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ABSTRACT 

 

The ionospheric F region over Malaysia is still an issue to many radio communication 

enthusiasts. The actual height of this layer is not well defined. Models available are 

mostly reliable for temperate zones. This thesis describes the determination of the actual 

F layer height and proposed a unique model to represent the height variations. The 

ionospheric F region is observed via ionograms, produced by the ionosonde operated at 

Parit Raja (2oN, 103oW, dip 14.3o), Batu Pahat, Malaysia. The ionogram gives the 

virtual height representation of the ionosphere. POLAN ionogram inversion program is 

used to determine the real height of the ionospheric layer. The observations are held 

during period of moderate to low solar activity of solar cycle 23 (2005 to 2010).  

However, in this work, only hourly data of March, June, September, and December, 

2006 and 2007, are examined. The data are statistically analysed to summarize their 

main characteristics. The actual height of the F layer is determined from the median 

values and the coefficient of variability quantifies the height deviations. To derive the 

mathematical representation of the variations, the least-squares regression technique is 

used to fit functions to the median data. The best fit function is the descriptive model 

that describes the variations. A new model of ionospheric height variations is also 

proposed on the same basis. The ionospheric height time variation which is a cyclic 

event is re-represented in polar coordinate form. The cyclic representation which 

approximates an antenna radiation pattern allows the development of antenna equivalent 

model of peak height variations. The association of ionospheric height variations to the 

radiation pattern of antenna array is the novelty idea of this study. The observation 

results indicate that the median height of peak electron density, hmax, varies from 420 

km in June to 550 km in other months during noon time. The night-time average heights 

rest around 300 km for all months. The daytime peak is found highest in December 

solstice season and lowest in June season while post sunset peaks are not seen during 

this period. The descriptive mathematical model of diurnal variations shows that the 

variations fit well into a four-term Fourier series model. The two-element arrays with 

array spacing in the x-direction of /8, and phase of /3, and with element spacing in 

the y-direction of /4, and phase of zero, is the optimal array configuration which 

signifies the variations. The results show that an array of two-element arrays antenna is 

suitable to represent the ionosphere peak height variations over Malaysia during 

moderate to low solar activity period. 
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ABSTRAK 

  

Rantau F ionosfera merentasi Malaysia masih menjadi isu kepada kebanyakan 

pengguna komunikasi radio. Ketinggian sebenar lapisan ini belum dapat dipastikan. 

Model-model yang ada pula cenderung untuk kegunaan di zon bersuhu. Tesis in 

menjelaskan penentuan ketinggian sebenar lapisan F dan mensyorkan sebuah model 

unik sebagai paparan kepelbagaian ketinggian. Rantau F ionosfera diperhatikan melalui 

ionogram, hasil cerapan yang diperolehi daripada ‘ionosonde’ yang beroperasi di Parit 

Raja (2oN, 103oW, dip 14.3o), Batu Pahat, Malaysia. Ionogram mempaparkan 

ketinggian maya lapisan ionosfera. Perisian POLAN digunakan untuk menukar kepada 

ketinggian sebenar lapisan ini. Pencerapan telah dilakukan dalam tempoh aktiviti solar 

sederhana hingga rendah, pada kitaran solar 23 (2005-2010). Bagaimanapun, untuk 

kajian ini, hanya ionogram dalam sela masa jam bagi bulan Mac, Jun, September, dan 

Disember, 2006 dan 2007, diteliti. Analisa statistik digunakan untuk menentukan ciri 

penting data tersebut. Ketinggian lapisan ionosfera diperolehi daripada nilai median 

manakala pekali variasi menentukan corak kepelbagaian. Pembangunan model 

matematik menggunakan teknik ‘least-squares regression’. Sesuatu fungsi matematik 

akan disesuaikan kepada nilai median tersebut. Model matematik diperolehi apabila 

fungsi matematik tersebut memberikan penghampiran terbaik. Atas dasar yang sama, 

pembangunan model bagi menggambarkan kepelbagaian ketinggian ionosfera juga 

dilaksanakan. Kepelbagaian ketinggian lapisan ionosfera terhadap masa adalah suatu 

keadaan yang silih berulang. Ia boleh dipaparkan dalam koordinat polar. Paparan 

sebegini menghampiri paparan corak radiasi antenna tatasusun justeru pembangunan 

model kepelbagaian ketinggian lapisan ionosfera adalah perlu. Kesinambungan di antara 

kepelbagaian ketinggian lapisan ionosfera dan corak radiasi antena tatasusun merupakan 

idea terbaru yang terhasil dari kajian ini. Keputusan pemerhatian menunjukkan 

ketinggian ionosfera, hmax berubah dari 420 km pada bulan Jun kepada 550 km pada 

bulan-bulan yang lain semasa waktu tengahari. Purata ketinggian pada waktu malam 

pula berada pada paras 300 km. Puncak tertinggi dicapai pada bulan Disember dan 

terendah dalam bulan Jun.  Model matematik untuk kepelbagaian harian menunjukkan 

bahawa model jujukan Fourier 4-terma sangat bersesuaian dengan kepelbagaian ini. 

