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ABSTRACT 

 

Application of cutting fluids as cooling and lubricating media is considered essential in 

manufacturing practices on account of providing lubrication, heat transfer capabilities, 

corrosion minimization as well as flushing away of metal chips and debris. On account 

of sizable costs, increasing eco-awareness, implementation of sustainability indices in 

manufacturing units and strict regulations due to detrimental effects of cutting fluids to 

the environment and the human exposure, economically viable substitutes to cutting 

fluids are being explored. Minimum quantity lubrication (MQL) technique offers a near-

term solution to the problem. The objectives of this study are to investigate the machining 

performance and to develop multi-objective optimization model in end milling of 

aluminium alloy AA6061-T6 with conventional MQL and nanofluid-MQL techniques. 

Uncoated tungsten carbide (WC-Co 6.0%) and PVD TiAlN and TiAlN+TiN coated 

carbide cutting tools are considered using 23.4-54.0 ml/hr flow rate of commercial 

mineral oil for MQL machining with different combinations of input cutting parameters. 

Nanofluid % volume fraction is varied from 0.5 %-4.5 %. Response surface methodology 

(RSM) with central composite design approach is used for the design of experiments. 

Second order mathematical models are developed for machining performance measures 

with different cooling conditions and validated statistically. The developed models show 

good agreement (< 5 % error) with the experimental results. PVD coated carbide tools 

outperformed uncoated tool in terms of tool damage and surface quality and uncoated 

tool is selected for the nanofluid MQL machining. The effectiveness of MQL is compared 

with conventional flooded conditions. Nanofluid-MQL exhibits superior performance 

compared to flooded and conventional MQL in terms of surface roughness and tool wear. 

For material removal rate results are almost similar in all cases. Tool damage is 

characterized by SEM micrographs and EDX patterns. Adhesion, edge chipping and 

coating damage for uncoated and coated tools are observed with higher feed rate, higher 

depths of cut and lower MQL flow rate. The major benefit from the water-based nanofluid 

MQL is shown in the edge integrity, which is attributed to the cooling effect produced 

due to latent heat of vaporization of water. Experimental results show the prospective 

utilization of water-based TiO2 nanofluid as MQL cooling medium. Comprehensive 

multi-objective optimization model using genetic algorithm is developed to optimize 

machining performance measures under different MQL conditions, based on Pareto 

optimal design approach. As a result of optimization, the resultant improvements in 

surface roughness and flank wear in conventional MQL machining for uncoated tungsten 

carbide tool are 74.2 % and 58.4 %; for PVD TiAlN coated tools are 16.9 % and 73.6 %; 

for PVD TiAlN+TiN coated tool are 60 % and 41.4 %, respectively. For nanofluid-MQL 

machining, the optimum nanofluid volume concentration is 2.64 %. Promising results of 

the study in terms of process performance, compared with traditional practices, highly 

advocate the use of MQL technique with water-based nanofluid in industrial machining 

application as well as academia activities. 
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ABSTRAK 

 

Aplikasi bendalir pemotong sebagai medium penyejukan dan pelinciran amat penting 

dalam pembuatan yang melibatkan jumlah pelincir, kebolehtahanan pertukaran haba, 

pengurangan karat dan juga pembuangan cip logam and minyak. Disebabkan oleh faktor 

kos, peningkatan kesedaran-eco, perlaksanaan konsep kelestarian dalam unit pembuatan 

dan peraturan yang ketat berkaitan dengan kesan bendalir pemotongan terhadap 

persekitaran dan pendedahan kepada amanusia, secara ekonominya perlu diganti dan 

bendalir pemotongan perlu dikaji.  Kaedah pelinciran kuantiti minimum (MQL) 

menawarkan penyelesaian kepada masalah ini. Objektif kajian ini adalah menyiasat 

persembahan pemesinan dan pembangunan model objektif optimum  pelbagai dalam 

proses pemesinan logam aluminium AA6061-T6 dengan menggunakan MQL 

konvensional dan teknik MQL-bendalir-nano. Alatan pemotong tunsten karbida tanpa 

salutan (WC-Co 6.0%)  dan karbida bersalut  PVD digunakan menggunakan kadar aliran 

