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ABSTRACT 

The educational institute has been annoyed by timetabling problem for many years. The 
tirrtetabling is difficult due to large amotifit of subject/exams to be allocated into certain 
timeslots at the same time fulfill all the hard constraints and some of the soft constraints 
(constraints are requirements of the timetable). In the timetabling research, there are 
various techniques/ algorithm has been used to solve the problem. However, most of 
them are applied to solve simpler timetabling problem which doesn't consider room 
capacity as constraints (or simplified the room capacity factor). 

In this thesis, an examination timetabling dataset that consider room capacity will be 
us€d which nam€d S€conds Inremational Tim€tabling Comp€tition (ITC 2007). ITC 
2007 has very well defined constraints and it is more completed compared to other 
dataset. 
One chosen technique which is Particle Swarm Optimization will be used to solve the 
ITC 2007 examination timetabling problem. 
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ABSTRAK 

Institut pendidik telah bertahun-tahun diganggui masalah membuat jadual waktu. 

Membuat jadual waktu ini amat sukar kerana jumlah mata perlajaran I perperiksaan 

yang akan diperuntukan ke dalam slot masa tertentu disampingan mecapai kekangan 

keras and kekangan lembut. Dalam kajian jadual waktu, terdapat pelbagai teknik/ 

algoritma telah digunakan untuk meyelesaikan masalah terse but. W alaubagimanapun, 

sebahagian besar kajian adalah digunakan untuk menyelesai masalah jadual waktu 

yang lebih mudah , iaitu kajian yang tidak menganggap kapasiti bilik sebagai 

kekangan (atau mempermudahkan faktor kapasiti bilik). 

Dalam tesis ini, satu dataset jadual waktu peperiksaan yang bemama International 

Timetabling Competition (lTC 2007) akan digunakan. ITC 2007 mempunyai 

kekangan yang baik ditakrif dan ia lebih lengkap berbanding dengan dataset lain. 

Salah satu teknik yang dipilih adalah Particle Swarm Optimization akan digunakan 

untuk menyelesai masalah jadual waktu peperiksaan ITC 2007. 
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CHAPTER I 

INTRODUCTION 

1.1 Background of Study 

Examination timetabling problem has annoying educational institute for many 

years and it has been widely studied by many researchers. It concerns with the distribution 

of the university exams and also the timeslot. 

Examination timetabling problems can be divided into 2 types: capacitated and un­

capacitated. The researcher can solve the un-capacitated examinations problem with their 

techniques or algorithm easily and quick. However, this is difficult for capacitated problem 

because it consider the room capacity. Room capacity will be the hard constraints of 

capacitated examination problem and it makes capacitated problem look like real world. 

There are many solutions and algorithms can be used to solve this problem. While 

solving the timetabling problem, researcher have to fulfill certain constrains. The 

constraints can be divided into 2 types which are hard constraints and soft constraints. Hard 

constraints are the requirement of the timetable and it must be achieve, otherwise the 

timetable is not usable and will consider as a failure. An example of hard constraint is 

amount of student should not exceed room capacity. While soft constraints are the rules 

that are not necessary to fulfill. However, if you achieve as much soft constraint as possible, 

it will enhance the quality of the timetable. An example of the soft constraint is exams 

l['"~'onn as evenly 
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There is lesser researcher work on capacitated timetabling problem than un­

capacitated timetabling problem due to the difficulty. Another reason would be lack of 

dataset of capacitated problem. The researchers who are working on capacitated 

timetabling problem are concerned of room number and room's size because these 

constraints represent the increasing of complexity of the timetable. 

We will work on capacitated problem which is the International Time tabling 

Competition 2007 (ITC2007). There are some constraints in lTC 2007 which will be 

explained in detail later. Particle Swarm Optimization is chosen as the technique to solve 

lTC 2007. 

1.2 Problem statement 

Many universities will agree on how hard it is to conduct an examination timetable. 

However, it can be solved by using the algorithm in computer science. 

The examination timetabling problem is one of the common timetabling problem. 

However, a lot of research of examination timetabling has been made with the un­

capacitated dataset such as University of Toronto dataset. This doesn't really resemble the 

real world timetabling situation. There are also some capacitated dataset such as University 

of Nottingham and University of Melbourne dataset they combined the every room 

capacity as one. In real world, we should separate the room capacity individually. Thus, 

the research is not really practical. 

Our work will be focus on solving the ITC2007 examination timetabling dataset 

practically. This capacitated dataset has several constraints that resemble real world 

situation. 



3 

This research will be achieving three objectives~ 

1. To study on the examination track of the Second International Timetabling 

Competition (ITC2007). 

2. To implement Particle Swarm Optimization method in solving the examination 

timetabling problem that satisfies all the constraints. 

3. To validate and verify the solution produced using Particle Swarm Optimization 

whether it satisfies all the constraints. 

1.4 Research scope 

In our research, we are going to study ITC2007 timetabling dataset. This dataset 

has some constraints including room capacity and the room number. We are implementing 

Particle Swarm Optimization to develop a timetable for the dataset. 

1.5 Thesis Organization 

This research consists of 7 chapters. Chapter 1 is Introduction. Chapter 2 is 

literature review. Chapter 3 is methodology. Chapter 4 and 5 are design and 

implementation of the system. Chapter 6 is the result of the research and discussion of the 

research. Last, Chapter 7 is conclusion of the research. 
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CHAPTER2 

LITERATURE REVIEW 

2.1 Overview of timetabling 

Timetabling is concerned about how the subject are allocated within the limted 

timeslots. There are many kinds of timetable scheduling problems in the daily life, such as 

examination, lecture, and transportation timetable. For all of these timetabling problems, 

there are constraints that needed to be satisfied while solving these timetabling problems. 

The constraints of timetabling can be categorized into hard constraints and soft 

constraints. Hard constraints are rules the timetable must follow. A timetable is usable only 

if all hard constraints are achieved. Soft constraints are not necessary to be followed but it 

is encouraged to fulfill as much as possible. This will enhance the quality of the timetable. 

However, it cost us more effort to handle soft constraints. 
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2.2 University timetabling problems 

The very common timetabling problems in University are course timetabling and 

exam timetabling. They both take a lot of time and manpower to conduct manually. Prevent 

allocating students to sit two examinations/courses at the same time is the first priority of 

timetabling. However, examination timetabling and course timetabling have some 

difference between each other. First, course timetabling and exam timetabling have 

significant difference in their constraints. The differences of the constraints will be 

presented on Table 2.1 and Table 2.2. 

Other than the constraints, we can differentiate examination timetabling and course 

timetabling by the way of construction. There are 3 noticeable construction can help us 

which are environment of the process, modeling and scheduling instances. For exam 

timetable, it is conducted by the academic office while course timetable is conducted 

independently by school. Their process environment is different. In modeling, exam 

timetable was conducted based on amount of student that are taking the exam. While course 

timetable was conducted based on amount of student and amount of course. For the 

scheduling instances, exam timetable was conducted based on offered course and course 

timetable was conducted based on offered course as well as lecturer's available session. 

Many Universities allows student to arrange the timetable themselves by system 

Open Registration, this increased the complexity of scheduling the timetable. The 

complexity is relevant to the degree of freedom given to student to arrange the timetable 

themselves. 
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Table Some constraints of Course Timetabling problem 

3. 

The 

the course. 

Soft constraints 

5. 

2.3 Examination timetabling 

In this research, my main focus is on solving Examination timetabling problem. 

Examination timetable plays a huge role in educational institution. It should be conducted 

very carefully in order to avoid clashing schedule and cause trouble to student or lecturer. 

The main task of examination tabling is to allocate the examinations into certain 

rooms and timeslots. At the same time, the timetable should follow all the constraints. 

Table 2.2 shows some examples of constraints in examination timetabling problems. 



Table 2.2 Some constraints of Examination Timetabling problems 

Soft constraints 

5. 

6. 

7. 

2.3.1 Main objective of examination timetabling and its constraints. 

7 

as 

There are a lot of examination timetabling constraints because different institution 

might have different request. More than that, the person who related to timetable always 

have different preference on the timetable. For example, student will demand examination 

being spread evenly in order to give them times to do their revision. 

These constraints should be achieved if possible in order to create high quality 

timetable. 
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Capacitated 

In the timetabling field; most of the researchers are working on the un-capacitated 

problem. This is because un-capacitated problem doesn't consider room capacity as 

constraints so it is easier to study and investigate. However, capacitated problem more 

resemble the real world situation because it is impossible for an educational institute to 

have unlimited space for exam. Capacitated timetabling problem is so much difficult than 

un-capacitated timetabling problem. 

Capacitated problem requires more comprehensive data such as examination list, 

student list. This extra information is difficult to gather. And the main cause to the difficulty 

of scheduling timetable is lack of available room. 

