the benefit of the proposed interpolation scheme for calibrated 

coefficients is also observed where the fatigue life estimation accuracy is significantly 

improved, reduced from more than 10% to 1% difference. Analysis of the fatigue life 

prediction for the block loads showed that the proposed model, with the assumptions 

made to simplify the handling of block loading, predicted fatigue life with reasonable 

accuracy, with differences as low as 4–9%. It also highlighted the importance of 

characteristic profiles to correctly represent the considered loading profiles for better 

accuracy in fatigue life prediction with the proposed model. Comparing the fatigue life 

estimation of the proposed model with commercially available models including 

Fatemi–Socie and the endurance function model, it showed a consistent performance in 

the estimation of fatigue life for all cases, with differences of 1–5% for the considered 

loadings. Hence, it can be summarized that the proposed model has shown good 

consistent performance against various loading and material conditions. It can be 

considered as a general-purpose model for estimating the multiaxial fatigue life. 

 

5.2.4 Critical Plane Estimation Method 

 

 The performance of the proposed approach in determining the critical plane 

orientation using the GA is analysed against multiaxial loading conditions. The 

proposed technique identified the critical plane with a better accuracy of ± 1° to ± 5° for 

the conventional angle increment method, with an approximate reduction of the number 

of iterations by a ratio of 18. In addition, the proposed approach using the multi- 

objective optimization also made it possible to use more than one fatigue parameter, i.e. 

the proposed fatigue parameter and maximum variance of shear stress, simultaneously. 

This resulted in additional planes being identified by the maximum variance of shear, 

which have low values of proposed fatigue parameter, as in the case of Paths 3 and 4 

additional planes at location angles of 3° and 178° are identified. The proposed 
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technique can be used with more than two fatigue parameters, which may be useful in 

the case of random and complex loadings where more than one criterion can identify 

candidate planes which might be left out if using only one criterion. Thus, it can be 

concluded that the proposed critical plane estimation method is advantageous especially 

in complex random loading conditions. The application of more than one fatigue failure 

criteria identifies almost all of the candidate planes for fatigue failure, hence 

overcoming the limitation of single criterion. 

 

 The proposed multiaxial fatigue analysis methodology, including the continuum 

damage mechanics approach for damage estimation, critical plane-based multiaxial 

fatigue damage parameter and GA for calibration, is efficient, robust and reasonably 

accurate and suitable for use as a design tool for mechanical components in both 

academic and industrial applications. 

 

5.3 CONTRIBUTIONS OF THE STUDY 

 

 The contributions of the study can be summarized as follows: 

 

i. A hybrid model is developed for multiaxial fatigue life analysis combining 

continuum damage mechanics and a critical plane-based approach. The model is 

independent of the applied load path shape. Hence, additional complexity and 

loss of the sequence of the applied load information, due to the application of 

cycle counting methods, is avoided. 

ii. A novel calibration scheme based on a genetic algorithm is developed for the 

proposed model. The scheme is capable of calibrating a number of coefficients 

simultaneously without requiring any new material coefficients. 

iii. A modular approach for fatigue life estimation is obtained by applying a GA- 

based calibration method, i.e., the model is flexible to adapt further 

modifications without any change in the proposed application procedure. 

iv. The proposed model is successfully applied for the estimation of fatigue life in 

the case of multiaxial loading conditions based on using the characteristic 

profiles for calibration. In addition, the interpolation scheme for coefficients 

calibration has remarkably improved the accuracy of fatigue life prediction. 
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v. A multi-parameter method is developed to locate the critical plane using the 

multi-objective optimization technique. More than one fatigue life criterion can 

be implemented simultaneously to identify additional candidate planes for 

fatigue failure. This technique is especially useful for complex or random 

loadings where the random nature of loading may result in additional planes 

being identified with a high level of damage. 

 

5.4 RECOMMENDATIONS FOR FUTURE WORK 

 

 During this research, several areas of interest have been highlighted which could 

be of interest and worth investigating more thoroughly. These are outlined as follows: 

 

i. Testing the proposed model against the experimental results from random 

profiles such as SAE-Bracket, SAE-Transmission and SAE-Suspension or 

CARLOS-multi profiles. 

ii. Development of characteristic profiles representing the mentioned standard 

profiles so that the procedure of defining the characteristic profiles can be 

formulated and tested. 

iii. A parameter to quantify the multiaxial nature of loading can be defined, such as 

the stress ratio or multiaxiality index, on the basis of which interpolation of 

calibrated coefficients can be done in the case of multiaxial loads, or where 

normal and shear stresses vary. Specially designed experiments can be 

performed with defined multiaxiality index values. 