23.4-54.0 ml/hr minyak mineral komersial untuk pemesianan MQL dengan kepelbagaian 

parameter masukan pemesinan. Jumlah peratusan pecahan bendalir nano dipelbagaikan 

dari  0.5 hingga 4.5 %.  Kaedah tindakan permukaan dengan pendekatan rekabentuk 

komposit berpusat digunakan untuk rekabentuk eksperimen. Model matematik kedua 

dibangunkan untuk mengukur persembahan pemesinan dengan keadaan pelbagai 

penyejukan dan ditentushakan secara statistik.  Model yang dibangunkan menunjukkan 

persetujuan yang baik (ralat kurang 5 %) dengan keputusan eksperimen. Alatan PVD 

bersalut karbida mengatasi persembahan alatan tidak bersalut pada kerosakan alat dan 

kemasan permukaan, maka alatan tidak bersalut digunakan unutk pemesinan MQL 

bendalir-nano. Keberkesanan MQL dibandingkan dengan keadaan keadaan 

konvensioanal penyejukkan banjir. Bendalir-nano MQL menunjukkan persembahan 

cemerlang berbanding dengan penyejukkan banjir dan konvensional MQL pada kemasan 

permukaan dan kehausan alatan. Untuk kadar pembuangan bahan menunjukkan 

keputusan yang sama bagi semua kes. Kerosakan alatan diselidiki dengan mikro geraf 

SEM and corak EDM.  Pelekatan, serpihan sisi dan kerosakan salutan untuk alatan 

bersalut dan tidak bersalut diperhatikan pada kadar masukan yang tinggi dan kadar aliran 

MQL yang rendah. Kelebihan yang besar diperolehi dari MQL bendalir nano berasaskan 

air ditunjukkan pada integriti sisi, yang mana disebabkan oleh kesan penyejukkan yang 

terhasil daripada pemeluapan haba laten air.  Keputusan eksperimen menunjukkan 

prospek penggunaan bendalir nano berasaskan air  TiO2 sebagai medium penyejukan 

MQL. Model objektif optimum pelbagai yang komprehensif menggunakan algoritma 

genetik dibangunkan untuk mengoptimumkan persembahan pemesinan diukur pada 

kelainan keadaan MQL, berasaskan kaedaan optimal rekabentuk Pareto.  Hasil keputusan 

pengoptimuman, menunjukkan penambahan kemasan permukaan dan kehausan rusuk 

pada pemesinan konvensional MQL untuk alatan karbida tunsten yang tidak bersalut 

adalah 74.2 % dan 58.4 %; untuk  alatan bersalut PVD TiAlN adalah 16.9 % dan 73.6 %; 

untuk alatan bersalut  PVD TiAlN+TiN masing-masing adalah 60 % dan 41.4 %. Untuk 

pemesinan bendalir nano MQL, kepekatan isipadu bendalir nano yang optimum adalah  

2.64 %. Harapan keputusan daripada kajian ini dalam persembahan proses, berbanding 

dengan praktikal tradisional, penggunaan kaedah MQL dengan bendalir nano berasaskan 

air sangat dicadangkan dalam industri aplikasi pemesinan dan juga aktiviti-aktiviti 

akademik.  
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4.70 Bubble chart showing Pareto designs distribution with input 

parameters for uncoated tungsten carbide insert in conventional 

MQL machining 

222 

   

4.71 Bubble chart showing Pareto designs distribution with input 

paramters for TiAlN coated carbide insert in conventional MQL 

machining 

223 

   

4.72 Bubble chart showing Pareto designs distribution with depth of cut 

for TiAlN+TiN coated carbide insert in conventional MQL 

machining 

225 

   

4.73 Bubble chart showing Pareto designs distribution with input 

parameters for uncoated tungsten carbide insert in nanofluid-MQL 

machining 

226 

   

4.74 Flank wear obtained from confirmation runs for conventional                       

MQL and nanofluid-MQL conditions 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

Minimum quantity lubrication (MQL) refers to the application of a miniscule 

quantity of coolant, typically of a flow rate of 10 to 100 ml/hour (Kamata and Obikawa, 

2007). Reducing the environmental impacts of machining are required in order to attain 

the sustainable and cleaner production. As developing alternative manufacturing process 

technologies for machining is still a prohibitive task, preventing the negative 

environmental impact of machining can be achieved essentially by operating modification 

of existing processes (Hanafi et al., 2012). As the manufacturing world is in a continuous 

pursuit of investigating the methods in order to increase the process performance and to 

reduce the production costs, in addition to the growing environmental concerns (Fratila, 

2013), minimum quantity lubrication process can offer the near-term solution to the 

problem. Driven by pressure from international environmental protection agencies, 

energy consumption and natural resources conservation laws enforced by public 

authorities, manufacturing industry and the concerned research centers are forced to focus 

their efforts on researching alternative production processes, creating technologies to 

minimize the use and production of environmentally hostile residues. MQL has 

demonstrated as a successful near-dry machining technique as well as a globally-

acknowledged option compared to complete dry and wet cutting conditions from the 

perspective of cost, ecological, human health issues and machining process performance 