Burke, Newall and Weare, (1996) modified Toronto dataset to make it more 

resemble the real world timetabling situation. The modified Toronto dataset includes an 

overall capacity as if all exams were placed in a one big room. This represents the 

simplification of the timetabling problem since we would have to consider only one room's 

capacity. 

2.4 Examination timetabling dataset. 

There are a lot oftimetabling datasets in the community. The most common dataset 

are University of Toronto, University ofNottingham and University of Melbourne. Other 

than that, we have UKM examination datasets and UiTM examination dataset. In 2008, 

McCollum et al (2008) introduced the Second International Timetabling Competition (ITC 

2007). This dataset have more realistic problem as it consider the room capacity compared 

to other datasets. 

There are a lot of research on the un-capacitated problem, mainly concentrate on 

the algorithms and the performance of that algorithm. The result will be observed to see 

algorithm is capable to effectively enough. 
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Most of the researchers on un-capacitated timetabling are not dealing with a11 

aspects of the timetabling problem, they work on simplified examination timetabling 

problem instead; The simplified examination timetabling problem only includes some very 

common hard constraints and soft constraints. 

2.4.1 University of Toronto dataset 

The Toronto dataset have 13 real-world exam timetabling problems. To allow 

genuine comparison between the scientific communities, problem instances of the Toronto 

dataset are classified into I and also II by Qu et al, (2009). The University of Toronto 

dataset was introduced by Carte, Laporte and Lee, (1996). They investigated two variants 

of the objectives with the purpose to minimize the number of timeslots needed for the 

problem and to minimize the sum of approximate costs per student. In 2001, Di Gaspero 

and Schaerfused Tabu Search with only consider constraints conflict to solve this Toronto 

dataset. Burke, Newall and Weare, (1996) had added some new aim to the Toronto dataset. 

They made count of maximum amount of the room capacity per times lot and second-order 

conflict of same day constraints. Merlot et al. (2003) solved Toronto dataset by using the 

hybridization of Constraint Programming, Hill Climbing and Simulated Annealing. Table 

2.3 shows the information of Toronto dataset. 
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Table Toronto Dataset (Qu et al., 2009) 

2.4.2 Dataset of University of Melbourne 

The University of Melbourne dataset was first brought to public by Merlot et al., 

(2003). Melbourne dataset has 2 timeslots for weekday. The timeslots have different 

capacity which timeslots I has 28 while timeslots II has 31. The dataset also included some 

time constraints where the exams can only be assigned to certain time period or the exam 

can only held in certain session only. Melbourne dataset was focus on minimize some 

conflicts such as exams on the same day. Table 2.4 shows some information of the 

University of Melbourne examination dataset. 

Cote, Wong and Saboun, (2005) and Merlot et al., (2003), investigated the 

Melbourne dataset using a hi-objective evolutionary algorithm where Tabu Search and 

Variable Neighborhood Decent were utilized. 
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Table University of Melbourne datasets 

2.4.3 Dataset of University of Nottingham 

Merlot, Boland, Hughes and Stuckey introduced dataset of University of 

Nottingham at the PATAT conference in 2002. In this dataset, the total number of student 

assigned for each timeslot cannot be more than the total room capacity. The aim of this 

dataset is to minimize the students sit exams in a row. 

In 1999, Burke and Newall used Graph Heuristic with the aim of avoiding second .. 

order conflicts on the same day. In 2003, the same method was used by Merlot on this 

dataset. In addition, Burke solved the Nottingham dataset by using Great Deluge Algorithm 

in 2004. Table 2.5 shows some information of the University of Nottingham examination 

dataset. 

Table 2.5 University of Nottingham datasets 

2.4.4 Dataset of University Kebangsaan Malaysia (UKM) 

Ayob et al., (2007) introduced a capacitated timetabling dataset - UKM dataset. 

The data presented is real data for undergraduate exam in UKM for Semester I, year 2006. 

The constraints of this dataset are all exams must be scheduled and student should not be 

allocated into exams at the same time. More than that, this dataset requires some exam to 

held room. Next, students should assigned into the same room if they are 

having consecutive exams. The main objectives ofUKM dataset are to avoid letting student 
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have consecutive exams in the same day and to evenly spread the exams of each student. 

Table 2.6 shows the information of the UKM dataset and Table 2.7 shows the room 

capacity of this dataset. 

Table 2.6 University Kebangsaan Malaysia datasets (UKM06-0 1) 

Table 2.7 Room capacity of dataset UKM06-01 

Room 

2.4.5 Dataset of University Teknologi MARA (UiTM) 

The MARA University of Technology (UiTM) is the largest university in Malaysia. 

Its total number of students was about 100,000. 

The UiTM dataset is a capacitated timetabling problem. It was introduced by 

Kendall and Russin (2004). There are some rules of this dataset. First, all the exams must 

be scheduled. Next, it doesn't allow a timetable that have student sit for more than one 

exam at the same time. The main objective is to spread the exams evenly and avoid having 

exams in weekend. Table 2.8 shows the information of the UiTM examination dataset. 
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Table 2.8 University Teknologi Malaysia (UiTM) dataset 

2.4.6 Second International Timetabling Competition (ITC2007) dataset 

The Second International Timetabling Competition (ITC2007) was introduced to 

attract research on techniques concerned timetabling problems encountered within 

educational institutions. ITC 2007 is a platform to let researcher apply their algorithm or 

techniques on conducting a timetable that resemble real world situation. 

ITC2007 consists of 3 tracks: 1 examination timetabling and 2 on course 

timetabling. In our research, we only investigate the examination track. 

The constraints in ITC 2007 are very well defined and rather comprehensive. This 

mean ITC 2007 is more resemble the real world situation as it considers room capacity. 

There are a lot of techniques has been applied to solve ITC 2007 such as Iterated 

Forward Search, Hill Climbing and Great Deluge Algorithm by McCollum et al., (2008); 

Gogos, AleFragis and Houses (2008) from Japan uses a multistage approach that uses 

GRASP, Simulated Annealing and Mathematical Programming to solve it. 

Table 2.9 shows some information of ITC 2007. Table 2.10 shows the hard 

constraints of ITC 2007 and Table 2.11 shows the soft constraints of ITC 2007. 
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Table 2.9 Second International Timetabling Competition dataset. 

Table 2.10 Hard constraints of lTC 2007. 
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Table Soft constraints of ITC2007. 
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2.4. 7 Summary datasets 

After viewing various dataset; we shall make a comparison and summary of them~ 

Table 2.12 show the summary of various dataset. 

Table 2.12 Summary of datasets 

Comstramts Toromto Nottmgham ~Ielooume UKl\1 ITC2007 

Clash free Hard Hard Hard Hard Hard 

Scheduled all exams - Soft Soft Hard 

Exam preference - - Hard (1·t) - Hard(sa) 

- Specified Soft(lf) 

arrangement: sa 

- Specified room: .sr 

- exam schedule 

&-st lf 
;e - Restriction on exam in 
1: 
Q 

particular timeslot: ·~ rt 
= .5 Scheduled combined § -
~ exam in the same ~ 

timeslots: ct 

Consecutive exam - Soft Soft Hard Soft 

- Two exam in a rmv:2r & & and 

- Two exam in a day-2d 

- Two exam in a row 

overnight: ln 

- Three exam in a 

day:3d 



11 

Coastramts Toroato ~' ~ 1\Ielooume "li1Gf ITC2007 .L 

Timeslot r&.._:_ - - - - Soft(tu) ~· ,_. 

- 1\.f.immise/avoid usage 

"0 :tu 
~ ...... 

Timeslot length Hard = - - - -
~ 
~ l\1ixed duration of Soft(mt) ...... -
..5: 
;e exams. in one timeslot: ~ 

.§ 
E-o mt 

Spreading Soft Hm-d (ss) Soft Soft Soft(ss) 

- Specified spread: ss 

Room distance - - - - -

No sharing of room with other - - - Hm-d -
exams (se) 

- F O£ specified exam 

only: S€ 

Room Preference - - - Hm-d ~ 
ilC.UU(.:..f:J 

- Consecutive exam Soft 

scheduled in the same 

room: cr 
"0 
~ ~mise/ avoid ...... -= "!! 
"" usage: nl .., 
e Specified room: sr CI -
CI p:: 

Split exam into different - - - - -

rooms 

- Same building onl]r: 

sb 

- As close as possible: 

cp 

Capacity - Hm-d(ts) Hard(ts) Hard( Hm-d(ir) 

- Total se.ats: ts tsand 

- Individual room: ir 

H d =Hard " .I!:L " .I!:L .£, .~. "'cell ar I.Ufi.!>UUffHi ::!Uj t ;:;;;:,uj l I.Vff.!>HLJHIL, ::iriUUt::U constraint not considered. 
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Methodologies applied to examination timetabling problem 

Researchers has been studying on timetabling problem since 1960s. There are a lot 

of techniques or algorithm that has been used to solve timetabling problem. For example: 

Greate Deluge Algorithm , Genetic Algorithm, Tabu Search and Particle Swarm 

Optimization. These techniques/algorithm were developed for solving these examination 

timetabling problems. 

