
SW RM

SOLVE ITC2007 EXAMINATION

TIMETABLING PROBLEM

EEJUN JIANG

UNIVERSITY MALAYSIA PAHANG

PARTICLE SWARM

EXAMINA'

PERPUSTAKAAN UMP

I IIIII II II II
0000103243

EEJUN JIANG

~ lTC 2007

THESIS SUBMITTED IN FULLFILLMENT OF THE DEGREE OF COMPUTER

SCIENCE (SOFTWARE ENGINEERING)

FACULTY OF COMPUTER SYSTEM AND SOFTWARE ENGINEERING

UNIVERSITY MALAYSIA PAHANG

2014

11

~
Universiti
Malaysia
PAHANG
---~

UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS

111

mouLf~~~~~t~ftl(;?~j_lL/j.V! ... ffu ... ~C._2W1
SESI PENGAJIAN: .. ~.0(l!l;,~f!.(... / ~.~(.'f/20(~

SAYA ... ~~ J.~~ JJ!!.tf.6. (HURUF BESAR)

Mengaku membenarkan tesis/laporan PSM ini disimpan di Perpustakaan Universiti
Malaysia Pahang dengan syarat-syarat kegunaan seperti berikut:

1. Tesis/Laporan adalah hakmilik Universiti Malaysia Pahang.
2. Perpustakaan Universiti Malaysia Pahang dibenarkan membuat salinan untuk

mjiiiin pengaj ian sahaj a.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara

institut pengajian tinggi.

4; * * Sila tandakan (v)

DSULIT

II II TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau
kepentingan Malaysia seperti yang term aktub di dalam
AKTA RAHSIA RASMI 1972) *

(Mengandungi m aklum at TERHAD yang telah ditentukan
oleh organisasi/badan dim ana penyelidikan dijalankan) *

li:af TIDAK TERHAD

······---~·-··-

Ala!Jtlat tetap: \ ..k
\.t\-~ ' j o-.l (\ ~o.(QQ \

\c-N\(}1\ ~o-{o-d () Cf ~0 t>

_Mr\0) I KiLdo.~ I ~· . '- -- -- - __ l - --- . Tankh ~ ~\t

*Sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan

tempeh tesis/laparan ini perl~;~ aikelaskan sebagai SlJbiT ata~;~ T ERHA9.

lV

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations

and summaries which have been duly acknowledged.

15 MAY2014 Ee JunJiang

CB 11088

v

SUPERVISOR'S DECLARACTION

"I hereby declare that I have read this thesis and my opinion this thesis is sufficient in
terms of scope and quality for the submission of PSM 2, Degree in Computer Science
(Software Engineering)"

Signature

Supervisor

Date

: En 1k Mohd Nizam Bin Mohmad Kahar

: I.~:::/. 't.

Vl

ACKNOWLEDGEMENTS

First, thank god who is always with me for giving me strength and bless me to finish
this work. Next, I would like to express my sincere thanks to my supervisor Dr. Mohd
Nizam bin Mohmad Kahar for all his guidance and encouragement. I am greatly
appreciated his concern and support at all time.

Lastly, thanks my family for their support, caring and love as a motivation to me and
my academics. Not forgetting my friends that gave me helps when I face problem.

Vll

ABSTRACT

The educational institute has been annoyed by timetabling problem for many years. The
tirrtetabling is difficult due to large amotifit of subject/exams to be allocated into certain
timeslots at the same time fulfill all the hard constraints and some of the soft constraints
(constraints are requirements of the timetable). In the timetabling research, there are
various techniques/ algorithm has been used to solve the problem. However, most of
them are applied to solve simpler timetabling problem which doesn't consider room
capacity as constraints (or simplified the room capacity factor).

In this thesis, an examination timetabling dataset that consider room capacity will be
us€d which nam€d S€conds Inremational Tim€tabling Comp€tition (ITC 2007). ITC
2007 has very well defined constraints and it is more completed compared to other
dataset.
One chosen technique which is Particle Swarm Optimization will be used to solve the
ITC 2007 examination timetabling problem.

VlU

ABSTRAK

Institut pendidik telah bertahun-tahun diganggui masalah membuat jadual waktu.

Membuat jadual waktu ini amat sukar kerana jumlah mata perlajaran I perperiksaan

yang akan diperuntukan ke dalam slot masa tertentu disampingan mecapai kekangan

keras and kekangan lembut. Dalam kajian jadual waktu, terdapat pelbagai teknik/

algoritma telah digunakan untuk meyelesaikan masalah terse but. W alaubagimanapun,

sebahagian besar kajian adalah digunakan untuk menyelesai masalah jadual waktu

yang lebih mudah , iaitu kajian yang tidak menganggap kapasiti bilik sebagai

kekangan (atau mempermudahkan faktor kapasiti bilik).

Dalam tesis ini, satu dataset jadual waktu peperiksaan yang bemama International

Timetabling Competition (lTC 2007) akan digunakan. ITC 2007 mempunyai

kekangan yang baik ditakrif dan ia lebih lengkap berbanding dengan dataset lain.

Salah satu teknik yang dipilih adalah Particle Swarm Optimization akan digunakan

untuk menyelesai masalah jadual waktu peperiksaan ITC 2007.

CONTENT

DECLARATION
SUPERVISOR's DECLARATION
ACKNOWLEDGEMENTS
ABSTRACT
ABSTRAK
CONTENTS
LIST OF TABLES
LIST OF FIGURES

SECTION CONTENT

1
1.1
1.2
1.3
1.4
1.5

2
2.1
2.2
2.3

2.4

INTRODUCTION
Background of Study
Problem Statement
Research Objective
Research Scope
Thesis Organization

LITERATURE REVIEW
Overview of Timetabling
University timetabling problems
Examination timetabling
2.3.1 Main objective of examination timetabling and its
constraints
2.3 .2 Capacitated and un•capacitated problem in examination
timetabling
Examination timetabling dataset
2.4.1 University of Toronto dataset
2.4.2 Dataset of University of Melbourne
2.4.3 Dataset of University ofNottingham
2.4.4 Dataset of University Kebangsaan Malaysia(UKM)

lX

PAGE
lV

v
Vl

Vll

viii
lX

Xl

Xll

PAGE

1
1
2
3
3
3

4
4
5
6
7

8

8
9

10
11
11

2.4.5 Dataset of University Teknologi MARA(UiTM) 12

2.5

2.4.6 Second International Timetabling Competition (ITC2007) 13
dataset
2.4~ 7 Summary of dataset 16

Methodologies applied to the examination timetabling problem
2.5.1 Hill Climbing (HC)
2.5.2 Tabu search (TS)
2.5.3 Simulated Annealing (SA)
2.5.4 Great Deluge Algorithm (GDA)
2.5.5 Genetic Algorithm (GA)
2.5.6 Ant Colony Optimization(ACO)
2.5.7 Graph Heuristic (GR)
2.5.8 Particle Swarm Optimization (PSO)