(Lawal et al., 2013). MQL is a sustainable manufacturing approach which is vital in the 

current scenario of manufacturing industry as it incorporates all the issues related to 

sustainability. The cost of cutting fluids range from 7 to 17% of the total machining cost 

while another estimate gives this cost as 15-20 % of total machining cost compared to the 
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tool cost which ranges from 2 to 4% (Attanasio et al., 2006; Lawal et al., 2013; Li et al., 

2014). Therefore, the minimization of metal working fluids can serve as a direct gauge of 

sustainable manufacturing.  

 

Machining with MQL has been extensively applied in many machining processes 

such as drilling (Filipovic and Stephenson, 2006; Davim et al., 2007), milling (Lacalle et 

al., 2006; Liao and Lin, 2007), turning (Davim, 2007; Kamata and Obikawa, 2007) and 

MQL grinding (Silva et al., 2005; Shen et al., 2008). Since no huge power consuming 

auxiliary equipment such as compressors, chillers and pumps are required as compared 

to flooded machining, hence a marked reduction in energy consumption in MQL 

machining. The use of empirical approach together with the implementation of 

experimental design techniques as well as application of statistical data analysis 

techniques are gaining recognition on account of the simplicity involved in the model 

making procedure and the accuracy of the prediction obtained for the specific cutting 

conditions domain (Kannan and Baskar, 2013). 

 

Aluminium alloys are the most machinable amongst the metals with a wide range 

of applications due to mechanical and corrosion resistance with lower cutting forces as 

well as low cutting temperatures (Kelly and Cotterell, 2002; Ariff et al., 2012). However, 

due to highly adhesive characteristics of aluminium and its alloys more effective 

lubrication is required for these alloys although these are not hard and difficult-to-cut 

especially with alloys containing hard inclusions such as aluminium oxide, silicon 

carbide, or free silicon (Kelly and Cotterell, 2002; Wakabayashi et al., 2007). On the other 

hand, machining of aluminium alloys results in the generation of very fine metallic 

particles in the form of ultrafine dust particles with longer air-borne suspension time 

hence harmful for the health of the operator (Songmene et al., 2011).  

 

Significance of machining processes optimization arises from the prerequisite for 

an economic and feasible performance of the machining processes. Practical 

manufacturing processes are illustrated by conflicting and often incompatible measures 

of performance such as quality and productivity (Kumar and Chhabra, 2014). The multi-

objective optimization techniques are used to find out the trade-offs among the conflicting 

performance measures in a machining process in order to achieve performance 
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tool cost which ranges from 2 to 4% (Attanasio et al., 2006; Lawal et al., 2013; Li et al., 

2014). Therefore, the minimization of metal working fluids can serve as a direct gauge of 

sustainable manufacturing.  
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machining. The use of empirical approach together with the implementation of 
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techniques are gaining recognition on account of the simplicity involved in the model 

making procedure and the accuracy of the prediction obtained for the specific cutting 

conditions domain (Kannan and Baskar, 2013). 
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of applications due to mechanical and corrosion resistance with lower cutting forces as 
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optimization. In such cases, it is not necessary that a single solution may satisfy all the 

objectives on account of incommensurability and the conflict among the objectives. 

Multi-objective optimization is different from single objective optimization in that the 

single objective optimization is used to find the best design from among many and usually 

best design point is the global maximum or minimum depending on the type of 

optimization (Ponnala and Murthy, 2012). The investigations carried out in this study are 

focused on the effects, analysis and parametric modeling of end milling process under 

conventional minimum quantity lubrication technique through extensive experimentation 

as well as nanofluid-MQL conditions. Multi-objective optimization is performed in terms 

of desired performance measures within the defined machining domain. 

 

1.2 PROBLEM STATEMENT  

 

The major challenges faced by the manufacturing industry are the improved 

quality, enhanced productivity as well as economic production. These challenges are 

addressed by increasing the material removal rate for enhanced productivity, surface 

quality and surface integrity as well as longer tool life with consistence performance (Ali 

et al., 2011). While dealing with these issues, one of the predominating challenges is the 

mitigation of excessive heat generated in the cutting zone. This generated heat in the 

cutting zone affects surface quality and integrity as well as tool wear and tool life. Hence 

it is essential to maintain this cutting temperature at such an optimum level so as to attain 

superior surface finish and overall machining economy in terms of longer tool life and 

productivity. Cutting fluids are considered essential for machining operations in order to 

perform lubrication, cooling and chip flushing. These functions of cutting fluids in 

machining processes are constantly being reviewed due to cost pressures (Priarone et al., 

2014) together with growing global concerns related to occupational and environmental 

consciousness (Marksberry and Jawahir, 2008) and the need for increased employee 

satisfaction through healthier environment and cleaner work areas (Ali et al., 2011). The 

conventional method of application of cooling and lubrication in machining processes 

involve profuse use of cutting fluids. 