These methodologies allows student to conduct a timetable that based on their 

preference and even better than what they expected. These methodologies also help in 

prevent negative influence such as clashing time periods in exam. 

2.5.1 Hill Climbing (HC) 

Hill Climbing also was called as simple decent. It is a classical local search 

algorithm. Hill Climbing is a technique that will chose one candidate solution random from 

neighboring solution, N(s) in its every iteration. The candidate solution is represented as 

s'. If the candidate solution is better than current one, it will replace the current solution. 

Many researchers have hybridized Hill Climbing with other search algorithm 

because Hill Climbing has an obvious disadvantage. It could be trapped in the local optima. 

This mean the iteration could not provide a better solution anymore although there is exist 

of better solution. By hybridize with others technique or algorithm, this problem can be 

solved. For example, a hybrid of Hill Climbing and Genetic Algorithm was created by 

Burke, Newall and Weare (1996) to avoid the problem that mention above. 

Figure 2.1 will shows the Hill Climbing algorithm procedure. 
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Figure The Hill Climbing procedures 

+= 

2.5.2 Tabu search (TS) 

Tabu Search was proposed by Glover (1986) to solve combinatorial optimization 

problems. Tabu Seach is very similar to Hill Climbing but it fixed the local optima problem. 

The basic concept of Tabu Search is an extension of steepest descent by 

incorporating adaptive memory and responsive exploration. In Tabu Search, it will explore 

the neighborhood of his current solution. If the neighborhood solution has the lowest value 

compared to current one, it will be accepted although the value might stand a chance to be 

worse than current solution. It will explore the area other than local optima by accepting a 

non-improving move. However, this choosing process will usually will lead to a cycling. 

Hence, a memory which is Tabu List will be used to store recently selected solution to 

prevent the search stuck in the local optima. And these moves which stored in Tabu List 

are not allowed to be performed until certain number of looping. However, there is a 

mechanism called Aspiration Criterion can make the solution free if the solution is typically 

better than the current best solution. 
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Kirkpatrick introduced Simulated Annealing in 1983. SA is an extension of the 

simple descent algorithm but applies a less strict acceptance rule. SA was inspired by the 

physical annealing process of heating and cooling. 

In the first step of SA, it initial an random solution and SA will keep accepting the 

better solution, while for the worse solution will only being accepted with a low 

probability. Thompson and Downsland (1998) said that the quality of final solution is very 

large affected by the cooling schedule of SA. There are 2 types of cooling: fast cooling 

and slow cooling. Fast cooling tend to lead the search to converge to a local optima, while 

slow cooling will enhance the solution's quality but at the same time it increases the 

searching time. 

Thompson and Downsland (1996 and 1998) solved the exam timetabling problem 

with SA in two phases, Constructive (finding a feasible solution) and Improvement 

(improving the solution quality) phas-es. An adaptive cooling schedule was used and the 

results show that it outperformed a simple geometric cooling approach. Thompson and 

Downsland further their experiment by implementing different cooling schedules and 

neighborhood in SA, this resulted a significant improvement to the solution's quality. 

Frausto and Alonso (2008) hybridized Simulated Annealing and Tabu Search 

algorithms to solve the Post Enrolment Course Timetabling (track 2) from ITC2007. They 

divided the algorithm into 2 phases. The first phase is to generate a usable timetable with 

SA. Second phase, they were still using SA to search for the solution that is nearest to the 

most optimal result, within a particular time limit. After the SA shows no improvement 

after the particular time, Tabu Search will take over the job. This method has been proved 

· to be able to produce a usable timetable. 
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Zhang et al. (20 1 0) used SA to solve the high school exam timetabling problem. 

They proposed another neighborhood structure that swaps examinations between pairs of 

timeslots; With this method; SA become more efficient and the performance has been 

increased. 

2.5.4 Great Deluge Algorithm (GDA) 

Great Deluge Algorithm (GDA) operates in a similar way to SA. GDA is like an 

alternative to SA. What makes the difference is GDA uses an upper limit (can be called as 

water level) as the boundary of acceptance, unlike SA uses temperature. 

GDA starts with initial a solution that its quality is equal to boundary. It accepts 

worse solution if the cost (objective value) is less than the boundary which is lowered in 

each iteration according to predetermined rate (known as the decay rate). The procedures 

of GDA can be seen at Figure 2.2. 

Due to the advantage of using less parameter, GDA has been used favorably in 

several other implementations of meta-heuristics. 

Figure 2.2 show the Great Deluge Algorithm procedure. GDA only involves one 

parameter setting (decay rate) which is an advantages over SA (among others), since the 

effectiveness of a meta-heuristic technique is often dependent on parameter tuning 

(Petrovic and Burke, 2004). 
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Figure shows the GDA procedures 

E 

a 

Burke and Newall (2003) investigated GDA on examination timetabling problems. 

The decay rate is computes as the initial solution multiplied by a user provided factor 

divided by the number of iterations. The algorithm was run up to 200,000,000 iterations 

and the search will be terminated if there was no improvement in the last 1,000,000 

iterations. They have made a comparison between GDA, SA and Hill Climbing which 

GDA has been concluded much more excellent than the other two. 

McCollum et al. (2009) used an Extended Great Deluge to solve ITC 2008 

examination dataset. His method consists of 2 phases: construction and improvement. 

McCollum constructed an initial solution with an adaptive ordering heuristic. Then, 

improvement that includes a reheating mechanism is applied. This method has returned 

some good solutions. 
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Abdullah et al. (2009) hybridized GDA with TS. The algorithm applied four 

neighborhood moves at every iteration and the best generated solution will be selected. In 

particular time; if there is no improvement of the solution's quality then the boundary is 

increased randomly within value zero and three. This method shown some good result 

when it is being used on solving course timetabling problem. 

2.5.5 Genetic Algorithms (GA) 

Genetic Algorithms (GA) were popularized by Holland (1975). It is an evolutionary 

algorithm that mimics the process of natural selection. GA is a population based search 

which uses the principle of biological evolution to generate better solutions from one 

generation to another (Ross and Come, 1995 and Burke et al. 2010a). 

The methodology consists of operators that known as genetic operators such as 

mutation, crossover and selection. These operators will manipulate individual solutions 

(named chromosome in GA) in a population to improve the cost value. The chromosome 

is represented as a string that holds the information of solution. When practicing GA, there 

are a few things that should be taken into consideration such as the population size, 

mutation rate, crossover rate and amount of generations (Goldberg 1989, Pham and 

Karaboga 2000, Burke and Kendall 2005). 

In GA, it will initial a population of random solutions. Every solution has its own 

cost value (or fitness value) that evaluated based on an equation. Next, the individual will 

be processed in the recombination phase where crossover and mutation are used to explore 

the solution space, thus creating new individuals. The new created individual will replace 

the old individual that has worst fitness value. The process keeps repeating until a 

termination criterion is met. The termination criterion is dependent, it could be certain loop 

number or certain time period. Figure 2.3 shows the procedure of GA. 
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Genetic Algorithm procedure (Cuupic, 2009) 

GA is very suitable for solving timetabling problem. However, it has some 

limitations compared to others method. For example, operating on dynamic data sets with 

GA is difficult as genomes begin to converge early on towards solutions which may no 

longer be valid for later data. 

2.5.6 Ant Colony Optimization (ACO) 

The Ant Colony Optimization (ACO) was introduced by Dorigo, Maniezzo and 

Colomi et al. (1996). ACO is a population based technique and it is stimulate the way ants 

find their food by laying pheromone on the way. 

In ACO, every single ant is used to construct a solution. In the process of searching, 

all information that gained will act as a pheromone, which it will be used in next stage to 

generate a new solution. 
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In 1997, a method named ANTCOL (modified ACO) was introduced by Costa and 

Hertz. They used ACO and sequential heuristic to address the graph coloring problems. In 

successive generations; each ant will colors the vertices using dynamic ( e~g~ saturation 

degree or recursive largest first) or static (e.g. random, largest first , smallest last) 

constructive methods. The experiment result had shown that the dynamic method is much 

better than the static methods and this shows that the ACO can solve the examination 

timetabling problems successfully. 

Dowsland and Thomson (2005) had investigated the application of ACO for the 

examination timetabling problem. Their main objective is to do a comparison to ANTCOL 

on typical timetabling graph in term of performance. They also wanted to identify 

promising constructive heuristic combinations, trail calculations and ANTCOL parameter 

value. As a result, modified ANTCOL can efficiently minimize the number of timeslot in 

timetable compared to ACO. 