18
18
19
20
21
23
24
25
27

X

2.6 Conclusion 29

3 METHODOLOGY 30
3J Introduction 30
3.2 lTC 2007 : Examination Track 30
3.3 Problem Formulation 31
3.4 Particle Swarm Optimization to solve ITC 2007 examination 35

timetabling problem
3.5 Conclusion 37

4 DESIGN AND IMPLEMENTATION 38
4.1 Project Implementation 38

4.1.1 Display the information of the ITC2007 dataset 38
4.1.2 Coding 42
4.1.2.1 Calculate the information 43
4.1.2.2 Calculate conflict matrix, matrix density, number of 44
exam conflicts and student conflicts
4.1.2.3 Sorting Exams with LE, LWD and LD 44
4.1.2.4 Sorting Method 46

4.2 Solving lTC 2007 48
4.2.1 Initialization of timetable with graph heuristic 48
4.2.2 Improving th€ {}Uality of initial solution by PSO 50

4.3 Conclusion 53

5 RESULT AND DISCUSSION 54
5.1 Result of penalty value from different exam sorting method 54
5.2 Performance of PSO with different population size 56
5.3 System overview 57
5.4 Conclusion 58

6 CONCLUSION 59
6.1 Introduction 59
6.2 Result analysis 59
6.3 Future work 60

REFERENCES 61

APPENDIX 64

xi

LIST TABLES

NO TABLE TITLE PAGE

2.1 Examples of constraints of the course timetabling problems 6
2.2 Example of constraints for the examination timetabling 7

problems
2.3 Toronto Dataset 10
2.4 University of Melbourne datasets 11
2.5 University of Nottingham datasets 11
2;6 University Kebangsaan Malaysia datasets (UKMQ6 .. Q I) 12
2.7 Capacity of dataset UKM06-0 1 12
2.8 University Teknologi Malaysia (UiTM) dataset 13
2.9 International Timetabling competition dataset 14

2.10 Hard constraints of ITC2007 14
2.11 Soft constraints of ITC2007 15
2.12 Summary of datasets 16

5.1 Result of penalty value from different sorting method 54
5.2 Statistical view of LE and LD 55

5.3 Result of performance test for PSO 56
5.4 Statistical view of performance test for PSO 56

xii

LIST OF FIGURES

NO FIGURE TITLE PAGE

2.1 The Hill Climbing procedures 19
2.2 GDA procedures 22
2.3 Genetic Algorithm procedure 24
2.4 Coififiiort ordering strategies of graph heUristic 26
2.5 Procedure ofPSO 28
4.1 Exam. txt 39
4.2 Room. txt 39
4.3 Period. txt 40
4.4 periodHC.txt 40
4.5 roomHC.txt 41
4.6 conflictMatrix.txt 41
4.7 institutional Weight. txt 42
4.8 Coding for txt file loading 43
4.9 The information of dataset after calculated 43

4.10 Coding of displaying the dataset information 44
4.11 Exam sorted with ascending LE 45
4.12 Exam sorted with ascending LD 45
4.13 Exam sorted with ascending L WD 46
4.14 QuickSort class 47
4.15 Calling quicksort function to sort LD 47
4.16 Flowchart of generating an ITC 2007 timetable by using 49

graph heuristic
4.17 Flowchart of timetable quality improvement by using PSO 51

1

CHAPTER I

INTRODUCTION

1.1 Background of Study

Examination timetabling problem has annoying educational institute for many

years and it has been widely studied by many researchers. It concerns with the distribution

of the university exams and also the timeslot.

Examination timetabling problems can be divided into 2 types: capacitated and un­

capacitated. The researcher can solve the un-capacitated examinations problem with their

techniques or algorithm easily and quick. However, this is difficult for capacitated problem

because it consider the room capacity. Room capacity will be the hard constraints of

capacitated examination problem and it makes capacitated problem look like real world.

There are many solutions and algorithms can be used to solve this problem. While

solving the timetabling problem, researcher have to fulfill certain constrains. The

constraints can be divided into 2 types which are hard constraints and soft constraints. Hard

constraints are the requirement of the timetable and it must be achieve, otherwise the

timetable is not usable and will consider as a failure. An example of hard constraint is

amount of student should not exceed room capacity. While soft constraints are the rules

that are not necessary to fulfill. However, if you achieve as much soft constraint as possible,

it will enhance the quality of the timetable. An example of the soft constraint is exams

l['"~'onn as evenly

2

There is lesser researcher work on capacitated timetabling problem than un­

capacitated timetabling problem due to the difficulty. Another reason would be lack of

dataset of capacitated problem. The researchers who are working on capacitated

timetabling problem are concerned of room number and room's size because these

constraints represent the increasing of complexity of the timetable.

We will work on capacitated problem which is the International Time tabling

Competition 2007 (ITC2007). There are some constraints in lTC 2007 which will be

explained in detail later. Particle Swarm Optimization is chosen as the technique to solve

lTC 2007.

1.2 Problem statement

Many universities will agree on how hard it is to conduct an examination timetable.

However, it can be solved by using the algorithm in computer science.

The examination timetabling problem is one of the common timetabling problem.

However, a lot of research of examination timetabling has been made with the un­

capacitated dataset such as University of Toronto dataset. This doesn't really resemble the

real world timetabling situation. There are also some capacitated dataset such as University

of Nottingham and University of Melbourne dataset they combined the every room

capacity as one. In real world, we should separate the room capacity individually. Thus,

the research is not really practical.

Our work will be focus on solving the ITC2007 examination timetabling dataset

practically. This capacitated dataset has several constraints that resemble real world

situation.

3

This research will be achieving three objectives~

1. To study on the examination track of the Second International Timetabling

Competition (ITC2007).

2. To implement Particle Swarm Optimization method in solving the examination

timetabling problem that satisfies all the constraints.

3. To validate and verify the solution produced using Particle Swarm Optimization

whether it satisfies all the constraints.

1.4 Research scope

In our research, we are going to study ITC2007 timetabling dataset. This dataset

has some constraints including room capacity and the room number. We are implementing

Particle Swarm Optimization to develop a timetable for the dataset.

1.5 Thesis Organization

This research consists of 7 chapters. Chapter 1 is Introduction. Chapter 2 is

literature review. Chapter 3 is methodology. Chapter 4 and 5 are design and

implementation of the system. Chapter 6 is the result of the research and discussion of the

research. Last, Chapter 7 is conclusion of the research.

4

CHAPTER2

LITERATURE REVIEW

2.1 Overview of timetabling

Timetabling is concerned about how the subject are allocated within the limted

timeslots. There are many kinds of timetable scheduling problems in the daily life, such as

examination, lecture, and transportation timetable. For all of these timetabling problems,

there are constraints that needed to be satisfied while solving these timetabling problems.