iv. Further study to incorporate the material-specific parameters for materials which 

fail in shear and normal stresses, e.g., weighting factors can be added in the 

fatigue parameter expression to speed up the procedure and to guide the GA 

solution towards a more accurate prediction of material behaviour. 
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APPENDIX A1 

 

 INCREMENTAL ANGLE METHOD FOR CRITICAL PLANE 

 

! NUMBER OF NODE AT CRITICAL LOCATION IN VARIABLE "nodenumber" 

 

*dim,nloc,array,3,1 

*GET,NLOC(1,1),NODE,nodenumber,loc,x 

*GET,NLOC(2,1),NODE,nodenumber,loc,y 

*GET,NLOC(3,1),NODE,nodenumber,loc,z 

 

LOCAL,12,0,nloc(1,1),nloc(2,1),nloc(3,1)   

 

wpcsys,-1 

 

*get,N,active,,set,nset         !NUMBER OF RESULT SETS 

 

!*********************************************************   

 

/post1 

*dim,crtpstrain,array,1,4  

*dim,criticalplanefinder,array,n,1371,8   

*afun,deg      !change angle from radian to deg for angle functions 

 

stopcheck=0 

 

csys,12 

 

*abset,Finding the critical plane,both 

 

*do,a,1,n,1 

 

*ABCHECK,nint(a/n*100),load step %a% 

     

 *if,_return,gt,0,then       

        stopcheck=1 

 *endif 

 

 *if,stopcheck,gt,0,exit 

 

        set,,,,,,,a   !RESULT AT LOAD STEP READ 

        i=1 

 

 *do,theta,0,180,5 

      *do,phy,0,180,5 

          wpcsys,-1 

          wprota,theta,,-(90-phy) 
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          rsys,4 

 

        *get,CRTPSTRAIN(1,1),node,nodenumber,epto,xy 

        *get,CRTPSTRAIN(1,2),node,nodenumber,epto,xz 

        *get,criticalplanefinder(a,i,7),node,nodenumber,epto,x 

        *get,CRTPSTRAIN(1,3),node,nodenumber,s,xy 

        *get,CRTPSTRAIN(1,4),node,nodenumber,s,xz 

        *get,criticalplanefinder(a,i,8),node,nodenumber,s,x 

 

 

resultantshearstrain=((CRTPSTRAIN(1,1))**2+(CRTPSTRAIN(1,2))**2)**(1/2) 

        

resultantshearstress=((CRTPSTRAIN(1,3))**2+(CRTPSTRAIN(1,4))**2)**(1/2) 

 

         criticalplanefinder(a,i,1)=theta 

         criticalplanefinder(a,i,2)=phy 

         criticalplanefinder(a,i,3)=CRTPSTRAIN(1,1) 

         criticalplanefinder(a,i,4)=CRTPSTRAIN(1,2) 

         criticalplanefinder(a,i,5)=resultantshearstrain 

         criticalplanefinder(a,i,6)=resultantshearstress 

  

        i=i+1 

 

     *enddo 

 *enddo 

*enddo 

*ABFINI 

 

!************************************ 

 

*dim,forsorting,,n,4 

*dim,strainrange,,1369,6 

 

*do,b,1,1369,1 

 

*do,c,1,n 

 

         forsorting(c,1)=criticalplanefinder(c,b,7)  !store normal strain  

         forsorting(c,2)=criticalplanefinder(c,b,8)  !store normal stress  

         forsorting(c,3)=criticalplanefinder(c,b,5)  !store resultant strain  

         forsorting(c,4)=criticalplanefinder(c,b,6)  !store resultant shear stress  

          

 

*enddo 

 

!****************************************************** 

 

!normal strain range 
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*dim,orderforsortingmatrix,,n   

 

*moper,orderforsortingmatrix(1),forsorting(1,1),sort,forsorting(1,1)  !SORTING 

OPERATION 

 

maxstrainnormal=forsorting(n,1) 

minstrainnormal=forsorting(1,1) 

 

*moper,orderforsortingmatrix(1),forsorting(1,1),sort,orderforsortingmatrix(1,1)   

!restore matrix to original order 

 

*del,orderforsortingmatrix,,nopr   !delete and redefined just to make sure that no 

value of that matrix used by mistake 

 

!********************************************************** 

 

!normal stress range 

 

*dim,orderforsortingmatrix,,n 

 

*moper,orderforsortingmatrix(1),forsorting(1,2),sort,forsorting(1,2)  !SORTING 

OPERATION 

 

maxstressnormal=forsorting(n,2) 

 

*moper,orderforsortingmatrix(1),forsorting(1,2),sort,orderforsortingmatrix(1,1)   

!restore matrix to original order 

 

*del,orderforsortingmatrix,,nopr 

 

!********************************************************** 

 

!Resultant shear strain !! 