2.5. 7 Graph heuristics (GH) 

In early days oftimetabling research community, Graph Heuristics (GH) played an 

important role (Carter 1986). In GH, for examination timetabling problems, the exams can 

be represented by vertices in a graph while the hard constrains between examinations is 

represented by the edge between the vertices. For the graph coloring problem, each vertices 

will be assigned different color. Hence there will be no same color for adjacent vertices. 

At the beginning, GH is used to solve its own schedule examinations (Carter, 1986). 

Until recently, researchers hybridize GH with the other technique/algorithm. It can be used 

to initial a solution and the improvement mechanism will be handled to other 

technique/algorithm. GH can produce acceptable result in very short execution time. More 

than that, the implementation of GH is easy. However, GH has different strategies that are 

used depends on how hard is the problem. Figure 2.4 shows the common strategies that are 

being used. 
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Figure Common ordering strategies of graph heuristic 

As a comparison, the Largest Degree (LD) and Saturation Degree (SD) usually 

produce a better solution (Qu et al., 2009). Carter, Laporte and Lee (1996), used different 

ordering strategies of GH on exam timetable without considering the conflict and spreading 

of timetable. The result has shown no significant differences between each strategy in term 

of performance. 

However, some researcher has proved that some hybrid of SD with other strategy 

will produce some better solution. Burke, Newall and Weare (1998) investigated the effect 

of random elements in Largest Degree, Color Degree and Saturation Degree using 

(a) Tournament selection -randomly selects one from a subset of the first exams in 

the ordered list 

(b) Bias selection- selects the first exams from an orders list of subset of all of the 

exams. 

And a good result was obtained from University of Toronto dataset. 
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Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart in 

1995. It is a heuristic global optimization method and also an optimization algorithm 

which based on swarm intelligence. 

In PSO, a bird of a flock is represented as a particle, and the swarm is composed 

of a group of particles. The position of each particle can be regarded as the Candidate 

Solution to an optimization problem. Every particle is given a Fitness Function designed 

in correspondence with the corresponding problem. When each particle moves to a new 

position in the search space, it will remember its personal best (Pbest). In addition to 

remembering its own information, each particle will also exchange information with the 

other particles and remember the global best (Gbest). Then, each particle will revise its 

velocity and direction in accordance with its Pbest and the G-oost to move toward the 

optimal value and find the optimal solution. 

With the advantages of simple and easy application, less parameter setting 

required. PSO has been applied to establish the optimal timetabling. Figure 2.5 shows the 

procedure ofPSO. 



Figure 2.5 Procedure ofPSO 

Original particle swarm optimization 

Step (0) Initialization 

Randomly initialize the positions of all particles X = (Xt, X2, ... , Xps) of size ps 

Initialize the velocity (Vt,V2, ... , Vps) 

Set generation t = 0 

Evaluate the fitness velues F =(fiji, ... ,fps) of X 

Set X to be pbest = (pbest 1, • •• , pbestNP) for each particle 

Set the particle with best fitness to be gbest 

Step (1) Reproduction and updating loop 

fori= l:ps 

Update the velocity v; of particle x; using Eq. (2) 

Vid +-- Vid + C1 X randf X (pbest - Xf) + C2 X randf X 

(gbestf - xf) 

end for 

Update the position of particle x; using Eq. (3) 

Xf ~xf + Vl 
Evaluate the fitness value fi of the new particle Xi 

if Xi is better than pbest; 

Set Xi to be pbest; 

end if 

if Xi is better than gbest 

Set Xi to be gbest 

end if 

Set t = t + 1 

Step (2) If termination condition is not met, goto Step(l ), otherwise end PSO 

28 
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Conclusion 

This chapter had introduced the general educational timetabling problem mainly 

focus on examination timetabling. From the literature, different examination from different 

institution might have different constraints that need to be fulfilled. Among the dataset, the 

Toronto, Melbourne and Nottingham dataset had got the most attention from the 

researchers. There are also other dataset such as the UKM, UiTM and ITC2007 which are 

gaining popularity. 

Various methodologies (e.g. heuristic, meta-heuristic and hyper heuristics) 

especially meta-heuristic had been applied to solve the benchmark examination timetabling 

problem. However, the success of meta-heuristics is dependent on the parameter tuning 

(Petrovic and Burke, 2004) which would be a problem for non-experts (e.g. a timetable 

officer). 

In this research, we propose Particle Swarm Optimization as the method to solve 

examination timetabling problem. The dataset that we will work on is ITC2007. The reason 

of choosing PSO was because it is a very simple method compared with the other 

algorithms and it is easily completed as it needs fewer parameters. 

Further discussions on PSO will be on the following chapter. 
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CHAPTER3 

METHODOLOGY 

3.1 Introduction 

For recent year, researcher has been used various techniques such as Tabu Search, 

Great Deluge Algorithm to solve exam timetabling problem. As single based techniques, 

Hill Climbing, GDA, Tabu Search and SA are very well-known and have been widely 

used by researchers. While for population based techniques, there are Variable 

Neightborhood Search, Ant Colony Optimization and GA. 

Among these algorithms, PSO has been proven that it can achieve excellent result. 

PSO requires lesser parameter compared to other algorithm and it fits dynamic 

environment, this makes PSO easier to implement compared to other algorithm. 

PSO will be my choice for solving the timetabling. 

3.2 lTC 2007 Examination Track 

ITC 2007 Examination Track is the dataset that I will solve using PSO. Several 

techniques even combinational of these techniques have been used to solve this 

examination track. 

For example, the winner of the competition ofiTC 2007 for Examination Track, 

Tomas Muller combined Iterative Forward Search (IFS) algorithm, Hill Climbing (HC) 



algorithm and Great Deluge (GD) algorithm. He used IFS to find a complete solution. 

Then, HC will help him to optimize the solution until it cannot be optimized anymore. 

Lastly, an altered GDA that allows some oscillation is used to generate best solution 

where HC cannot reach. 
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The second place winner of lTC 2007 Examination Track was Christos Gogos 

from Greece. He used Greedy Randomized Adaptive Search Procedure (GRASP) method 

with the combination of other metaheuristics method. In his method, there are 3 stages 

before getting the solution. First stage is construction of a high quality feasible solution. 

This solution will be improved through second stage using Simulated Annealing (SA) 

local search. Lastly, a mathematical programming will further enhance the quality of the 

solution. 

The third place winner, Atsuta's group from Japan formulates the lTC 2007 as an 

instance of Constraint Satisfaction Problem (CSP). Then, they apply a powerful CSP 

solver which adopted Tabu Seach and Iterated Local Search to find the solution. 

From the statements above, we can tell the method for solving exam timetabling 

are various and all of these technique could achieve high performance where their scores 

(duration of finding solution, the shorter the better) are relatively close. 

3.3 Problem Formulation 

The lTC 2007 examination timetabling problem model will be explained here. 

Indices 

I,j l. .. N 

R,p l ... R 

s l. .. S 

T l. .. T 
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Parameters 

N The number of examinations 

R The number of examination rooms 

S The number of students 

T The number of available timeslots 

Si The number of registered student in exam i 

Rt The number of examination rooms available at timeslot t 

Br The building for room r 

ft The total capacity for room r 

Cij The conflict matrix where each element ( Cij, i, j E: { 1 ... N} ) is the number of students 

that have to take both exam I and j. The conflict matrix is a symmetrical matrix of 

size N, where diagonal elements Cij=Si 

Decision variables 

Xir 1 if examination I is assigned to timeslot t, 0 otherwise 

Yir 1 if examination I is assigned to room r, 0 otheiWise 

Zrt 1 if room r is assigned to times lot t, 0 otherwise 

The objective is to spread out examinations over the exam period (timeslots) for 

each student, minimise splitting an exam over several rooms. Therefore our formulation is as 

follows: 

(Eq.l) 

The first component of the cost, F 1 (spreading the exams over the exam period, SE 1) 

is shown in Eq.2. 

(Eq.2) 

cij.proximity(ti,tj) 

25 

and 
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Where mi is the number of rooms exam I has been split across. It can be calculated 

using the following formulation, mi=L~=l Yir V i E {1, ... , N}. Eq.5 represents a cost for an 

exam I that us being penalised for splitting the exam in multiple room (mi > 1). For 

example, if an exam is being split into rooms, then a value of 1 is given as the penalty 

value. Splitting the exam across 3 rooms corresponds to a penalty of 2 and so on. 