The constraints of timetabling can be categorized into hard constraints and soft

constraints. Hard constraints are rules the timetable must follow. A timetable is usable only

if all hard constraints are achieved. Soft constraints are not necessary to be followed but it

is encouraged to fulfill as much as possible. This will enhance the quality of the timetable.

However, it cost us more effort to handle soft constraints.

5

2.2 University timetabling problems

The very common timetabling problems in University are course timetabling and

exam timetabling. They both take a lot of time and manpower to conduct manually. Prevent

allocating students to sit two examinations/courses at the same time is the first priority of

timetabling. However, examination timetabling and course timetabling have some

difference between each other. First, course timetabling and exam timetabling have

significant difference in their constraints. The differences of the constraints will be

presented on Table 2.1 and Table 2.2.

Other than the constraints, we can differentiate examination timetabling and course

timetabling by the way of construction. There are 3 noticeable construction can help us

which are environment of the process, modeling and scheduling instances. For exam

timetable, it is conducted by the academic office while course timetable is conducted

independently by school. Their process environment is different. In modeling, exam

timetable was conducted based on amount of student that are taking the exam. While course

timetable was conducted based on amount of student and amount of course. For the

scheduling instances, exam timetable was conducted based on offered course and course

timetable was conducted based on offered course as well as lecturer's available session.

Many Universities allows student to arrange the timetable themselves by system

Open Registration, this increased the complexity of scheduling the timetable. The

complexity is relevant to the degree of freedom given to student to arrange the timetable

themselves.

6

Table Some constraints of Course Timetabling problem

3.

The

the course.

Soft constraints

5.

2.3 Examination timetabling

In this research, my main focus is on solving Examination timetabling problem.

Examination timetable plays a huge role in educational institution. It should be conducted

very carefully in order to avoid clashing schedule and cause trouble to student or lecturer.

The main task of examination tabling is to allocate the examinations into certain

rooms and timeslots. At the same time, the timetable should follow all the constraints.

Table 2.2 shows some examples of constraints in examination timetabling problems.

Table 2.2 Some constraints of Examination Timetabling problems

Soft constraints

5.

6.

7.

2.3.1 Main objective of examination timetabling and its constraints.

7

as

There are a lot of examination timetabling constraints because different institution

might have different request. More than that, the person who related to timetable always

have different preference on the timetable. For example, student will demand examination

being spread evenly in order to give them times to do their revision.

These constraints should be achieved if possible in order to create high quality

timetable.

8

Capacitated

In the timetabling field; most of the researchers are working on the un-capacitated

problem. This is because un-capacitated problem doesn't consider room capacity as

constraints so it is easier to study and investigate. However, capacitated problem more

resemble the real world situation because it is impossible for an educational institute to

have unlimited space for exam. Capacitated timetabling problem is so much difficult than

un-capacitated timetabling problem.

Capacitated problem requires more comprehensive data such as examination list,

student list. This extra information is difficult to gather. And the main cause to the difficulty

of scheduling timetable is lack of available room.

Burke, Newall and Weare, (1996) modified Toronto dataset to make it more

resemble the real world timetabling situation. The modified Toronto dataset includes an

overall capacity as if all exams were placed in a one big room. This represents the

simplification of the timetabling problem since we would have to consider only one room's

capacity.

2.4 Examination timetabling dataset.

There are a lot oftimetabling datasets in the community. The most common dataset

are University of Toronto, University ofNottingham and University of Melbourne. Other

than that, we have UKM examination datasets and UiTM examination dataset. In 2008,

McCollum et al (2008) introduced the Second International Timetabling Competition (ITC

2007). This dataset have more realistic problem as it consider the room capacity compared

to other datasets.

There are a lot of research on the un-capacitated problem, mainly concentrate on

the algorithms and the performance of that algorithm. The result will be observed to see

algorithm is capable to effectively enough.

9

Most of the researchers on un-capacitated timetabling are not dealing with a11

aspects of the timetabling problem, they work on simplified examination timetabling

problem instead; The simplified examination timetabling problem only includes some very

common hard constraints and soft constraints.

2.4.1 University of Toronto dataset

The Toronto dataset have 13 real-world exam timetabling problems. To allow

genuine comparison between the scientific communities, problem instances of the Toronto

dataset are classified into I and also II by Qu et al, (2009). The University of Toronto

dataset was introduced by Carte, Laporte and Lee, (1996). They investigated two variants

of the objectives with the purpose to minimize the number of timeslots needed for the

problem and to minimize the sum of approximate costs per student. In 2001, Di Gaspero

and Schaerfused Tabu Search with only consider constraints conflict to solve this Toronto

dataset. Burke, Newall and Weare, (1996) had added some new aim to the Toronto dataset.

They made count of maximum amount of the room capacity per times lot and second-order

conflict of same day constraints. Merlot et al. (2003) solved Toronto dataset by using the

hybridization of Constraint Programming, Hill Climbing and Simulated Annealing. Table

2.3 shows the information of Toronto dataset.

10

Table Toronto Dataset (Qu et al., 2009)

2.4.2 Dataset of University of Melbourne

The University of Melbourne dataset was first brought to public by Merlot et al.,

(2003). Melbourne dataset has 2 timeslots for weekday. The timeslots have different

capacity which timeslots I has 28 while timeslots II has 31. The dataset also included some

time constraints where the exams can only be assigned to certain time period or the exam

can only held in certain session only. Melbourne dataset was focus on minimize some

conflicts such as exams on the same day. Table 2.4 shows some information of the

University of Melbourne examination dataset.

Cote, Wong and Saboun, (2005) and Merlot et al., (2003), investigated the

Melbourne dataset using a hi-objective evolutionary algorithm where Tabu Search and

Variable Neighborhood Decent were utilized.

11

Table University of Melbourne datasets

2.4.3 Dataset of University of Nottingham

Merlot, Boland, Hughes and Stuckey introduced dataset of University of

Nottingham at the PATAT conference in 2002. In this dataset, the total number of student

assigned for each timeslot cannot be more than the total room capacity. The aim of this

dataset is to minimize the students sit exams in a row.

In 1999, Burke and Newall used Graph Heuristic with the aim of avoiding second ..

order conflicts on the same day. In 2003, the same method was used by Merlot on this

dataset. In addition, Burke solved the Nottingham dataset by using Great Deluge Algorithm

in 2004. Table 2.5 shows some information of the University of Nottingham examination

dataset.

Table 2.5 University of Nottingham datasets

2.4.4 Dataset of University Kebangsaan Malaysia (UKM)

Ayob et al., (2007) introduced a capacitated timetabling dataset - UKM dataset.

The data presented is real data for undergraduate exam in UKM for Semester I, year 2006.

The constraints of this dataset are all exams must be scheduled and student should not be

allocated into exams at the same time. More than that, this dataset requires some exam to

held room. Next, students should assigned into the same room if they are

having consecutive exams. The main objectives ofUKM dataset are to avoid letting student

12

have consecutive exams in the same day and to evenly spread the exams of each student.