 

*dim,orderforsortingmatrix,,n 

 

*moper,orderforsortingmatrix(1),forsorting(1,3),sort,forsorting(1,3)  !SORTING 

OPERATION 

 

maxstrainresultant=forsorting(n,3) 

minstrainresultant=forsorting(1,3) 

 

*moper,orderforsortingmatrix(1),forsorting(1,3),sort,orderforsortingmatrix(1,1)   

!restore matrix to original order 

 

*del,orderforsortingmatrix,,nopr 

 

!********************************************************** 
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!shear stress 

 

*dim,orderforsortingmatrix,,n 

 

*moper,orderforsortingmatrix(1),forsorting(1,4),sort,forsorting(1,4)  !SORTING 

OPERATION 

 

maxshearstresssultant=forsorting(n,4) 

 

*moper,orderforsortingmatrix(1),forsorting(1,4),sort,orderforsortingmatrix(1,1)   

!restore matrix to original order 

 

*del,orderforsortingmatrix,,nopr 

 

!********************************************************** 

   

strainrange(b,1)=criticalplanefinder(1,b,1) 

 

strainrange(b,2)=criticalplanefinder(1,b,2) 

 

strainrange(b,3)=maxstrainnormal-minstrainnormal  !NORMAL STRAIN RANGE 

 

strainrange(b,4)=maxstrainresultant-minstrainresultant  !SHEAR STRAIN RANGE 

 

strainrange(b,5)=strainrange(b,4)*maxshearstresssultant 

 

strainrange(b,6)=strainrange(b,5)+(strainrange(b,3)*maxstressnormal)  !paramater 

combo of strain range and max shear stress on plane 

 

*enddo         !COUNTER FOR b 

 

!Critical plane location  

 

*dim,orderofstrainrangematrix,,1369 

 

*moper,orderofstrainrangematrix(1),strainrange(1,6),sort,strainrange(1,6) 

 

rowindexformaxPARM=orderofstrainrangematrix(1369,1) 

 

*moper,orderofstrainrangematrix(1),strainrange(1,6),sort,orderofstrainrangematrix(1,1) 

 

*del,orderofstrainrangematrix,,nopr 

 

theta_maxPARAM=strainrange(rowindexformaxPARM,1) 

phy_maxPARAM=strainrange(rowindexformaxPARM,2) 

maxPARAMETER=strainrange(rowindexformaxPARM,6) 

!************************************* 
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APPENDIX A2 

 

SINGLE PARAMETER GA BASED CRITICAL PLANE METHOD 

 

Sub fatpara() 

 

yieldstress = Sheet1.Cells(5, 2) 

n = Sheet1.Cells(6, 2) 

 

'convert degress into radians 

 

theta = (Sheet1.Cells(7, 2)) * (3.14159 / 180) 

phy = (Sheet1.Cells(8, 2)) * (3.14159 / 180) 

 

Sheet1.Cells(7, 3) = theta 

Sheet1.Cells(8, 3) = phy 

 

Dim sortrange As Range 

 

 

'a 3D array with load numbers and critical plane angles and xy and xz and resultant 

shear strains "theta,phy,XY shear strain, XZ shear strain, resultant shear strain" 

 

 

         'Direction cosines w.r.t. theta and phy 

         a11 = Cos(theta) * Sin(phy) 

         a12 = Sin(theta) * Sin(phy) 

         a13 = Cos(phy) 

         a21 = -Sin(theta) 

         a22 = Cos(theta) 

         a23 = 0 

         a31 = -Cos(theta) * Cos(phy) 

         a32 = -Sin(theta) * Cos(phy) 

         a33 = Sin(phy) 

 

 

For a = 1 To n 

 

'For Strains  

 

 

CRTPSTRAIN_GLC_x = Sheet1.Cells(5 + a, 7) 

CRTPSTRAIN_GLC_y = Sheet1.Cells(5 + a, 8) 

CRTPSTRAIN_GLC_z = Sheet1.Cells(5 + a, 9) 

CRTPSTRAIN_GLC_xy = Sheet1.Cells(5 + a, 10) 

CRTPSTRAIN_GLC_xz = Sheet1.Cells(5 + a, 11) 

CRTPSTRAIN_GLC_yz = Sheet1.Cells(5 + a, 12) 
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'shear strain components 

 

CRTPSTRAIN11 = 2 * ((CRTPSTRAIN_GLC_x * a11 * a21) + 

(CRTPSTRAIN_GLC_y * a12 * a22) + 

(CRTPSTRAIN_GLC_z * a13 * a23) + 

((CRTPSTRAIN_GLC_xy * (a11 * a22 + a12 * a21)) / 2) + 

((CRTPSTRAIN_GLC_yz * (a12 * a23 + a13 * a22)) / 2) + 

((CRTPSTRAIN_GLC_xz * (a13 * a21 + a11 * a23)) / 2)) 