Eq.l is subject to the following constraints: 

a) No student can sit two exams concurrently (clash-free requirement, Htd). If 

examination I and j are scheduled in timeslot t, the number of students sitting both 

examination I and j must be equal to zero, i.e. Cij=O. This hard constraints is 

expressed in Eq.6: 

(Eq.6) 

b) All exams must be scheduled and each exam must be scheduled only once in 

available timeslots, T (see Eq.7) 

(Eq.7) 

T I X it = 1 For all i E {1, ... , N} 
t=1 

c) Only one examination paper is scheduled to a particular room in a particular 

timeslot, HE3. There Is no sharing of rooms with other exam papers (even though 

seats might be available to fit in another exam), except for requested combined 

exams, which has been carried out as a pre .. process operation (see Eq.8). 

(Eq.8) 

N 

XitYir = Zrt For all t E {1, ... , T} and foraH r E {1, ... , R} 
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d) Exam can only be split across several rooms in the same building, HE4 (see Eq.9). 

(Eq.9) 

R-1 R 
m-(m· -1) 

YirYipbrp = r: ~ For all i E{l, ... , N} 
p=r+l 

where 

br = { 1 if (Br=Bp) 
P 0 otherwise 

e) For each timeslot t, the number of rooms assigned to a particular timeslot must not 

exceed the maximum number of rooms available in a timeslot, Rt (see Eq.lO) 

(Eq.lO) 

R L Zrt ::;; Rt for all t E {1, ... , T} 
r=l 

f) The total number of students assigned to a particular exam room(s) must be less 

than the total room capacity (see Eq.ll). 

(Eq.ll) 

R 

si::;; LYirfr For all i E {1, ... , N} 
r=l 

3.4 Particle Swarm Optimization to solve lTC 2007 examination timetabling 

problem 

In this section, details of how do PSO solve lTC 2007 will be discussed. 

The proposed PSO algorithm can be applied to create efficient and feasible exam 

timetable. Below, we will discuss about general idea ofPSO. 

At the beginning ofPSO, the initial velocity and position of each particle in a 

group of particles are determined randomly. Then, there will be an evolving process as 

follows: 



1. The initial velocity and position of each particle in a group of particles are 

determined randomly. 

2. The fitness value of each particle is calculated according to the defined 

objective function. 

3. If the fitness value of each particle's current location is better than its Pbest, 

the Pbest is set to the particle's current position. 
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4. The fitness value of the particle is then compared with that of the Gbest. If it 

is better, the Gbest is updated. 

5. Equation as shown below is applied to update the velocity and position of 

each particle. 

6. Iterate Step 2 until the termination criteria is met or the optimal solution is 

obtained. 

Vi~+t = Vi~ + Ct X Rand1 X (Pid - Xid) + C2 X Rand2 X (Pgd - Xid) 

X t+1 _ xt + v:t+1 
id - id id 

Where 

Vid is the velocity component of the ith particle in the dth dimension. 

xid is the position ofthe ith particle in the dth dimension. 

c1 is the cognitive learning factor. 

c2 is the social learning factor. 

Pid is the position component of the Pbest of the ith particle in the dth dimension. 

Pgd is the position component of the Gbest of the dth dimension. 

Rand() is a random number between [0,1]. 

The cycle will repeat over and over again until an optimal timetable is found or the 

termination criteria is met. 
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Conclusion 

This research will solve the ITC 2007 exam timetabling problem by using PSO~ 

The ITC 2007 dataset consists of 3 parts of exam track which are Early stage, Late stage 

and Hidden stage. Before working on it, we will analyse and organize the dataset and 

simplify it for ease of process in PSO. 

By using PSO algorithm, a solution to the ITC 2007 will be generated. There are 

some steps to obtain the optimal timetable. First, we will initiate the particles randomly. 

Second, we calculate the fitness value to update Pbest and Gbest regularly. Last, the 

processs will be repeat until the termination criteria is met. 

The generated timetable should not against the hard constraints and soft constraints 

of ITC 2007. At the same time, we also try our best to shorten the generating time of the 

timetable. 
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CHAPTER4 

DESIGN & IMPLEMENTATION 

This chapter explains the project development process of scheduling ITC2007 

timetable. The process can be generalized into 4 steps: First, read the ITC2007 

timetabling information from txt file. Second, schedule initial timetables with graph 

heuristic method. Third, calculate the penalty value and quality of the timetable. Finally, 

improve the timetable quality with PSO (Particle Swarm Organization) method. 

4.1 Project Implementation 

lTC 2007 consists of8 dataset while we concentrate on dataset 1, 2 and 4. Each 

dataset consists of some txt file which stored the information of ITC2007. For example, 

room.txt, roomHC.txt, exam.txt. 

These txt file provides us information of number of students, number of exams, 

room capacity, timeslot and some other information about ITC2007. 

4.1.1 Display the information of the ITC2007 dataset 

Each dataset of ITC2007 consists of 7 txt file. The details on each txt file will be 

explained as follow. 
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434 , 648, 726, 730, 809 , 2510, 2511, 2515, 2521, 2539 
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1262, 1274, 1310 , 1383, 1385, 1393, 1415, 1429, 1444, 1457, 1472, 1479, 1511 , 1516, 1542, 1561, 1589, 1627, 1632 , 

235, 1318, 1353, 1417 , 1455, 1533, 1655 , 1663, 1749, 1785, 1882, 1892, 1903, 1914, 1961, 1963, 196'9, 2008, 2061, 2 

1316, 2507, 2620, 2751, 2906 , 2943 , 3022, 3053 , 3308, 3321, 3399, 3577, 3657, 3730, 3731 

11, 82, 87 , 95, 128, 133, 165, 235, 320, 357, 363, 370, 448 , 458, 481, 523, 531, 573, 576, 594, 602, 637, 640, 642 

5, 49, 59, 140, 171, 190, 200, 237, 245 , 247, 252, 285, 317, 348, 351, 447, 482, 497, 554, 729 , 760, 793, 823, 831 

5, 35, 49, 59, 140, 171 , 190, 200, 237, 245, 247, 252, 285, 317 , 339, 3i8, 351, 447, 482, 497, 554, 729, 760, 793, 

5, 49, 59, 140, 111, 190 , 200, 237, 245, 247, 252, 2es, 317, 348, 351, i47, .;52, 497, 554, 729, 760, 793 , 823, 831 

11, 87 , 95, 128, 133, 320, 357, 363, 370 , 458 , 481 , 573, 576, 594, 640, 642, 756, 829, 861, 931, 949 , 1013 , 1098 , 

11, 82 , 87 , 95, 128, 133 , 185 , 320, 357 , 363, 370, i48, 458 , 481 , 523, 531, 573, 576, 594, 602 , 637, 640, 6i2, 756 

87 , 247, 531 

2524, 2525, 2526, 2539, 2547, 2589, 2675, 2691, 2734, 2969, 2979, 3065, 3070, 3126, 3128, 3153, 3176, 3180 , 3191, 

2547, 2589, 2675, 2691, 2734, 2969, 2979, 3065 , 3070 , 3126 , 3128, 3153, 3176, 3180, 3191, 3204, 32 13 , 3240, 3245 , 

270, 419, 421, 667 , 1263, 12 67, 1272, 127 5, 1278, 1280, 1281, 1 282 , 1283, 1285, 1286, 1287, 1288, 1292, 1294, 1297 

1265, 1315, 1364, 1369, 1443, 149i, 1503, 1513, 1605, 1614 , 1712, 1733, 1784 , 1821 , 18i7, 1852, 1889 , 1896, 1907 , 

395 , 75 9, 1262, 1264, 1268, 1269, 1270, 1276, 1277 , 1279, 126 4 , 1289, 1296, 1300, 1314 , 1318, 1322, 1323, 1326, 13 

79 , 190, 200 , 255 , 285, 320, 348, 351', 394, 447, 497, 567 , 57 6, 642, 65 1 , 712 , 749, 760 , 7 67 , 854 , 875 , 87 6, 967 , 

1129, 1265, 1315, 1364, 1369, 1443 , 1494, 1503, 1513, 1605, 1614, 1712, 1733, 1784 , 1821, 1847, 1852 , 1889, 18 96, 

69, 77 , 89, 148 , 334, 358, 397, 578, 677, 693, 7 52 , 1080, 1093, 1211, 1218, 2108, 2301 

77, 148 , 334, 362 , 397, 438 , 479 , 5 78 , 6 77 , 688 , 693, 925, 932, 965, 1093 , 1103, 1112, 1185, 119 0 , 1199, 1218 

532 , 1112 , 1178, 2301, 2522 

Figure 4.1 exam.txt 

39 

In exam. txt file, the first number in each line shows the duration of exam in 

minutes. The numbers after that are the student's ID whom is taking that particular exam. 