Table 2.6 shows the information of the UKM dataset and Table 2.7 shows the room

capacity of this dataset.

Table 2.6 University Kebangsaan Malaysia datasets (UKM06-0 1)

Table 2.7 Room capacity of dataset UKM06-01

Room

2.4.5 Dataset of University Teknologi MARA (UiTM)

The MARA University of Technology (UiTM) is the largest university in Malaysia.

Its total number of students was about 100,000.

The UiTM dataset is a capacitated timetabling problem. It was introduced by

Kendall and Russin (2004). There are some rules of this dataset. First, all the exams must

be scheduled. Next, it doesn't allow a timetable that have student sit for more than one

exam at the same time. The main objective is to spread the exams evenly and avoid having

exams in weekend. Table 2.8 shows the information of the UiTM examination dataset.

13

Table 2.8 University Teknologi Malaysia (UiTM) dataset

2.4.6 Second International Timetabling Competition (ITC2007) dataset

The Second International Timetabling Competition (ITC2007) was introduced to

attract research on techniques concerned timetabling problems encountered within

educational institutions. ITC 2007 is a platform to let researcher apply their algorithm or

techniques on conducting a timetable that resemble real world situation.

ITC2007 consists of 3 tracks: 1 examination timetabling and 2 on course

timetabling. In our research, we only investigate the examination track.

The constraints in ITC 2007 are very well defined and rather comprehensive. This

mean ITC 2007 is more resemble the real world situation as it considers room capacity.

There are a lot of techniques has been applied to solve ITC 2007 such as Iterated

Forward Search, Hill Climbing and Great Deluge Algorithm by McCollum et al., (2008);

Gogos, AleFragis and Houses (2008) from Japan uses a multistage approach that uses

GRASP, Simulated Annealing and Mathematical Programming to solve it.

Table 2.9 shows some information of ITC 2007. Table 2.10 shows the hard

constraints of ITC 2007 and Table 2.11 shows the soft constraints of ITC 2007.

14

Table 2.9 Second International Timetabling Competition dataset.

Table 2.10 Hard constraints of lTC 2007.

15

Table Soft constraints of ITC2007.

16

2.4. 7 Summary datasets

After viewing various dataset; we shall make a comparison and summary of them~

Table 2.12 show the summary of various dataset.

Table 2.12 Summary of datasets

Comstramts Toromto Nottmgham ~Ielooume UKl\1 ITC2007

Clash free Hard Hard Hard Hard Hard

Scheduled all exams - Soft Soft Hard

Exam preference - - Hard (1·t) - Hard(sa)

- Specified Soft(lf)

arrangement: sa

- Specified room: .sr

- exam schedule

&-st lf
;e - Restriction on exam in
1:
Q

particular timeslot: ·~ rt
= .5 Scheduled combined § -
~ exam in the same ~

timeslots: ct

Consecutive exam - Soft Soft Hard Soft

- Two exam in a rmv:2r & & and

- Two exam in a day-2d

- Two exam in a row

overnight: ln

- Three exam in a

day:3d

11

Coastramts Toroato ~' ~ 1\Ielooume "li1Gf ITC2007 .L

Timeslot r&.._:_ - - - - Soft(tu) ~· ,_.

- 1\.f.immise/avoid usage

"0 :tu
~

Timeslot length Hard = - - - -
~
~ l\1ixed duration of Soft(mt) -
..5:
;e exams. in one timeslot: ~

.§
E-o mt

Spreading Soft Hm-d (ss) Soft Soft Soft(ss)

- Specified spread: ss

Room distance - - - - -

No sharing of room with other - - - Hm-d -
exams (se)

- F O£ specified exam

only: S€

Room Preference - - - Hm-d ~
ilC.UU(.:..f:J

- Consecutive exam Soft

scheduled in the same

room: cr
"0
~ ~mise/ avoid -= "!!
"" usage: nl ..,
e Specified room: sr CI -
CI p::

Split exam into different - - - - -

rooms

- Same building onl]r:

sb

- As close as possible:

cp

Capacity - Hm-d(ts) Hard(ts) Hard(Hm-d(ir)

- Total se.ats: ts tsand

- Individual room: ir

H d =Hard " .I!:L " .I!:L .£, .~. "'cell ar I.Ufi.!>UUffHi ::!Uj t ;:;;;:,uj l I.Vff.!>HLJHIL, ::iriUUt::U constraint not considered.

18

Methodologies applied to examination timetabling problem

Researchers has been studying on timetabling problem since 1960s. There are a lot

of techniques or algorithm that has been used to solve timetabling problem. For example:

Greate Deluge Algorithm , Genetic Algorithm, Tabu Search and Particle Swarm

Optimization. These techniques/algorithm were developed for solving these examination

timetabling problems.

These methodologies allows student to conduct a timetable that based on their

preference and even better than what they expected. These methodologies also help in

prevent negative influence such as clashing time periods in exam.

2.5.1 Hill Climbing (HC)

Hill Climbing also was called as simple decent. It is a classical local search

algorithm. Hill Climbing is a technique that will chose one candidate solution random from

neighboring solution, N(s) in its every iteration. The candidate solution is represented as

s'. If the candidate solution is better than current one, it will replace the current solution.

Many researchers have hybridized Hill Climbing with other search algorithm

because Hill Climbing has an obvious disadvantage. It could be trapped in the local optima.

This mean the iteration could not provide a better solution anymore although there is exist

of better solution. By hybridize with others technique or algorithm, this problem can be

solved. For example, a hybrid of Hill Climbing and Genetic Algorithm was created by

Burke, Newall and Weare (1996) to avoid the problem that mention above.

Figure 2.1 will shows the Hill Climbing algorithm procedure.

19

Figure The Hill Climbing procedures

+=

2.5.2 Tabu search (TS)

Tabu Search was proposed by Glover (1986) to solve combinatorial optimization

problems. Tabu Seach is very similar to Hill Climbing but it fixed the local optima problem.

The basic concept of Tabu Search is an extension of steepest descent by

incorporating adaptive memory and responsive exploration. In Tabu Search, it will explore

the neighborhood of his current solution. If the neighborhood solution has the lowest value

compared to current one, it will be accepted although the value might stand a chance to be

worse than current solution. It will explore the area other than local optima by accepting a

non-improving move. However, this choosing process will usually will lead to a cycling.

Hence, a memory which is Tabu List will be used to store recently selected solution to

prevent the search stuck in the local optima. And these moves which stored in Tabu List

are not allowed to be performed until certain number of looping. However, there is a

mechanism called Aspiration Criterion can make the solution free if the solution is typically

better than the current best solution.

20

Kirkpatrick introduced Simulated Annealing in 1983. SA is an extension of the

simple descent algorithm but applies a less strict acceptance rule. SA was inspired by the

physical annealing process of heating and cooling.