 

CRTPSTRAIN12 = 2 * ((CRTPSTRAIN_GLC_x * a11 * a31) + 

(CRTPSTRAIN_GLC_y * a12 * a32) + 

(CRTPSTRAIN_GLC_z * a13 * a33) + 

((CRTPSTRAIN_GLC_xy * (a11 * a32 + a12 * a31)) / 2) + 

((CRTPSTRAIN_GLC_yz * (a12 * a33 + a13 * a32)) / 2) + 

((CRTPSTRAIN_GLC_xz * (a13 * a31 + a11 * a33)) / 2)) 

 

'normal strain component 

 

CRTPSTRAIN15 = (CRTPSTRAIN_GLC_x * (a11 ^ 2)) + 

(CRTPSTRAIN_GLC_y * (a12 ^ 2)) + 

(CRTPSTRAIN_GLC_z * (a13 ^ 2)) + 

(CRTPSTRAIN_GLC_xy * (a11 * a12)) + 

(CRTPSTRAIN_GLC_xz * (a11 * a13)) + 

(CRTPSTRAIN_GLC_yz * (a13 * a12)) 

 

resultantshearstrain = ((CRTPSTRAIN11) ^ 2 + (CRTPSTRAIN12) ^ 2) ^ (1 / 2) 

 

 

'storing calculated normal and shear stains in excel sheet for sorting maximum 

and minimum values 

 

Sheet3.Cells(1 + a, 3) = CRTPSTRAIN15 

Sheet3.Cells(1 + a, 4) = resultantshearstrain 

 

 

'For Stresses 

 

CRTPSTRESS_GLC_x = Sheet1.Cells(5 + a, 14) 

CRTPSTRESS_GLC_y = Sheet1.Cells(5 + a, 15) 

CRTPSTRESS_GLC_z = Sheet1.Cells(5 + a, 16) 

CRTPSTRESS_GLC_xy = Sheet1.Cells(5 + a, 17) 

CRTPSTRESS_GLC_xz = Sheet1.Cells(5 + a, 18) 

CRTPSTRESS_GLC_yz = Sheet1.Cells(5 + a, 19) 

 

 

 

'shear stress components 
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CRTPSTRAIN13 = (CRTPSTRESS_GLC_x * a11 * a21) + 

(CRTPSTRESS_GLC_y * a12 * a22) + 

(CRTPSTRESS_GLC_z * a13 * a23) + 

(CRTPSTRESS_GLC_xy * (a11 * a22 + a12 * a21)) + 

(CRTPSTRESS_GLC_yz * (a12 * a23 + a13 * a22)) + 

(CRTPSTRESS_GLC_xz * (a13 * a21 + a11 * a23)) 

 

CRTPSTRAIN14 = (CRTPSTRESS_GLC_x * a11 * a31) + 

(CRTPSTRESS_GLC_y * a12 * a32) + 

(CRTPSTRESS_GLC_z * a13 * a33) + 

(CRTPSTRESS_GLC_xy * (a11 * a32 + a12 * a31)) + 

(CRTPSTRESS_GLC_yz * (a12 * a33 + a13 * a32)) + 

(CRTPSTRESS_GLC_xz * (a13 * a31 + a11 * a33)) 

 

 

'normal stress component 

 

CRTPSTRAIN16 = (CRTPSTRESS_GLC_x * (a11 ^ 2)) + 

(CRTPSTRESS_GLC_y * (a12 ^ 2)) + 

(CRTPSTRESS_GLC_z * (a13 ^ 2)) + 2 * 

((CRTPSTRESS_GLC_xy * (a11 * a12)) + 

(CRTPSTRESS_GLC_xz * (a11 * a13)) + 

(CRTPSTRESS_GLC_yz * (a13 * a12))) 

 

resultantshearstress = ((CRTPSTRAIN13) ^ 2 + (CRTPSTRAIN14) ^ 2) ^ (1 / 2) 

 

'storing calculated normal and shear stress in excel sheet for sorting maximum 

and minimum values 

 

Sheet3.Cells(1 + a, 5) = CRTPSTRAIN16 

Sheet3.Cells(1 + a, 6) = resultantshearstress 

 

 

Next a 

 

'maximum and minimum normal strain 

 

Worksheets("data processing sheet").Activate 

 

Set sortrange = Worksheets("data processing sheet").Range(Cells(2, 3), Cells(n + 1, 3)) 

 

 

maxstrainnormal = Application.WorksheetFunction.Max(sortrange) 

minstrainnormal = Application.WorksheetFunction.Min(sortrange) 

 

 

'maximum and minimum shear strains 

 