Antena tatasusun dua-elemen dengan jarak susunan /8 dalam arah-x dan fasa /3, dan 

jarak elemen /4 dalam arah-y dengan fasa sifar, adalah konfigurasi tatasusun yang 

paling optimum untuk menggambarkan kepelbagaian ketinggian ionosfera. Keputusan 

kajian menyatakan tatasusun dua-elemen tatasusun adalah paparan yang paling sesuai 

untuk kepelbagaian ketinggian ionosfera untuk tempoh aktiviti solar sederhana hingga 

rendah.    
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 BACKGROUND 

 

The knowledge on the state of the upper atmosphere, in particular its ionospheric 

part, is very important in several applications affected by space weather. The radio 

frequency communications and the satellite positioning and navigation systems are the 

most affected ones by ionospheric disturbances. In particular, ionospheric disturbances 

can cause drastic changes of large-scale to the usable range of high frequency (HF) or 

below high frequency bands affecting the standard ground-to-ground and submarine 

communication systems. The effects are recognized as loss of communications, change 

in area of coverage, low signal power, fading, and error rate change. Fading and error 

rate change are also the effect of very high frequency (VHF) or ultra high frequency 

(UHF) band, causing disturbances in ground-to-satellite communication systems. 

Ionospheric scintillation and dispersion could lead to loss of phase lock and position 

errors, which strongly affects the advanced navigation systems. Therefore, to keep 

different technical systems functioning in spite of all these effects, specification and 

prediction of the state of the upper atmosphere is of significant important and valuable. 

 

The most important property in the ionosphere is the electron density. This 

parameter varies considerably with time (sunspot cycle, seasonally, and diurnally), 

geographical location (polar cap, auroral zones, equatorial regions), and with certain 

solar disturbances (Davies, 1990). Over the last 60 years, continuous and automatic 

monitoring of the state of the ionosphere has been carried out extensively with the 

worldwide network of ionosonde stations. The ionospheric electron-density profiles are 

modeled and their characteristic parameters are presented through global maps. These 
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models are widely used for effective ionospheric study and forecasting. However, in 

some regions the discrepancies are highlighted. The models had under or overestimated 

densities that may lead to wrong interpretation of the state of the ionosphere. The 

accuracy of the data-based model is highly dependent on the availability of reliable data 

for the specific region and time (Bilitza et al., 1993). Inadequate comparisons are 

obviously seen in particular at low- and equatorial latitudes regions due to scarce 

distribution of ionosonde stations. This scenario had raised interest for researchers and 

scientists to extend studies over these regions. More ionosonde stations are installed in 

equatorial region and their results are valuable inputs to the improvement of these 

models. Readers are referred to Chapter 2.2 for further deliberations on this issue. 

 

The ionosphere over this region was described by Rishbeth (2000) as unique as 

it exhibits the well-known equatorial ionization anomaly (EIA). This is characterized by 

an ionization trough at the magnetic equator and crests on either side at latitudes around 

±16o (Appleton, 1946). The cause of the anomaly is by the equatorial plasma fountain 

that transfers ionization from around the equator to higher latitudes (Appleton, 1946). 

Peculiar features over this region such as the appearance of an additional ionization 

layer above the F2 peak, namely the F3 layer during morning-noon period and the post-

sunset peak are results of the above mentioned mechanism (Bailey and Balan, 1996; 

Jenkins et al., 1997; Balan et al., 1998). Located in between the geographical equator at 

the south and geomagnetic equator in the north, the location of Malaysia is found to be 

very strategic to explore such interesting phenomena. The operational of Parit Raja 

ionosonde station is a substantial beginning of this exploration. The station was in 

operation in December 2004. It is the only ionosonde station in Malaysia that provides 

ionosonde data for region close to magnetic equator.  

 

The ionosonde data is a viable resource to describe the vertical profile of the 

ionosphere. The data is analysed to determine the actual F layer height and produce 

better description of its variations. The height of peak electron density, hmax, is the 

height where maximum electron density occurs. Along with the peak electron density, 

Nmax, these parameters made up the electron-density profiles. Thus, ionospheric 

observation is a vital step in understanding of the ionospheric behavior. This will be 
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further elaborated in the subsequent chapters. A model that characterised the F region 

peak density height variations is the outcome of the study.  