 

Consumption of cutting fluids in the different machining and technological 

processes often generates aerosols by atomization and the mist thus produced in the work 

area poses a potential exposure hazard to workers and to the environment (Sujova, 2012). 



 

 

 

CHAPTER 3  

 

 

EXPERIMENTAL WORK AND OPTIMIZATION MODELLING 

 

 

3.1 INTRODUCTION 

 

This chapter presents the details of experimental work as well as methodology 

adopted for modelling and multi-objective optimization. The selected materials and 

machining parameters (process parameters and performance parameters) are also 

presented. The preparations of TiO2 nanofluid and properties determination are 

described. The application of response surface methodology for developing 

mathematical models and analysis of variances are explored. The subsequent sections of 

the chapter are laid out to include the design of experiments and the experimental setup, 

including the methods of performance’s measurement. Multi-objective optimization 

technique used for data analysis is described in detail.  

 

3.2 FLOWCHART OF THE STUDY 

 

The flowchart of the study for the experimental set up, machining and analysis is 

presented in Figure 3.1. This flowchart shows a plan of experimental and analytical 

activities for different machining conditions. These activities include machine and 

equipment set-up, end milling machining experiments, preparation and use of 

nanofluids, measurements of machining performance parameters, analysis of 

experimental results, modelling and multi-objective optimization.  
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Figure 3.1: Flowchart of the study  

 

3.3 MATERIALS 

 

3.3.1 Workpiece Material 

 

Aluminium alloy AA6061-T6 is selected as a workpiece material due to 

excellent mechanical properties and corrosion resistance (Rahmati et al., 2014). 

Conflicting views about the cooling conditions for the alloy are observed in literature 
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(Tosun and Huseyinoglu, 2010; Ariff et al., 2013). The alloy compositions as well as 

physical, mechanical and thermal properties are listed in Table 3.1 and Table 3.2. 

Hardness of the workpiece material is 107 HV while modulus of elasticity and ultimate 

tensile strength are 68.9 GPa and 310 MPa, respectively. Density of the workpiece 

material is measured as 2712 kg/m3. The measured alloy composition conforms to the 

composition of the AA6061-T6 i.e. aluminium as well as the alloying elements are 

within the recommended range of ASM standard composition (ASM, 1990). Workpiece 

dimensions are 100 × 100 × 30 mm (Figure 3.2). Alloy composition is recorded using a 

spectrometer (Foundary-Master type, Oxford Instruments, Inc.) for three random 

samples at three different places each and weight % obtained is average of the nine 

samples. Slot machining is performed to obtain the experimental data on the workpiece. 

Machining slot features are considered difficult due to the full engagement of the 

cutting tool with the workpiece material (Dhokia et al., 2012). Blank workpiece, 

machined workpiece as well as machining pattern on a single workpiece is shown in 

Figure 3.2. 

 

Table 3.1: The alloy composition of AA6061-T6. 
 

Component (wt %) Al Si Mn Mg Ti Zn Fe Balance 

Measured 97.6 0.71 0.13 0.8 0.03 0.05 0.25 Cr, V, Cu, 

Others 

ASM (ASM, 1990) 95.8-

98.6 

0.4-

0.8 

Max. 

0.15 

0.8-

1.2 

Max. 

0.15 

Max. 

0.25 

Max. 

0.7 

Cr, Cu, 

Others 

 

 

Table 3.2: Physical, thermal and mechanical properties of AA6061-T6. 

 

 

3.3.2 Cutting Fluids 

 

Three cutting environments including flooded (wet) cooling, conventional (oil-

based) MQL and water-based nanofluid-MQL conditions are considered in the study. 

Properties Value Properties Value 

Hardness, vickers  107 Density, kg/m3 2712 

Modulus of elasticity (GPa) 68.9 Melting point, °C 582 

Ultimate tensile strength (MPa) 310 Fracture toughness (MPa-m1/2) 29 

Tensile yield strength (MPa) 276 Machinability, % 50 

Elongation at break, % 17 Shear strength (GPa) 207 

Thermal conductivity, W/m-K 167 Specific heat capacity, J/g-°C 0.896 
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