424, 0 
219, 0 

12 , 

1 0 

40, 1 
60, 10 
6 , 

40, 0 

36, 0 

30, 0 

30, 
25, 0 

72, 0 

40, 0 
35, 20 

Figure 4.2 room. txt 

Room.txt shows the information of room. In the Figure 4.2, there are 17 rooms in 

total. The first number of each line show the capacity of the room. The second number of 

each line represent the penalty value of using this room. 
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1 10:12:2005, 07:55:00, 180, 0 
2 10:12:2005, 13:30:00, 180, 0 

3 1 :12:2005, 19:30: 0, 180, 0 
4 12:12:2005, 07:55:00, 180, 0 

5 12:12:20 5, 13:30:00, 180, 0 

6 12:12:2005, 19:30:00, 180, 5 
13:12:2005, 07:55:00, 180, 0 
13 : 12:2005, 13:30: 0, 180, 0 
13:12:2005, 19:30:00, 180, 0 
14:12:2005, 07:55: 0, 180, 0 
14 : 12:2005, 13:30:0 , 180, 0 

14:12:20 5, 19 : 30: , 18 , 0 

15:12:2005, 07:55:00, 180, 
15 : 12:2 OS , 13:30: 0, 180, 
15 : 12:20 5, 19:30 : 0, 18 , 0 

16 : 12 : 2005, 07:55:00, 180, 0 

16:12:2 5, 13:30:00, 18 , 0 

16:12:2 05, 19:30:00, 160, 200 

1 :12:2 5, 7:55:00, 180, 0 
17:12:2005, 13:3 : 0, 18 , 0 

17:12:20 5, 19:30:00, 180, 500 

Figure 4.3 period. txt 

The available timeslot is stored in period. txt. The first data is the date of the exam, 

the second data is the starting time of the exam. Third data is duration of the exam in 

minute and fourth is the penalty value. 

307 
EXM~_COI~CIDE.CE, 419 
EXA!·!_COI.JCIDE CE, 418 

653, EXA}!_COI CIDENCE, 656 
560, AF ER, 3 
650, AFTER, 296 
801, AFTER, 649 
56, EXC~ SION, 246 

Figure 4.4 periodHC.txt 

PeriodHC.txt stored the period hard constraints of scheduling timetable. 
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In the example, number represents the involved exam ID (first and third data). 

The second data is the hard constraints upon the involved exam ID. The hard constraints 

can be divided into 3 types: EXAM_ CONINCIDENCE, AFTER and EXCLUSION. 

EXAM COINCIDENCE demands two exams to be scheduled into same timeslot. 

AFTER is to demand one exam to be scheduled after another particular exam. According 

to Figure 4.4, exam 560 will be scheduled after exam 300. EXCLUSION demands two 

involved exams not scheduled into same timeslot. 

78 , ROOM_EXCLUSIVE 
128 , ROOH EXCLUSIVE 

Figure 4.5 roomHC.txt 

RoomHC.txt shows the room's hard constraint ofiTC2007. In Figure 4.5, first 

data is exam's ID. ROOM EXCLUSIVE is to demand that particular exam not being 

shared with other exam. 

0 , 0 , 

2 o, 0, 
o, 0 , 

" o, o, 
s o, 0 , 

6 13 , o, 
0, 0 , 

0 , 0 , 

0 , 0 , 

10 0 , 0 , 

11 0 , 0 , 

lZ 0 , 0 , 

1S o, 0 , 

1"1 0 , 1 , 

15 0 , o, 
16 0 , 0 , 
17 0 , o, 
1€ 1 , 0, 

1S 0 , 0 , 

2 0 , 0, 

21 0 , 0 , 

22 o. 0 

0 , 0 , 0 , 13 , 0, 0 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0, 0, 1 , 0 , 0 , 0, 0 , 0 , 0 , 0 , 78 , 11 , 0 , 0 , 0 , 0, 3 , 

0 , o, 0 , 0 , o, o, 0 , o, 0 , 0, 0 , 1 , 0, o, o, 0, 0 , o, 0 , 0 , 0, 0, 0, 0 , 0 , 0 , 2 , 0 , 1 , 0, o, 
0 , 64, 0 , 0 , 0 , 0 , 4 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0 , 2 9, 5 , 0, 0 , 0, 0 , 0 , o, 0 , 0 , 0 , 0 , 0 , 0 , 32, 

6 4 , 0, 0 , 0 , 0 , o, 0 , o, 0 , 0 , 0 , o, o, 0 , o, 2 8 , 5, 0 , o, o, o, 0 , o, 0, 0 , o, 0 , 0 , 0 , 32, 

0 , o, 0 , 1 , 2, 0 , o, o, 4 , o, o, o, 0 , o, o, 2 8 , 2, 0 , 0 , o, 0 , o, 0 , o, 0 , o, 0, o, 0 , 1 6, 

o, 0 , 1 , 0 , o, 0 , 0 , 0 , o, 0 , 0 , 0 , 0, 0 , 0, 2, o, 0 , o, 0 , o, 0 , 0 , 11 , o, o, o, 0 , o, 0 , 

o, 0 , 2 , o, o, 0 , o, 0 , 2 4 , 3 2, 2 , o, 0 , o, o, 0, 6, o, 0 , 0 , 0 , o, o, o, o, o, 0 , o, o, 0 , 

0 , 0 , 0 , o, 0 , 0 , 3 6 , 3 6, 0 , 0 , 1 , 0 , 0 , o, o, 0 , 11 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

4 , o, o, o, 0 , 36, 0 , 3 6, o, o, 1 , 0 , o, o, o, 0 , 11, 0 , 0 , 0 , o, 0 , o, 0 , o, o, 0 , 0 , 0, o, 
0 , 0 , 0 , 0 , 0 , 36 , 36 , 0 , 0 , 0 , 1 , 0 , o, 0 , 0 , 0 , 11 , 0 , 0 , 0 , 0 , 0 , 0 , o, 0 , 0 , 0 , 0 , 0 , 0 , 

0 , 0 , 4, 0 , 24, 0 , 0, 0 , 0, 25 , 1 , 0 , 0 , 0 , 0 , 4, 5, 0 , o, 0, 0, 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 

0 , 0 , 0 , 0 , 32, 0 , 0 , 0 , 25, 0 , 2, 0 , 0 , 0 , o, 0 , 5, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0, 0 , 0 , ( 

o, o, o, 0 , 2, 1, 1 , 1 , 1 , 2 , 0 , o, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , o, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

0 , o, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 38 , 0 , 0 , 0 , 0 , 0 , 0, 0 , 0 , 0 , 0, 1 , 0 , 0 , 0 , 0 , 0 , 3 , 0 

0 , o, o, o, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 8 , 0 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0, 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 

0 , o, 0 , 0 , o, o, o, o, 0 , 0 , 0 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 10 , 8 , 6, 1 4, ( 

0 , o, 0 , 0 , o, o, o, o, 0 , 0 , 0 , 0 , o, 0 , 0 , 0 , 0 , 3 3 , 2 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 5, 2 0 , 

29 , 2S , 2 8 , 2 , 0 , 0 , o, 0 , 4 , o, o, o, o, o, o, 0 , o, 0 , 0 , o, o, 0 , 0 , 10, o, 41 , 1 , 1 , 9, 

5, 5 , 2, o, 6 , 11 , 11 , 11 , 5, 5 , o, 0, 0, o, 0 , 0 , 0 , 0, 0 , 0 , 0, 0 , 0, 0 , 0 , 0, 0, 0 , 0 , 1, 

0 , 0 , 0 , 0 , 0 , o, 0 , 0 , o, 0 , o, 0 , 0 , 0 , 33 , o, o, o, 2 , o, 2 , 0 , o, 0 , 0 , 0 , 0, 0 , 5 , 20 , 

o, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , o, 2 , 0 , 9 , 1 , 4 , 0 , 0 , 0 , o, o, o, 11 , 0 , 0 

0 0 o. 0 0 o. o. 0 0 o. 0 0 0 0 0 0 0 0 9 0 1 8 3 0 0 0 0 0 13 0 0 

Figure 4.6 conflictMatrix.txt 

ConflictMatrix.txt shows which exams is crash against which exam, as well as its 

penalty value. These exams shouldn't be scheduled at the same time because student 

can't sit for two exams at the same time. 



TWOINAROW, 9 

TvlOI ADAY, 5 

3 PERIODSPREAD, 2 

~ OID4IXEDDURATIONS, 1 

5 F ON OAD, 5 , 10, 5 

Figure 4. 7 institutiona!Weight.txt 

The penalty value of soft constraints are all shown in institutionalWeight.txt. 

TWOINAROW means when two consecutive exams is scheduled, 9 will be counted as 

penalty and added into quality measurement. TWOINADAYpenalty is applied when 

student take more than one exam in the same day. PERIODSPREAD is applied if the 

exams taken by a student were not spread as far as possible. NOMIXEDDURA TIONS 

penalty is applied when different exam with different duration assigned into same 

timeslot. Finally, FRONTLOAD consists of 3 numeric data. First number is the largest 

number of exam, second number represents the number of last periods and last number 

represents penalty value. 