 

1.2 PROBLEM STATEMENT 

 

The ionosphere F region, being the most important region of the ionosphere 

exist in the upper atmosphere at an altitude range of 200 km to about 1000 km (Davies, 

1990). This region is primarily responsible for most skywave propagation of radio 

waves, facilitating high frequency, or shortwave radio communications over long 

distances as it has the densest electron density and most important exists at all time 

(Davies, 1990; Rishbeth and Garriot, 1969). This layer may also cause signal 

attenuation to most space related applications, deteriorating the performance of satellite 

radio systems. The equatorial F region is also known to be highly variable corresponds 

to the processes which control its production, loss, and transport of electrons, especially 

at the altitude range above 250 km (Rishbeth and Garriot, 1969; Rishbeth, 2000). The 

greatest electron density, Nmax, occurred at higher altitude and the corresponding height 

is referred as the height of maximum electron density, hmax (Rishbeth and Garriot, 

1969). 

 

Studies on the F layer height of peak electron density, hmax, received less 

attention compared to other ionospheric parameters. Unlike critical frequencies, the 

actual height determination process is more complex as the electrons are easily drifted. 

This thesis reports on three main problems associated with the actual height of 

maximum electron density, hmax, which had inspired research on this parameter, as 

below: 

 

i) To enhance the actual height analysis studies in Malaysia. 

 

All ionospheric sounding processes provide only virtual height information. 

When Zain et al. (2008) observed the appearance of F3 layer over Parit Raja, the 

demand for a precise value of actual height of peak electron density becomes 

apparent. The F region peak electron density
 
is assumed to occur at 300 km, as 

observed in mid-latitude regions, whereas, in equatorial latitude regions, the 
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height of peak electron density has been reported high, between 350 and 500 km 

(Bilitza, undated). The assumptions need further justification considering that 

Malaysia is located in the vicinity of equatorial ionization anomaly. The actual 

height of peak electron density over Malaysia is still unknown. Varying height is 

expected in the diurnal pattern of hmax.  

 

The assertion on varying height of the ionosphere over Malaysia requires 

research on the height deviation of hmax. The F region hmax variability study is 

important to determine the extent of the height deviation from the mean value 

under different ionospheric conditions. The dependence of electron density on 

solar radiation is known as the main cause of the hmax variability. The effects are 

greater under severe solar activities and geomagnetic storms. Any occurrence of 

ionospheric disturbances may change the physical properties of the ionosphere. 

The F layer may become unstable, fragmented, or even disappear completely. 

The electron-density profile is very significant to illustrate the variation of 

electron densities with heights. Different shapes of day and night profiles are 

observed to gauge better understanding of the physical mechanisms that control 

the processes and behavior of the equatorial ionosphere. 

 

Furthermore, the International Reference Ionosphere (IRI) model verification for 

Malaysia has not been extensively reported. The IRI model is the most widely 

used empirical model for effective ionospheric study and forecasting globally. 

The model becomes the first adopted standard specification of ionospheric 

parameters by the Committee on Space Research (COSPAR) and the 

International Union of Radio Science (URSI) in 1990. The accuracy of IRI 

model in presenting equatorial region densities have been reported elsewhere 

(Jesus et al., 2011; Yadav et al., 2010; Wichaipanich et al., 2010), however for 

Malaysia, there is no activities conducted related to IRI model verification. 

 



5 

 

ii) The classical way of representing hmax temporal variation in the Cartesian 

coordinate system is too conventional 

 

In this study, trend analyses are used to illustrate the characteristic variation 

patterns. Appropriate mathematical functions are then used to represent the 

temporal variations; for a repetitive function, the Fourier series approximation is 

suitable to describe the variations. This is a classical way of representing 

temporal variations which is usually represented in a rectangular coordinate 

system. An alternative representation is introduced where the diurnal height 

variation, which is cyclic in nature, can be represented using polar 

representation. By using appropriate formulation, the time variation model is 

transformed into polar representation.  

 

iii) Lack of a model to signify the ionospheric height variations  

 

A suitable model representing the characteristic parameter is anticipated at the 

end of this study. Equivalence antenna pattern model of ionospheric height of 

peak density variations based on antenna radiation characteristics is possible 

considering the underlying principle of polar representation. This is a novel 

approach introduced in this study by parameterization of the ionospheric height 

variation using the attributes of array antenna. 

 

In general, further specifications on the actual height of F layer over equatorial 

region require thorough studies in this domain. The Parit Raja ionosonde data may 

provide good insight into this anonymous scenario. The experimental data sets are 

analysed to obtain concrete justifications to the above statements. In addition, 

characterisation of this parameter helps to describe the scenario in a more appropriate 

manner.  

 

1.3 OBJECTIVES 

 

The quest for actual F region height of peak electron density over Malaysia 

instigates studies in this domain. Important attributes of the F region height of peak 



6 

 

electron density are used to explain the dependency in the actual behavior of this 

parameter to the variations in solar activity, and other geographical constraints. The 

objectives of this work in addressing the problem statements described in section 1.2 

are: 

 

i) To determine the actual ionospheric F region height of peak electron density, 

hmax, overhead, describes its variability (diurnal, seasonal, annual) corresponding 

to different ionospheric conditions, and investigate the adequacy of IRI model in 

explaining the observed densities in equatorial regions. 