In the first step of SA, it initial an random solution and SA will keep accepting the

better solution, while for the worse solution will only being accepted with a low

probability. Thompson and Downsland (1998) said that the quality of final solution is very

large affected by the cooling schedule of SA. There are 2 types of cooling: fast cooling

and slow cooling. Fast cooling tend to lead the search to converge to a local optima, while

slow cooling will enhance the solution's quality but at the same time it increases the

searching time.

Thompson and Downsland (1996 and 1998) solved the exam timetabling problem

with SA in two phases, Constructive (finding a feasible solution) and Improvement

(improving the solution quality) phas-es. An adaptive cooling schedule was used and the

results show that it outperformed a simple geometric cooling approach. Thompson and

Downsland further their experiment by implementing different cooling schedules and

neighborhood in SA, this resulted a significant improvement to the solution's quality.

Frausto and Alonso (2008) hybridized Simulated Annealing and Tabu Search

algorithms to solve the Post Enrolment Course Timetabling (track 2) from ITC2007. They

divided the algorithm into 2 phases. The first phase is to generate a usable timetable with

SA. Second phase, they were still using SA to search for the solution that is nearest to the

most optimal result, within a particular time limit. After the SA shows no improvement

after the particular time, Tabu Search will take over the job. This method has been proved

· to be able to produce a usable timetable.

21

Zhang et al. (20 1 0) used SA to solve the high school exam timetabling problem.

They proposed another neighborhood structure that swaps examinations between pairs of

timeslots; With this method; SA become more efficient and the performance has been

increased.

2.5.4 Great Deluge Algorithm (GDA)

Great Deluge Algorithm (GDA) operates in a similar way to SA. GDA is like an

alternative to SA. What makes the difference is GDA uses an upper limit (can be called as

water level) as the boundary of acceptance, unlike SA uses temperature.

GDA starts with initial a solution that its quality is equal to boundary. It accepts

worse solution if the cost (objective value) is less than the boundary which is lowered in

each iteration according to predetermined rate (known as the decay rate). The procedures

of GDA can be seen at Figure 2.2.

Due to the advantage of using less parameter, GDA has been used favorably in

several other implementations of meta-heuristics.

Figure 2.2 show the Great Deluge Algorithm procedure. GDA only involves one

parameter setting (decay rate) which is an advantages over SA (among others), since the

effectiveness of a meta-heuristic technique is often dependent on parameter tuning

(Petrovic and Burke, 2004).

22

Figure shows the GDA procedures

E

a

Burke and Newall (2003) investigated GDA on examination timetabling problems.

The decay rate is computes as the initial solution multiplied by a user provided factor

divided by the number of iterations. The algorithm was run up to 200,000,000 iterations

and the search will be terminated if there was no improvement in the last 1,000,000

iterations. They have made a comparison between GDA, SA and Hill Climbing which

GDA has been concluded much more excellent than the other two.

McCollum et al. (2009) used an Extended Great Deluge to solve ITC 2008

examination dataset. His method consists of 2 phases: construction and improvement.

McCollum constructed an initial solution with an adaptive ordering heuristic. Then,

improvement that includes a reheating mechanism is applied. This method has returned

some good solutions.

23

Abdullah et al. (2009) hybridized GDA with TS. The algorithm applied four

neighborhood moves at every iteration and the best generated solution will be selected. In

particular time; if there is no improvement of the solution's quality then the boundary is

increased randomly within value zero and three. This method shown some good result

when it is being used on solving course timetabling problem.

2.5.5 Genetic Algorithms (GA)

Genetic Algorithms (GA) were popularized by Holland (1975). It is an evolutionary

algorithm that mimics the process of natural selection. GA is a population based search

which uses the principle of biological evolution to generate better solutions from one

generation to another (Ross and Come, 1995 and Burke et al. 2010a).

The methodology consists of operators that known as genetic operators such as

mutation, crossover and selection. These operators will manipulate individual solutions

(named chromosome in GA) in a population to improve the cost value. The chromosome

is represented as a string that holds the information of solution. When practicing GA, there

are a few things that should be taken into consideration such as the population size,

mutation rate, crossover rate and amount of generations (Goldberg 1989, Pham and

Karaboga 2000, Burke and Kendall 2005).

In GA, it will initial a population of random solutions. Every solution has its own

cost value (or fitness value) that evaluated based on an equation. Next, the individual will

be processed in the recombination phase where crossover and mutation are used to explore

the solution space, thus creating new individuals. The new created individual will replace

the old individual that has worst fitness value. The process keeps repeating until a

termination criterion is met. The termination criterion is dependent, it could be certain loop

number or certain time period. Figure 2.3 shows the procedure of GA.

24

Genetic Algorithm procedure (Cuupic, 2009)

GA is very suitable for solving timetabling problem. However, it has some

limitations compared to others method. For example, operating on dynamic data sets with

GA is difficult as genomes begin to converge early on towards solutions which may no

longer be valid for later data.

2.5.6 Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO) was introduced by Dorigo, Maniezzo and

Colomi et al. (1996). ACO is a population based technique and it is stimulate the way ants

find their food by laying pheromone on the way.

In ACO, every single ant is used to construct a solution. In the process of searching,

all information that gained will act as a pheromone, which it will be used in next stage to

generate a new solution.

25

In 1997, a method named ANTCOL (modified ACO) was introduced by Costa and

Hertz. They used ACO and sequential heuristic to address the graph coloring problems. In

successive generations; each ant will colors the vertices using dynamic (e~g~ saturation

degree or recursive largest first) or static (e.g. random, largest first , smallest last)

constructive methods. The experiment result had shown that the dynamic method is much

better than the static methods and this shows that the ACO can solve the examination

timetabling problems successfully.

Dowsland and Thomson (2005) had investigated the application of ACO for the

examination timetabling problem. Their main objective is to do a comparison to ANTCOL

on typical timetabling graph in term of performance. They also wanted to identify

promising constructive heuristic combinations, trail calculations and ANTCOL parameter

value. As a result, modified ANTCOL can efficiently minimize the number of timeslot in

timetable compared to ACO.

2.5. 7 Graph heuristics (GH)

In early days oftimetabling research community, Graph Heuristics (GH) played an

important role (Carter 1986). In GH, for examination timetabling problems, the exams can

be represented by vertices in a graph while the hard constrains between examinations is

represented by the edge between the vertices. For the graph coloring problem, each vertices

will be assigned different color. Hence there will be no same color for adjacent vertices.

At the beginning, GH is used to solve its own schedule examinations (Carter, 1986).

Until recently, researchers hybridize GH with the other technique/algorithm. It can be used

to initial a solution and the improvement mechanism will be handled to other

technique/algorithm. GH can produce acceptable result in very short execution time. More

than that, the implementation of GH is easy. However, GH has different strategies that are

used depends on how hard is the problem. Figure 2.4 shows the common strategies that are

being used.