175 
 

Set sortrange = Worksheets("data processing sheet").Range(Cells(2, 4), Cells(n + 1, 4)) 

 

maxstrainresultant = Application.WorksheetFunction.Max(sortrange) 

minstrainresultant = Application.WorksheetFunction.Min(sortrange) 

 

 

'maximum normal stress 

 

Set sortrange = Worksheets("data processing sheet").Range(Cells(2, 5), Cells(n + 1, 5)) 

 

maxstressnormal = Application.WorksheetFunction.Max(sortrange) 

 

 

'maximum shear stress 

 

Set sortrange = Worksheets("data processing sheet").Range(Cells(2, 6), Cells(n + 1, 6)) 

 

maxshearstresssultant = Application.WorksheetFunction.Max(sortrange) 

 

 

Worksheets("sheet1").Activate 

 

fatparam = (maxstrainresultant - minstrainresultant) * (maxshearstresssultant) + 

(maxstrainnormal - minstrainnormal) * (maxstressnormal) 

 

Sheet1.Cells(12, 2) = fatparam 

 

 

End Sub 
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APPENDIX A3 

 

IMPLEMENTATION OF MAXIMUM VARIANCE OF SHEAR 

 

'Coding for maximum variance method below 

 

theta = Sheet1.Cells(8, 2) 

phy = Sheet1.Cells(7, 2) 

 

Dim meanstress() As Double 

 

ReDim meanstress(1, 1 To 6) As Double 

 

increament = Sheet1.Cells(15, 2)  

 

recsize = ((180 / increament) + 1) ^ 2   

'size of matrix to store results depend on the size increment size 

 

meanstress(1, 1) = 0 'mean of x 

meanstress(1, 2) = 0 'mean of y 

meanstress(1, 3) = 0 'mean of z 

meanstress(1, 4) = 0 'mean of xy 

meanstress(1, 5) = 0 'mean of xz 

meanstress(1, 6) = 0 'mean of yz 

 

For c = 1 To n 

 

meanstress(1, 1) = meanstress(1, 1) + Sheet1.Cells(5 + c, 14) 

meanstress(1, 2) = meanstress(1, 2) + Sheet1.Cells(5 + c, 15) 

meanstress(1, 3) = meanstress(1, 3) + Sheet1.Cells(5 + c, 16) 

meanstress(1, 4) = meanstress(1, 4) + Sheet1.Cells(5 + c, 17) 

meanstress(1, 5) = meanstress(1, 5) + Sheet1.Cells(5 + c, 18) 

meanstress(1, 6) = meanstress(1, 6) + Sheet1.Cells(5 + c, 19) 

 

Next c 

 

For d = 1 To 6 

 

    meanstress(1, d) = meanstress(1, d) / n   '1-6 is X,Y,Z,XY,XZ,YZ 

 

Next d 
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'Following loop make variance array filled with zeros before starting i.e. initialize with 

zeros 

 

For r = 1 To 6 

    For cl = 1 To 6 

 

          Sheet4.Cells(1 + r, 7 + cl) = 0 

 

    Next cl 

Next r 

 

 

'The loop to fill variance array 

 

For r = 1 To 6 

    For cl = 1 To 6 

        For c = 1 To n 

 

          Sheet4.Cells(1 + r, 7 + cl) = Sheet4.Cells(1 + r, 7 + cl) + ((Sheet1.Cells(5 + c, 13 

+ r) - meanstress(1, r)) * (Sheet1.Cells(5 + c, 13 + cl) 

- meanstress(1, cl))) 

 

        Next c 

 

      Sheet4.Cells(1 + r, 7 + cl) = Sheet4.Cells(1 + r, 7 + cl) / n  

     'divide the var terms with N (no of data points) 

 

    Next cl 

Next r 

 

'at this point we will have the variance matrix C 

 

'**********************************************************************

********************************************* 

 

'NOW MODULE 1 OF THE ALGORITHM WILL BE CODED .. 

 

Dim dc() As Variant 

ReDim dc(6, 1) As Variant 'matrix name here is changed to "dc" as "d" exists in loop 

variables 

 

Dim m() As Variant 

ReDim m(6, 1) As Variant  'm matrix in paper 

 

Dim dct() As Variant 

ReDim dct(1, 6) As Variant 'new matrix defined to sotre transpose of dc matrix 

 

Dim vshearq() As Variant 
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ReDim vshearq(1) As Variant 'variance shear q (V(Tq) -- defined as matrix so result of 

matrix multiplication can be stored) 

 

Dim record() As Double 

ReDim record(1, 4)  

 

'i = 1        'counter index intilization for record array 

 

'here theta, phy and alpha has same meaning as in paper 

 

'this loop will calculate variance and store them in record array with respective angles of 

critical planes... 