4.1.2 Coding 
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The programming language chosen for develop the project is Java. The Netbeans 

IDE is tht} tool of dt}Vt}lopmt}nt. Befort} manipulating th0 data ofiTC2007; all the 

information of txt file is read and stored for usage later. 



public class LoaGultipletzt { 

public static void •ain String[] args) thro s IOException 
String target_dir = 
File dir = ne File ·target_dir : 

File[] files= dir.listFiles 

for File f : files 
if f.isFile 

BufferedReader inputStream = null : 

try { 

inputStream = new BufferedReader 
ne FileReader (f ); 

String line : 

int count = 1: 

Figure 4.8 Coding for txt file loading 

4.1.2.1 Calculate the information 

dataset 1 

Before scheduling the timetable, some essential variable have to be calculated. 

These variable includes "total number of exams", "total number of student enrollment", 

"total number of times lot" and "total number of room". 

Dataset 1 has been l oaded : 

Total number of exam : 607 

Total number of enro lment : 32380 

Total number of t i mes lot . 54 

Total number of room : 7 

Figure 4. 9 the information of dataset 1 after calculated 
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System. out.println f Dataset 

SystPm. out.println Total n ber of e am: 

System. out.println Total number of enroll 

System. out.println Total n 

System. out.println 

has been loaded : 

Figure 4.10 coding of displaying the dataset information . 
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When the txt files were loading, calculation is done at the same time and the value 

will be stored into variable such as 'numOfExam', 'numOfEnrollment' and others. 

4.1.2.2 Calculate conflict matrix, matrix density, number of exam conflicts and 

student conflicts 

The conflict density represent the difficulty of scheduling a timetable. The higher 

the conflict density the more difficult to schedule the timetable. 

Number of conflict exam and number of conflict student is calculated before 

calculating conflict density. 

4.1.2.3 Sorting Exams with LE; LWD and LD 

There are 4 sorting method to schedule the timetable which are Largest 

Enrollment (LE), Largest Degree (LD), Largest Weight Degree (L WD) and random. 

LE is to sort the exam according to the number of student that take the exam. This 

mean the exam with highest number of student will assigned into certain timeslot first, 

then exam with second highest and follows. 

LD sorts the exam according to exam conflict. This mean the exam that most 

conflict against other exam will be assigned first. 

L WD sorts the exam according to the number of student who involved in conflict. 



Exam . 103 LE . 259 . 
' 

. 

Exam . 167 LE . 258 
' 

. 

Exam . -!37 LE . 256 . 
' 

. 

Exam . 443 LE . 255 . 
' 

. 

Exam . 131 LE . 253 . 
' 

. 

Exam . 1 LE . 251 . . 

Exam . 32 LE . 240 . . 

Exam . 198 LE . 237 . . 

Exam . 569 LE . 228 . . 

Exam . 447 LE 226 . . 
Exam . 6 LE . 219 . . 

Figure 4.11 Exam sorted with ascending LE 

In figure 4.11, exams were sorted according to number of student that has 

enrolled. The LE were listed in ascending order. 

Exam . 426 LD 108 . 
' 

Exam . 198 LD . 99 
' 

Exam . 6 LD . 96 . 

Exam . 221 LD . 95 . . 

Exam . '299 LD 94 . 

Exam . 427 LD 93 . 

Exam . 425 LD . 91 . . 

Exam . 303 LD . 90 . 
' 

. 
Exam . 8 LD . 89 . . 
Exam 300 LD . 88 . 

' 
. 

Exam . 199 
' 

LD 86 
T"\T~-rY '9"'o. ,._.,. - ~T I 

Figure 4.12 Exam sorted with ascending LD 
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In figure 4.12, exams were sorted according to number of exam conflict with 

another exam. The LD were listed in ascending order. 

Exam : 437 L ~ : 1523 
' 

Exam : 6 , LWD : 1396 

Exam : 447 L D : 1386 

Exam : 198 , LWD : 1240 

Exam : 5 , LV.~ : 1094 

Exam : 4 , LV.~ : 1094 

Exam · 443 L~~ : 901 

Exam : 533 L~~ : 899 

Exam : 3 , LV.~ : 881 

Exam : 531 LV.~ : 881 

Exam : 535 , L\\~ : 851 

Figure 4.13 Exam sorted with ascending LWD 

In figure 4.13, exams were sorted according to number of conflict student. The 

L WD were listed in ascending order. 

4.1.2.4 Sorting method 
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The method used for sorting LE, LD and L WD were quicksort algorithm. It is an 

efficient and fast algorithm. Below is sample coding of QuickSort function. 



I 
public class Quicksort 

private int [] n hers : 

private int n er : 

public void sort int [] values 
,.. . . e y 

if values ==null I I values. ength==O 
return : 

this. n ers = values :I 
n er = values. len&th : 
quicksort (O, n er - 1 

private void quicksort int low, int high 

int i = low, j = high : 

Figure 4.14 QuickSort class 

public void setUp ) thro s Exception 

n b~rs = new int [SIZE] : 
Random generator = ne Random (): 

for int i= 0 : i < nuabers. length : i++ 
nuabers [i] = generator.next!nt ~y : 

public void SortLD 

Quicksort sorter = new Quicksort 
sorter.sort LD : 

Figure 4.15 Calling quicksort function to sort LD 
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Solving 2007 

In my research, we will schedule an initial solution (timetable) using graph 

heuristic method. The timetable must fulfil all the hard constraints and soft constraints of 

lTC 2007. However, the quality of the timetable that generated by graph heuristic is quite 

low. Hence, PSO will be used as a method of improving the quality of that timetable. 

4.2.1 Initialization of timetable with graph heuristic 

The sequence of exam to be inserted into timetable in graph heuristic can be 

divided into 4 types: largest enrolment (LE), largest degree (LD), largest weight degree 

(L WD) and random. The explanations of each types has already mentioned in previous 

section. 

First, we should inserts all the exams that has hard constraints. This is because if 

we inserts those exams after majority normal exam, there is a high chance that all the 

timeslot left were not suitable. Then, we will inserts other normal exams into timetable 

according to the sorting method until every exam is fitted into the timetable. 

In this progress, we will choose the random timeslot (combination of room and 

period) for each exam. If the room capacity is fitted, we will have that exam located in 

that room. Then, we check if the period will cause any clashing of any other exams. Only 

if these 2 conditions are satisfied, the exam is assigned to that particular times lot. 

Otherwise, we have choose another timeslot until suitable timeslot is found. 

Not to forget lTC 2007 allows more than one different exams run in the same 

timeslot. Hence, we also have to check if the sum of all exams in timeslot exceed the 

room capacity. 

The progress continues until all the exams were fitted into timetable. Hence, the 

initial solution (timetable) is generated. 
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Inserts an exam 

Choose random timeslot 

NO 

YES 

YES 

NO 

Calculate penalty value 

Figure 4.16 Flowchart of generating an ITC 2007 timetable by using graph heuristic. 
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After the timetable has been generated, we will calculate the penalty value of the 

timetable. The penalty value is determined by the violation of soft constraints. The more 

number of soft constraints that haven't fulfilled; the higher the penalty value. 

There are 7 types of soft constraints in ITC 2007. Every soft constraints has its 

own institution weight for penalty value calculation. For example, "Two exams in a row" 

is to count the occurrences where two exams were taken by same student appears after 

one another. If the number of occurrences was 10 and the institution weight for "Two 

exam in a row" is 7, then penalty value for this soft constraints is 10 x 7 = 70. The sum 

up of 7 soft constraints penalty value is the overall penalty value for that timetable. Every 

institution weight value is depends on the dataset ITC 2007. 

Due to timeslot was chosen randomly, the penalty value will be different for every 

generating of timetable by graph heuristic. 

4.2.2 Improving the quality of initial solution by PSO 

The initial solution timetable will have a high penalty value for sure. This mean 

the timetable is feasible but the quality is not good enough. We should pursue a better 

timetable. Hence, PSO is used to improve the quality of the timetable. Figure on next 

page is the flowchart ofPSO and we will have explanation as follows. 



Try to improve the fitness of current particle 
by inserting a random exam from global 

timetable to current particle timetable 

Calculate current particle's fitness 

YES 

Undo insertion 

Choose 2 random exams in current particle 
and swap them 

YES 
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Figure 4.17 Flowchart of timetable quality improvement by using PSO 

PSO is a population technique that requires many particles (timetable) in order to 

execute algorithm. Therefore, we should decide the number of particle (p) first. For 

example, if we set p = 10 then we should have graph heuristic generates us 10 timetables. 

Notice that higher number of p will helps produce better timetable but costs more 

processing time. 