26

Figure Common ordering strategies of graph heuristic

As a comparison, the Largest Degree (LD) and Saturation Degree (SD) usually

produce a better solution (Qu et al., 2009). Carter, Laporte and Lee (1996), used different

ordering strategies of GH on exam timetable without considering the conflict and spreading

of timetable. The result has shown no significant differences between each strategy in term

of performance.

However, some researcher has proved that some hybrid of SD with other strategy

will produce some better solution. Burke, Newall and Weare (1998) investigated the effect

of random elements in Largest Degree, Color Degree and Saturation Degree using

(a) Tournament selection -randomly selects one from a subset of the first exams in

the ordered list

(b) Bias selection- selects the first exams from an orders list of subset of all of the

exams.

And a good result was obtained from University of Toronto dataset.

27

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart in

1995. It is a heuristic global optimization method and also an optimization algorithm

which based on swarm intelligence.

In PSO, a bird of a flock is represented as a particle, and the swarm is composed

of a group of particles. The position of each particle can be regarded as the Candidate

Solution to an optimization problem. Every particle is given a Fitness Function designed

in correspondence with the corresponding problem. When each particle moves to a new

position in the search space, it will remember its personal best (Pbest). In addition to

remembering its own information, each particle will also exchange information with the

other particles and remember the global best (Gbest). Then, each particle will revise its

velocity and direction in accordance with its Pbest and the G-oost to move toward the

optimal value and find the optimal solution.

With the advantages of simple and easy application, less parameter setting

required. PSO has been applied to establish the optimal timetabling. Figure 2.5 shows the

procedure ofPSO.

Figure 2.5 Procedure ofPSO

Original particle swarm optimization

Step (0) Initialization

Randomly initialize the positions of all particles X = (Xt, X2, ... , Xps) of size ps

Initialize the velocity (Vt,V2, ... , Vps)

Set generation t = 0

Evaluate the fitness velues F =(fiji, ... ,fps) of X

Set X to be pbest = (pbest 1, • •• , pbestNP) for each particle

Set the particle with best fitness to be gbest

Step (1) Reproduction and updating loop

fori= l:ps

Update the velocity v; of particle x; using Eq. (2)

Vid +-- Vid + C1 X randf X (pbest - Xf) + C2 X randf X

(gbestf - xf)

end for

Update the position of particle x; using Eq. (3)

Xf ~xf + Vl
Evaluate the fitness value fi of the new particle Xi

if Xi is better than pbest;

Set Xi to be pbest;

end if

if Xi is better than gbest

Set Xi to be gbest

end if

Set t = t + 1

Step (2) If termination condition is not met, goto Step(l), otherwise end PSO

28

29

Conclusion

This chapter had introduced the general educational timetabling problem mainly

focus on examination timetabling. From the literature, different examination from different

institution might have different constraints that need to be fulfilled. Among the dataset, the

Toronto, Melbourne and Nottingham dataset had got the most attention from the

researchers. There are also other dataset such as the UKM, UiTM and ITC2007 which are

gaining popularity.

Various methodologies (e.g. heuristic, meta-heuristic and hyper heuristics)

especially meta-heuristic had been applied to solve the benchmark examination timetabling

problem. However, the success of meta-heuristics is dependent on the parameter tuning

(Petrovic and Burke, 2004) which would be a problem for non-experts (e.g. a timetable

officer).

In this research, we propose Particle Swarm Optimization as the method to solve

examination timetabling problem. The dataset that we will work on is ITC2007. The reason

of choosing PSO was because it is a very simple method compared with the other

algorithms and it is easily completed as it needs fewer parameters.

Further discussions on PSO will be on the following chapter.

30

CHAPTER3

METHODOLOGY

3.1 Introduction

For recent year, researcher has been used various techniques such as Tabu Search,

Great Deluge Algorithm to solve exam timetabling problem. As single based techniques,

Hill Climbing, GDA, Tabu Search and SA are very well-known and have been widely

used by researchers. While for population based techniques, there are Variable

Neightborhood Search, Ant Colony Optimization and GA.

Among these algorithms, PSO has been proven that it can achieve excellent result.

PSO requires lesser parameter compared to other algorithm and it fits dynamic

environment, this makes PSO easier to implement compared to other algorithm.

PSO will be my choice for solving the timetabling.

3.2 lTC 2007 Examination Track

ITC 2007 Examination Track is the dataset that I will solve using PSO. Several

techniques even combinational of these techniques have been used to solve this

examination track.

For example, the winner of the competition ofiTC 2007 for Examination Track,

Tomas Muller combined Iterative Forward Search (IFS) algorithm, Hill Climbing (HC)

algorithm and Great Deluge (GD) algorithm. He used IFS to find a complete solution.

Then, HC will help him to optimize the solution until it cannot be optimized anymore.

Lastly, an altered GDA that allows some oscillation is used to generate best solution

where HC cannot reach.

31

The second place winner of lTC 2007 Examination Track was Christos Gogos

from Greece. He used Greedy Randomized Adaptive Search Procedure (GRASP) method

with the combination of other metaheuristics method. In his method, there are 3 stages

before getting the solution. First stage is construction of a high quality feasible solution.

This solution will be improved through second stage using Simulated Annealing (SA)

local search. Lastly, a mathematical programming will further enhance the quality of the

solution.

The third place winner, Atsuta's group from Japan formulates the lTC 2007 as an

instance of Constraint Satisfaction Problem (CSP). Then, they apply a powerful CSP

solver which adopted Tabu Seach and Iterated Local Search to find the solution.

From the statements above, we can tell the method for solving exam timetabling

are various and all of these technique could achieve high performance where their scores

(duration of finding solution, the shorter the better) are relatively close.

3.3 Problem Formulation

The lTC 2007 examination timetabling problem model will be explained here.

Indices

I,j l. .. N

R,p l ... R

s l. .. S

T l. .. T

32

Parameters

N The number of examinations

R The number of examination rooms

S The number of students

T The number of available timeslots

Si The number of registered student in exam i

Rt The number of examination rooms available at timeslot t

Br The building for room r

ft The total capacity for room r

Cij The conflict matrix where each element (Cij, i, j E: { 1 ... N}) is the number of students

that have to take both exam I and j. The conflict matrix is a symmetrical matrix of

size N, where diagonal elements Cij=Si

Decision variables

Xir 1 if examination I is assigned to timeslot t, 0 otherwise

Yir 1 if examination I is assigned to room r, 0 otheiWise

Zrt 1 if room r is assigned to times lot t, 0 otherwise

The objective is to spread out examinations over the exam period (timeslots) for

each student, minimise splitting an exam over several rooms. Therefore our formulation is as

follows:

(Eq.l)

The first component of the cost, F 1 (spreading the exams over the exam period, SE 1)

is shown in Eq.2.

(Eq.2)

cij.proximity(ti,tj)

25

and

34

Where mi is the number of rooms exam I has been split across. It can be calculated

using the following formulation, mi=L~=l Yir V i E {1, ... , N}. Eq.5 represents a cost for an

exam I that us being penalised for splitting the exam in multiple room (mi > 1). For

example, if an exam is being split into rooms, then a value of 1 is given as the penalty

value. Splitting the exam across 3 rooms corresponds to a penalty of 2 and so on.