 

'15 deg incriment is the value suggested in paper to give good results in most situations 

(this can be changed! With appropirate size change in record array)) 

 

vmax = 0 

 

          theta = theta * (3.141592 / 180) 'in sin cos needs radians 

          phy = phy * (3.141592 / 180) 

 

'For Theta = 0 To 180 Step 15 

    'For phy = 0 To 180 Step 15 

       

      'For i = 1 To recsize 

        For alpha = 0 To (180 * 3.141592 / 180) Step (increament * 3.141592 / 180) 

           

           

          'alpha = alpha * (3.141592 / 180)  'in sin cos needs radians 

           

          Sheet4.Cells(11, 8) = ((1 / 2) * (Sin(theta) * Sin(2 * phy) * Cos(alpha) + 

Sin(alpha) * Sin(2 * theta) * (Cos(phy)) ^ 2)) 

           

          Sheet4.Cells(12, 8) = ((1 / 2) * (-Sin(theta) * Sin(2 * phy) * Cos(alpha) + 

Sin(alpha) * Sin(2 * theta) * (Sin(phy)) ^ 2)) 

 

          Sheet4.Cells(13, 8) = (-(1 / 2) * Sin(alpha) * Sin(2 * theta)) 

 

          Sheet4.Cells(14, 8) = ((1 / 2) * (Sin(alpha) * Sin(2 * phy) * Sin(2 * theta)) - 

(Cos(alpha) * Cos(2 * phy) * Sin(theta))) 

 

          Sheet4.Cells(15, 8) = ((Sin(alpha) * Cos(phy) * Cos(2 * theta)) + (Cos(alpha) * 

Sin(phy) * Cos(theta))) 

 

          Sheet4.Cells(16, 8) = ((Sin(alpha) * Sin(phy) * Cos(2 * theta)) - (Cos(alpha) * 

Cos(phy) * Cos(theta))) 

          Dim var_range As Range 
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          Dim dc_range As Range           'for matrix multiplication mmult function require 

cells addresses 

           

          Worksheets("data processing").Activate 

            

          Set var_range = Worksheets("data processing").Range(Cells(2, 8), Cells(7, 13)) 

           

          Set dc_range = Worksheets("data processing").Range(Cells(11, 8), Cells(16, 8)) 

           

          m = Application.WorksheetFunction.MMult(var_range, dc_range) 

          '*moper,m,var,multi,dc    !matrix multiplication 

 

          dct = Application.WorksheetFunction.Transpose(dc_range)  '*mfun,dcT,tran,dc      

!transpose of direction cosine matrix 

 

          For x = 1 To 6 

           

          Sheet4.Cells(10 + x, 10) = m(x, 1) 

          Sheet4.Cells(20, 7 + x) = dct(x)    'dct work with only one index not (1,x) 

           

          Next x 

           

          Set dct_range = Worksheets("data processing").Range(Cells(20, 8), Cells(20, 13)) 

           

          Set m_range = Worksheets("data processing").Range(Cells(11, 10), Cells(16, 10)) 

           

          vshearq = Application.WorksheetFunction.MMult(dct_range, m_range)  

'*moper,vshearq,dcT,multi,m    !var(Tq)=d(transposed)*m (eq. A.5) 

 

          If vshearq(1) > vmax Then 

              

             vmax = vshearq(1) 

             rectheta = theta 

             recphy = phy 

             recalpha = alpha 

              

          End If 

           

         Next alpha 

          

        record(1, 1) = rectheta * (180 / 3.141592)   ' converted back to degree 

        record(1, 2) = recphy * (180 / 3.141592) 

        record(1, 3) = recalpha * (180 / 3.141592) 

        record(1, 4) = vmax 

        'i = i + 1 

        'vmax = 0 

     'Next i 

       

     'Next phy 
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 'Next Theta 

  

'MODULE 1 ENDS, WE HAVE RECORD MATRIX WITH INITIAL VALUES OF 

CRITCAL PLANE ANGLES FOR MODULE 2 TO FINE TUNE 

 

Worksheets("sheet1").Activate 

 

Sheet1.Cells(22, 2) = record(1, 1)   'theta 

Sheet1.Cells(23, 2) = record(1, 2)   'phy 

Sheet1.Cells(24, 2) = record(1, 3)  'alpha 

Sheet1.Cells(25, 2) = record(1, 4)  'variance 

 

'Next j 

 

 

'tempvari = 0 

'max_var_row_indx = 0 

 

'For j = 1 To recsize 

 

  'If Sheet2.Cells(1 + j, 4) > tempvari Then 

     'tempvari = Sheet2.Cells(1 + j, 4) 

     'max_var_row_indx = 1 + j 

  'End If 

   

'Next j 

 