Next, we will calculate the penalty value (pBest) for each particle. This mean we 

will have 10 different penalty value. The timetable that has lowest value (current best 

timetable) will become global particle and its penalty value will be gBest. The use of 

gBest I global particle is as model of other particle. All the other particles will mimics 

global particle in order to become better timetable. 

So, we copy the pattern of global particle to current particle by inserting random 

exam from global particle at the same timeslot. For example, global particle has an exam 

356 at room 6th period 15th. We will try to insert exam 356 at room 6th period 15th at 

current particle, and the original exam 356 at current particle will be deleted. Of course, 

the chosen exam and timeslot shouldn't cause any hard constraints violation and clashing 

problem. Otherwise, we will re-choose another exam and timeslot. 

Then, we should take count of the new penalty value for current particle. If the 

value decreased (improved), we will update the particle and its pBest. If the value 

increased, we will undo the insertion and re-choose another exam and timeslot. In other 

word, the process keep repeating until suitable exam assigned into suitable timeslot and 

the quality of timetable enhanced. 

After the insertion, we will perform 'swap'. Just as its name implies, swap will 

choose 2 random exam and swap their times lot. Same as insertion, if the times lot will 

causes any hard constraints violation or clashing problem the 'swap' will not be 

implemented until suitable 2 exam and their times lot is found. After swap, if the quality 

of timetable is enhanced we will update the pBest once again. If the quality dropped we 

will undo the swap 

quality of timetable. 

swap can actually improve 



Notice that we have 10 particles (as mentioned in example). The 'insertion' and 

'swap' will be executed on every particle. After every particle has been inserted and 

swapped; we should update the gBest because the pBest might have surpassed gBest. 

Therefore again, we will have the highest pBest set as new gBest. 

Every update on gBest is counted as one generation (iteration). The 

number of generation is dependent. The higher the number of generation will produce 

better timetable but it costs more execution time. After certain number of iteration, the 

execution ofPSO will stopped and the improved best timetable shall be chosen. 

4.3 Conclusion 

This chapter discusses the design and the implementation of the research. First, 

we discussed the lTC 2007 and the information contained. Next, we discussed usage of 

graph heuristic for generating an initial solution (timetable). Finally, we discussed the 

improvement of timetable quality by using Particle Swarm Optimization. 
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CHAPTERS 

RESULT & DISCUSSION 

In this chapter, we will discuss on the penalty value from different exam sorting 

method. We will also evaluate on the performance of Particle Swarm Optimization with 

different population size. 

5.1 Result of penalty value from different exam sorting method 

As mentioned before, the initial solution was generated by graph heuristic with 

different exam sorting method which are LE, LD, L WD and random. We will only 

compare the result of LE and LD since L WD couldn't 100% successfully generate a 

timetable and random method doesn't have any comparability. Below is the result of 10 

times running graph heuristic timetable initiation and their statistical view table. 
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Running LE LD 

1 38050 43914 

2 37558 47410 

3 45198 47020 

4 46936 43995 

5 46486 39544 

6 41020 48806 

1 46645 43422 

8 46183 43697 

9 42181 42425 

10 45126 45212 

Average 43538 44544 

Table 5.1 Result of penalty value from different sorting method 

Average Stdev Var Min Max 

bargest Enrollment 43538 3593.5783 12913804.6778 37558 46645 

(LE) 

Largest Degree 44544 2683.902 7235572.5 39544 48806 

(LD) 

Table 5.2 Statistical view of LE and LD 

Stdev =Standard Deviation, Var =Variance, Min= Minimum, Max= Maximum 

From the above result, we can tell LE is slightly better than LD in term of 

producing higher quality timetable. This is because LE could've produce timetable that 

has penalty value below 40000 while the upper range is within 47000. LD has produced a 

result 39544 once but according to its Stdev, that was an abnormal result. 

However, the advantage of LE compared to is very little. 



In this section, we analyse the performance of PSO by check its impact to the 

penalty value deduction. The tested dataset was 2, 5 and 7. The population size test for 

each set was 2 and 8. Below is the result of performance test and its statistical view. 

Dataset 
Population size 

') 
.,(..- 8 

Before After ImproYed Before After unproved 

24170 9552 60.48o/o 35954 13094 63.58~--o 

31160 10400 66.62~/o 32579 13478 58.63~'o 

2 35830 16815 53&07~-~ 28045 11016 60.72~~~ 

35365 21525 39.13~/o 34786 13963 59.86o/o 

35730 15886 55.53~-~ 42158 64.55~'o 

88517 27846 68.54~'o 79842 2 014 73.68o/o 
82464 22659 72.52~-~ 84265 70.54%) 

5 76406 21611 72~/o 80456 19591 75.65~'0 

80694 20344 74. 78o/o 77865 26139 66.43~~ 

87654 25834 70.52~~ 86548 24857 71.28~1o 

39031 19968 48.84~~ 48218 25290 47.55o/o 
46566 27129 4L74o/o 38951 20340 47.78~~ 

7 36795 22322 39.33~b 49685 22848 54.01~~ 

41790 27020 35.34~~ 37895 19205 49.32~'o 

44562 24656 44.67o/o 48952 22581 53.87~b 

Table 5.3 Result of performance test for PSO 

Population size Average stdev var Min Max 

2 56.18867 14.02607 196.73067 35.34 74.78 

8 61.16333 9.33206 87.08741 47.55 75.65 

Table 5.4 Statistical view of performance test for PSO 

Stdev = Standard Deviation, Var = Variance, Min = Minimum, Max = Maximum 
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From the table above, we found that population size '8' can improved the 

timetable quality better than population size '2'. The average improvement for 

population size '2' is only 56% while average improvement for population size '8' is 

61%. 
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However, we also found out that the execution time is longer with '8' at the same 

iteration number as '2'. Hence, we have conclude the performance ofPSO in term of 

different population size : the higher the population size , the better the quality of 

timetable but costs more time ; the lower the population size, the execution time required 

is short but the quality of timetable will be dragged down. 

5.3 System overview 

The implementation of graph heuristic is able to generate a feasible timetable but 

the quality is so bad. Therefore we have Particle Swarm Optimization to improve the 

quality of that timetable. Testing of the system shown that PSO is capable of improve the 

quality by 50% to 60%. 

The population size of PSO will give huge impact to the performance of PSO 

improvement. The more population size will increase the improve rate of timetable but it 

costs the system more time. In opposite, the lesser population size make the system 

produce improved timetable fast but the quality is not that good. 

The input of the system is the number of particle and iteration number. When 

these variables is decided and system started doing improvement, the system will start 

doing improvement until the iteration ends. 

The output from the system is the display of the improved timetable. More than 

that, system will create a txt file that contains timetable information. The txt file can be 

used for validation by uploading it to lTC 2007 website. 



Conclusion 

In this chapter, we compared the penalty value of timetable that generated by 

and LD. LEis slightly better than LD but advantage doesn't leading so much. 
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Next, we looked over the performance of the PSO in term of different population 

size. The higher the population size the better the timetable quality; the lower the 

population size the faster the system produce timetable. 

Last, we discussed the system overview. 
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CHAPTER6 

CONCLUSION 

In this chapter, we will make a conclusion for all the work in this thesis. Section 

6.1 describes the overall introduction for this thesis. Section 6.2 is the result analysis and 

Section 6.3 talks about future work. 

6.1 Introduction 

From the study of different timetabling dataset, we found out that different 

educational institutions have different requirement for their examination timetable. lTC 

2007 is an outstanding dataset because it considered the room capacity compared to other 

dataset. More than that, lTC 2007 is a very comprehensive dataset. It has a lot of 

constraints such as 'exam A must be after exam B ', 'exam C must be in room D' and all 

these constraints causes challenge to the researcher. 

With the help of graph heuristic technique and Particle Swarm Optimization, we 

successfully solved this dataset fulfilling all the hard constraints and reduce the soft 

constraints violation as much as possible. 

6.2 Result analysis 

From the result, we can say that the research is successful and we managed to 

achieve all the objectives of this project, which are: 

1. To study on the examination track of the Second International Timetabling 

Competition (ITC2007). 
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2. To implement Particle Swarm Optimization method in solving the examination 

timetabling problem that satisfies all the constraints. 

3~ To validate and verify the solution produced using Particle Swarm Optimization 

whether it satisfies all the constraints. 

We have studied the information contains in lTC 2007 examination track. We listed 

the hard constraints and soft constrains of lTC 2007. We read about penalty value 

calculation of ITC 2007. 

Particle Swarm Optimization has been implemented successfully in our system. 

The implementation didn't cause any hard constraints violation and fulfilled as much soft 

constraints as possible. 

6.3 Future Work 

After proving PSO is capable of solving ITC 2007 examination timetabling 

problem, we will try to use same proposed technique to solve other dataset. More than that, 

we will also try to modify PSO and try if it can produce way better result than the current 

one. 
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