Eq.l is subject to the following constraints:

a) No student can sit two exams concurrently (clash-free requirement, Htd). If

examination I and j are scheduled in timeslot t, the number of students sitting both

examination I and j must be equal to zero, i.e. Cij=O. This hard constraints is

expressed in Eq.6:

(Eq.6)

b) All exams must be scheduled and each exam must be scheduled only once in

available timeslots, T (see Eq.7)

(Eq.7)

T I X it = 1 For all i E {1, ... , N}
t=1

c) Only one examination paper is scheduled to a particular room in a particular

timeslot, HE3. There Is no sharing of rooms with other exam papers (even though

seats might be available to fit in another exam), except for requested combined

exams, which has been carried out as a pre .. process operation (see Eq.8).

(Eq.8)

N

XitYir = Zrt For all t E {1, ... , T} and foraH r E {1, ... , R}

35

d) Exam can only be split across several rooms in the same building, HE4 (see Eq.9).

(Eq.9)

R-1 R
m-(m· -1)

YirYipbrp = r: ~ For all i E{l, ... , N}
p=r+l

where

br = { 1 if (Br=Bp)
P 0 otherwise

e) For each timeslot t, the number of rooms assigned to a particular timeslot must not

exceed the maximum number of rooms available in a timeslot, Rt (see Eq.lO)

(Eq.lO)

R L Zrt ::;; Rt for all t E {1, ... , T}
r=l

f) The total number of students assigned to a particular exam room(s) must be less

than the total room capacity (see Eq.ll).

(Eq.ll)

R

si::;; LYirfr For all i E {1, ... , N}
r=l

3.4 Particle Swarm Optimization to solve lTC 2007 examination timetabling

problem

In this section, details of how do PSO solve lTC 2007 will be discussed.

The proposed PSO algorithm can be applied to create efficient and feasible exam

timetable. Below, we will discuss about general idea ofPSO.

At the beginning ofPSO, the initial velocity and position of each particle in a

group of particles are determined randomly. Then, there will be an evolving process as

follows:

1. The initial velocity and position of each particle in a group of particles are

determined randomly.

2. The fitness value of each particle is calculated according to the defined

objective function.

3. If the fitness value of each particle's current location is better than its Pbest,

the Pbest is set to the particle's current position.

36

4. The fitness value of the particle is then compared with that of the Gbest. If it

is better, the Gbest is updated.

5. Equation as shown below is applied to update the velocity and position of

each particle.

6. Iterate Step 2 until the termination criteria is met or the optimal solution is

obtained.

Vi~+t = Vi~ + Ct X Rand1 X (Pid - Xid) + C2 X Rand2 X (Pgd - Xid)

X t+1 _ xt + v:t+1
id - id id

Where

Vid is the velocity component of the ith particle in the dth dimension.

xid is the position ofthe ith particle in the dth dimension.

c1 is the cognitive learning factor.

c2 is the social learning factor.

Pid is the position component of the Pbest of the ith particle in the dth dimension.

Pgd is the position component of the Gbest of the dth dimension.

Rand() is a random number between [0,1].

The cycle will repeat over and over again until an optimal timetable is found or the

termination criteria is met.

37

Conclusion

This research will solve the ITC 2007 exam timetabling problem by using PSO~

The ITC 2007 dataset consists of 3 parts of exam track which are Early stage, Late stage

and Hidden stage. Before working on it, we will analyse and organize the dataset and

simplify it for ease of process in PSO.

By using PSO algorithm, a solution to the ITC 2007 will be generated. There are

some steps to obtain the optimal timetable. First, we will initiate the particles randomly.

Second, we calculate the fitness value to update Pbest and Gbest regularly. Last, the

processs will be repeat until the termination criteria is met.

The generated timetable should not against the hard constraints and soft constraints

of ITC 2007. At the same time, we also try our best to shorten the generating time of the

timetable.

38

CHAPTER4

DESIGN & IMPLEMENTATION

This chapter explains the project development process of scheduling ITC2007

timetable. The process can be generalized into 4 steps: First, read the ITC2007

timetabling information from txt file. Second, schedule initial timetables with graph

heuristic method. Third, calculate the penalty value and quality of the timetable. Finally,

improve the timetable quality with PSO (Particle Swarm Organization) method.

4.1 Project Implementation

lTC 2007 consists of8 dataset while we concentrate on dataset 1, 2 and 4. Each

dataset consists of some txt file which stored the information of ITC2007. For example,

room.txt, roomHC.txt, exam.txt.

These txt file provides us information of number of students, number of exams,

room capacity, timeslot and some other information about ITC2007.

4.1.1 Display the information of the ITC2007 dataset

Each dataset of ITC2007 consists of 7 txt file. The details on each txt file will be

explained as follow.

l'l

·-
12

1 ..

15

16

1

11e
19

20

21

22
23

180,

180,

180 ,

180,

180,

180 ,

180,

180,

180,

180,

180,

180,

180,

180,

180,

180,

180,

180,

180,

180,

180,

180 ,

180 ,

2545, 2548, 2586, 2594, 2595, 2612, 2620, 2656, 2661, 2661, 2667, 2661, 2714, 2748, 2751, 2760, 2763, 2771, 2789,

434 , 648, 726, 730, 809 , 2510, 2511, 2515, 2521, 2539

35 , 339, 1262, 1274, 1310, 1383 , 1385, 1393, 1415, 1429 , 1H4, 1457, 1472, 1479, 1511, 1516, 1542, 1561 , 1589, 162

1262, 1274, 1310 , 1383, 1385, 1393, 1415, 1429, 1444, 1457, 1472, 1479, 1511 , 1516, 1542, 1561, 1589, 1627, 1632 ,

235, 1318, 1353, 1417 , 1455, 1533, 1655 , 1663, 1749, 1785, 1882, 1892, 1903, 1914, 1961, 1963, 196'9, 2008, 2061, 2

1316, 2507, 2620, 2751, 2906 , 2943 , 3022, 3053 , 3308, 3321, 3399, 3577, 3657, 3730, 3731

11, 82, 87 , 95, 128, 133, 165, 235, 320, 357, 363, 370, 448 , 458, 481, 523, 531, 573, 576, 594, 602, 637, 640, 642

5, 49, 59, 140, 171, 190, 200, 237, 245 , 247, 252, 285, 317, 348, 351, 447, 482, 497, 554, 729 , 760, 793, 823, 831

5, 35, 49, 59, 140, 171 , 190, 200, 237, 245, 247, 252, 285, 317 , 339, 3i8, 351, 447, 482, 497, 554, 729, 760, 793,

5, 49, 59, 140, 111, 190 , 200, 237, 245, 247, 252, 2es, 317, 348, 351, i47, .;52, 497, 554, 729, 760, 793 , 823, 831