'Sheet1.Cells(9, 2) = Sheet2.Cells(max_var_row_indx, 1)  'Theta 

'S 'heet1.Cells(10, 2) = Sheet2.Cells(max_var_row_indx, 2) 'pHy 

'Sheet1.Cells(11, 2) = Sheet2.Cells(max_var_row_indx, 3) ' alpha 

'Sheet1.Cells(12, 2) = Sheet2.Cells(max_var_row_indx, 4) 'variance 

 

 

'Worksheets("data processing").Activate 

 

'Set sortrange = Worksheets("data processing").Range(Cells(2, 4), Cells(recsize + 1, 4)) 

 

End Sub 
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APPENDIX A4 

 

EXTRACTION OF STRESS-STRAIN QUANTITIES ON CRITICAL PLANE 

 

!To get stress-strain quantities on critical plane  

 

/post1 

 

wpcsys,-1 

 

wprota,theta_maxPARAM,,-(90-phy_maxPARAM) 

 

*dim,normalstress,,n,1 

*dim,normalstrain,,n,1 

*dim,shearstress,,n,3 

*dim,shearstrain,,n,3 

 

rsys,4       !note: workplane rotated in the critical plane angles 

 

*do,a,1,n,1 

 

     set,,,,,,,a 

 

     *get,normalstress(a,1),node,nodenumber,s,x 

     *get,normalstrain(a,1),node,nodenumber,epto,x 

     *get,shearstress(a,1),node,nodenumber,s,xy 

     *get,shearstress(a,2),node,nodenumber,s,xz 

     *get,shearstrain(a,1),node,nodenumber,epto,xy 

     *get,shearstrain(a,2),node,nodenumber,epto,xz 

 

      shearstress(a,3)=((shearstress(a,1))**2+(shearstress(a,2))**2)**(1/2) 

      shearstrain(a,3)=((shearstrain(a,1))**2+(shearstrain(a,2))**2)**(1/2) 

 

 *enddo 

 

!  Max normal stress 

!**************** 

 

*dim,orderofnormalstress,,n,1 

 

*moper,orderofnormalstress(1),normalstress(1,1),sort,normalstress(1,1) 

 

rowformaxnormalstress=orderofnormalstress(n,1) 

 

*moper,orderofnormalstress(1),normalstress(1,1),sort,orderofnormalstress(1,1) 

 

*del,orderofnormalstress,,nopr 
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maxnormalstress=normalstress(rowformaxnormalstress,1) 

! Max normal strain range 

!********************* 

 

*dim,orderofnormalstrain,,n,1 

 

*moper,orderofnormalstrain(1),normalstrain(1,1),sort,normalstrain(1,1) 

 

rowformaxnormalstrain=orderofnormalstrain(n,1) 

rowforminnormalstrain=orderofnormalstrain(1,1) 

 

*moper,orderofnormalstrain(1),normalstrain(1,1),sort,orderofnormalstrain(1,1) 

 

*del,orderofnormalstrain,,nopr 

 

normalstrainrange = normalstrain(rowformaxnormalstrain,1)-

normalstrain(rowforminnormalstrain,1) 

 

! Max shear stress 

!************** 

 

*dim,orderofshearstress,,n,1 

 

*moper,orderofshearstress(1),shearstress(1,3),sort,shearstress(1,3) 

 

rowmaxshrstrs_resul=orderofshearstress(n,1) 

 

*moper,orderofshearstress(1),shearstress(1,3),sort,orderofshearstress(1,1) 

 

*del,orderofshearstress,,nopr 

 

maxshearstress_resul=shearstress(rowmaxshrstrs_resul,3) 

 

! Shear strain range 

!**************** 

 

*dim,orderofnormalstrain,,n,1 

 

*moper,orderofnormalstrain(1),shearstrain(1,3),sort,shearstrain(1,3) 

 

rowformaxshearstrain=orderofnormalstrain(n,1) 

rowforminshearstrain=orderofnormalstrain(1,1) 

 

*moper,orderofnormalstrain(1),shearstrain(1,3),sort,orderofnormalstrain(1,1) 

 

*del,orderofnormalstrain,,nopr 
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shearstrainrange = shearstrain(rowformaxshearstrain,3)-

shearstrain(rowforminshearstrain,3) 

!Mean shear and normal stress 

!************************* 

 

meannormalstress=0 

 

meanshearstress=0 

 

*do,a,1,n,1 

 

    meannormalstress=normalstress(a,1)+meannormalstress 

    meanshearstress=shearstress(a,3)+meanshearstress 

 

*enddo 

 

meannormalstress=meannormalstress/n 

meanshearstress=meanshearstress/n 
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APPENDIX A5 

 

CODING FOR DAMAGE ESTIMATION  

 

Sub damage_function() 

 

n = Sheet1.Cells(20, 3) 

 