 

The actual heights of ionospheric F region during moderate to low solar activity 

period are deduced from hourly ionograms of March, June, September, and 

December, 2006 and 2007. The representations are based on median data. The 

typical behavior of the F region ionosphere is explained and statistical analyses 

are used to quantify the expected deviations from that typical behavior. The 

variability of ionospheric characteristics with local time, season, and solar 

indices, as a result of known changes in ionising sources and atmospheric 

composition are clarified. The results of IRI prediction model will be compared 

with observational data to establish an empirical correction to the current model, 

if exists. 

 

ii) To develop a descriptive model that represents the diurnal characteristics of the 

ionospheric F region height of peak electron density over Malaysia and further 

enhanced the classical representation.  

 

A simple, numerical model that can be used to calculate approximate profiles 

under any required conditions are derived based on experimental evidence using 

data sources from the ionosonde. The descriptive model should give fully 

smooth and physically realistic variations at all times. The cyclic nature of the 

variations would enable new representation in polar form. Enhancement in the 

classical way of representing hmax temporal variation is feasible by using 

appropriate transformation of the time domain.  
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iii) To model an antenna equivalences of peak height variation. 

 

A signature of ionospheric height of peak density variations in this manner may 

represent appropriately the ionospheric F region height variations over Malaysia. 

The variations can be described by antenna array design parameters such as 

number of elements, element separation, and current and phase in each element. 

 

1.4 SCOPE OF WORK 

 

The scope of work is divided into three main categories according to the 

research approach. The description for each of the stages is as follows: 

 

1.4.1 Ionospheric Observation 

 

Ionospheric observation is the most fundamental step in preliminary 

understanding of the ionosphere. The ionosonde used to probe the ionosphere is located 

at Parit Raja (2oN, 103oW, dip 14.3o), Batu Pahat, Malaysia. Radio soundings are 

carried out daily at 5 minutes interval to monitor the state of the ionosphere. The 

recorded tracings of reflected high frequency radio pulses are observed regularly to 

examine the present ionospheric condition. These ionograms, generated by the 

ionosonde, shows the virtual height, h’, of the ionospheric layers as a function of plasma 

frequency. Proper inversion method is required to obtain the real height, h. Several 

programs arise to facilitate this inversion, among which the polynomial analysis 

(POLAN) program and NHPC are widely used at present (Liu et al., 1992). Depending 

on the instrument type, the POLAN program developed by Titheridge (1985) is used 

extensively in this study. The inversion process is manually performed on individual 

ionogram. The tediousness of the inversion process is highly vulnerable to error 

especially when there are occurrences of ionospheric disturbances (e.g. spread F and 

sporadic E). These disturbances may mislead the ionogram interpretation. Knowledge in 

physics and chemistry of ionosphere are necessary to facilitate this process. The output 

of POLAN is in text file where in this context, it is still considered as raw data. 
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1.4.2 Data Analysis and Trending 

 

The peak electron density, Nmax, and height of peak electron density, hmax, are 

two important parameters derived from the ionograms using POLAN. Together with the 

solar and geomagnetic data, these data are arranged to form a solid database. The data 

assimilation process also involves some pre-processing procedures which categorised 

the data according to event types and subsequently extract any geomagnetic dependency 

data in the final output. The idea is to produce a database which will produce an ideal 

approximation of the ionosphere behavior. The ‘processed data’ are also used to draw 

the median Nmax and hmax trends. Different conditions could be considered; diurnal 

variations (sunrise, noon time, sunset, midnight), seasonal variations (spring, summer, 

autumn, winter), and solar activity (high, low) variations. These are various type of 

variability that can weigh up any investigation on the ionospheric behavior. This stage 

requires high computational skills and MATLAB program is utilized for this purpose. 

 

1.4.3 Modeling 

 

A numerical model of the diurnal trends of median height of peak electron 

density variations is needed to calculate approximate variations at all times. In this case, 

appropriate mathematical function is used to represent the characteristic variation 

patterns. As for a periodic function, Fourier series approximation is the most suitable fit. 

The empirical models are then remodeled into suitable representation before a final 

model which constitutes to ionosphere height of peak electron density variations can be 

established. The configuration of this new model is the novelty of this study. 

 

1.5 THESIS OUTLINE 

 

This thesis is divided into six main chapters. Chapter 1 introduces the main idea 

of the research project. The introduction describes the importance of ionospheric studies 

in communication aspects which involves either terrestrial or satellite communication 

systems. The idea of having comprehensive global ionospheric profiles is also addressed 

which then highlights the equatorial ionosphere as one of the challenging region to 