Dim P() As Double 

Dim dP() As Double 

Dim Dn() As Double 

 

ReDim P(1 To n, 1) As Double 

ReDim dP(1 To n, 1) As Double 

ReDim Dn(1 To n, 1) As Double 

 

a1   = Sheet1.Cells(7, 3) 

a2  = Sheet1.Cells(8, 3) 

a3  = Sheet1.Cells(9, 3) 

a4 = Sheet1.Cells(10, 3) 

sigma  = Sheet1.Cells(13, 3) 

K  = Sheet1.Cells(5, 3) 

R  = Sheet1.Cells(6, 3) 

V  = Sheet1.Cells(11, 3) 

m  = Sheet1.Cells(12, 3) 

shearstrainrange  = Sheet1.Cells(18, 3) 

normalstrainrange  = Sheet1.Cells(19, 3) 

meannormalstress  = Sheet1.Cells(21, 3) 

meanshearstress  = Sheet1.Cells(22, 3) 

elmod    = Sheet1.Cells(26, 3) 

yieldstress   = Sheet1.Cells(27, 3) 

 

tempP  = 0 

evolve  = 0 

ev  = 0 

a  = 1 

 

For a = 1 To n 

 

shearstress = Sheet1.Cells(a + 4, 6) 

normalstress = Sheet1.Cells(a + 4, 7) 

 

For Model-1 

 

P(a, 1) = (a1 * (shearstrainrange * shearstress) + a2 * (normalstrainrange * 

normalstress))/yieldstress -  (sigma) / elmod - ev 
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For Model-2 

 

P(a, 1) = a1 * (shearstrainrange) + a2 * (shearstress / yieldstress) + a3 * 

(normalstrainrange) + a4 * (normalstress / yieldstress) - (sigma / elmod) - ev 

 

If P(a, 1) <= 0 Then 

 

tempP = 0 

 

Else 

 

  dP(a, 1) = P(a, 1) - tempP 

  tempP = P(a, 1) 

      

     If dP(a, 1) > 0 Then 

 

       Dn(a, 1) = K * (tempP ^ R) * dP(a, 1) 

       evolve = (V * (dP(a, 1) ^ h) * (normalstress - meannormalstress) * (shearstress - 

meanshearstress)) / (elmod ^ 2) 

 

          If evolve < 0 Then 

 

            evolve = 0 

 

          Else 

 

            ev = evolve + ev 

 

          End If 

     End If 

End If 

 

Next a 

 

'next loop 

 

tempD = 0 

totD = 0 

 

For a = 1 To n Step 1 

 

totD = Dn(a, 1) + tempD 

tempD = totD 

 

Next a 

 

Sheet1.Cells(13, 11) = totD 

 

End Sub 
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APPENDIX A6 

 

CODING FOR FATIGUE LIFE ESTIMATION 

 

*dim,P,,n,1 

*dim,dP,,n,1 

*dim,Dn,,n,1 

 

 

a1= 

a2= 

a3= 

a4= 

sigma= <values of calibrated coefficients> 

K= 

R= 

V= 

m= 

 

elmod=<elastic modulus> 

yieldstress=<yield stress> 

 

tempP = 0 

evolve = 0   

ev = 0 

 

 

*do,a,1,n,1 

 

!************************************** 

 

For Model-1 

 

P(a,1) = 

(a1*(shearstrainrange*shearstress(a,3))+a2*(normalstrainrange*normalstress(a,

1)))/yieldstress-(sigma/Elmod)-ev 

 

 

For Model-2     

 

P(a,1) = a1*(shearstrainrange) + a2*(shearstress(a,3)/yieldstress) + 

a3*(normalstrainrange) + a4*(normalstress(a,1)/yieldstress) - (sigma/Elmod) – 

ev 

 

!****************************************** 
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    *if,P(a,1),LE,0,then 

   

          tempP = 0 

   

        *cycle 

 

    *else 

 

        dP(a,1) = P(a,1)-tempP 

        tempP = P(a,1) 

 

    *endif 

 

 

    *if,dP(a,1),LE,0,then 

         

       *cycle 

 

    *else 

 

        Dn(a,1) = K*(tempP**R)*dP(a,1) 

        evolve = (V*(dP(a,1)**m)*(normalstress(a,1)-

meannormalstress)*(shearstress(a,3)-meanshearstress)/Elmod**2) 

 

        *if,evolve,LT,0,then    

 

            evolve = 0 

 

        *else 

 

          ev = evolve+ev 

 

      *endif 

 

    *endif 

 

*enddo 

 

tempD=0 

totD=0 

 

*do,a,1,n,1 

 

    totD=Dn(a,1)+tempD 

    tempD=totd 

 

*enddo 

 

FatgiueLife=(1/totD) 
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