11, 87 , 95, 128, 133, 320, 357, 363, 370 , 458 , 481 , 573, 576, 594, 640, 642, 756, 829, 861, 931, 949 , 1013 , 1098 ,

11, 82 , 87 , 95, 128, 133 , 185 , 320, 357 , 363, 370, i48, 458 , 481 , 523, 531, 573, 576, 594, 602 , 637, 640, 6i2, 756

87 , 247, 531

2524, 2525, 2526, 2539, 2547, 2589, 2675, 2691, 2734, 2969, 2979, 3065, 3070, 3126, 3128, 3153, 3176, 3180 , 3191,

2547, 2589, 2675, 2691, 2734, 2969, 2979, 3065 , 3070 , 3126 , 3128, 3153, 3176, 3180, 3191, 3204, 32 13 , 3240, 3245 ,

270, 419, 421, 667 , 1263, 12 67, 1272, 127 5, 1278, 1280, 1281, 1 282 , 1283, 1285, 1286, 1287, 1288, 1292, 1294, 1297

1265, 1315, 1364, 1369, 1443, 149i, 1503, 1513, 1605, 1614 , 1712, 1733, 1784 , 1821 , 18i7, 1852, 1889 , 1896, 1907 ,

395 , 75 9, 1262, 1264, 1268, 1269, 1270, 1276, 1277 , 1279, 126 4 , 1289, 1296, 1300, 1314 , 1318, 1322, 1323, 1326, 13

79 , 190, 200 , 255 , 285, 320, 348, 351', 394, 447, 497, 567 , 57 6, 642, 65 1 , 712 , 749, 760 , 7 67 , 854 , 875 , 87 6, 967 ,

1129, 1265, 1315, 1364, 1369, 1443 , 1494, 1503, 1513, 1605, 1614, 1712, 1733, 1784 , 1821, 1847, 1852 , 1889, 18 96,

69, 77 , 89, 148 , 334, 358, 397, 578, 677, 693, 7 52 , 1080, 1093, 1211, 1218, 2108, 2301

77, 148 , 334, 362 , 397, 438 , 479 , 5 78 , 6 77 , 688 , 693, 925, 932, 965, 1093 , 1103, 1112, 1185, 119 0 , 1199, 1218

532 , 1112 , 1178, 2301, 2522

Figure 4.1 exam.txt

39

In exam. txt file, the first number in each line shows the duration of exam in

minutes. The numbers after that are the student's ID whom is taking that particular exam.

424, 0
219, 0

12 ,

1 0

40, 1
60, 10
6 ,

40, 0

36, 0

30, 0

30,
25, 0

72, 0

40, 0
35, 20

Figure 4.2 room. txt

Room.txt shows the information of room. In the Figure 4.2, there are 17 rooms in

total. The first number of each line show the capacity of the room. The second number of

each line represent the penalty value of using this room.

40

1 10:12:2005, 07:55:00, 180, 0
2 10:12:2005, 13:30:00, 180, 0

3 1 :12:2005, 19:30: 0, 180, 0
4 12:12:2005, 07:55:00, 180, 0

5 12:12:20 5, 13:30:00, 180, 0

6 12:12:2005, 19:30:00, 180, 5
13:12:2005, 07:55:00, 180, 0
13 : 12:2005, 13:30: 0, 180, 0
13:12:2005, 19:30:00, 180, 0
14:12:2005, 07:55: 0, 180, 0
14 : 12:2005, 13:30:0 , 180, 0

14:12:20 5, 19 : 30: , 18 , 0

15:12:2005, 07:55:00, 180,
15 : 12:2 OS , 13:30: 0, 180,
15 : 12:20 5, 19:30 : 0, 18 , 0

16 : 12 : 2005, 07:55:00, 180, 0

16:12:2 5, 13:30:00, 18 , 0

16:12:2 05, 19:30:00, 160, 200

1 :12:2 5, 7:55:00, 180, 0
17:12:2005, 13:3 : 0, 18 , 0

17:12:20 5, 19:30:00, 180, 500

Figure 4.3 period. txt

The available timeslot is stored in period. txt. The first data is the date of the exam,

the second data is the starting time of the exam. Third data is duration of the exam in

minute and fourth is the penalty value.

307
EXM~_COI~CIDE.CE, 419
EXA!·!_COI.JCIDE CE, 418

653, EXA}!_COI CIDENCE, 656
560, AF ER, 3
650, AFTER, 296
801, AFTER, 649
56, EXC~ SION, 246

Figure 4.4 periodHC.txt

PeriodHC.txt stored the period hard constraints of scheduling timetable.

41

In the example, number represents the involved exam ID (first and third data).

The second data is the hard constraints upon the involved exam ID. The hard constraints

can be divided into 3 types: EXAM_ CONINCIDENCE, AFTER and EXCLUSION.

EXAM COINCIDENCE demands two exams to be scheduled into same timeslot.

AFTER is to demand one exam to be scheduled after another particular exam. According

to Figure 4.4, exam 560 will be scheduled after exam 300. EXCLUSION demands two

involved exams not scheduled into same timeslot.

78 , ROOM_EXCLUSIVE
128 , ROOH EXCLUSIVE

Figure 4.5 roomHC.txt

RoomHC.txt shows the room's hard constraint ofiTC2007. In Figure 4.5, first

data is exam's ID. ROOM EXCLUSIVE is to demand that particular exam not being

shared with other exam.

0 , 0 ,

2 o, 0,
o, 0 ,

" o, o,
s o, 0 ,

6 13 , o,
0, 0 ,

0 , 0 ,

0 , 0 ,

10 0 , 0 ,

11 0 , 0 ,

lZ 0 , 0 ,

1S o, 0 ,

1"1 0 , 1 ,

15 0 , o,
16 0 , 0 ,
17 0 , o,
1€ 1 , 0,

1S 0 , 0 ,

2 0 , 0,

21 0 , 0 ,

22 o. 0

0 , 0 , 0 , 13 , 0, 0 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0, 0, 1 , 0 , 0 , 0, 0 , 0 , 0 , 0 , 78 , 11 , 0 , 0 , 0 , 0, 3 ,

0 , o, 0 , 0 , o, o, 0 , o, 0 , 0, 0 , 1 , 0, o, o, 0, 0 , o, 0 , 0 , 0, 0, 0, 0 , 0 , 0 , 2 , 0 , 1 , 0, o,
0 , 64, 0 , 0 , 0 , 0 , 4 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0 , 2 9, 5 , 0, 0 , 0, 0 , 0 , o, 0 , 0 , 0 , 0 , 0 , 0 , 32,

6 4 , 0, 0 , 0 , 0 , o, 0 , o, 0 , 0 , 0 , o, o, 0 , o, 2 8 , 5, 0 , o, o, o, 0 , o, 0, 0 , o, 0 , 0 , 0 , 32,

0 , o, 0 , 1 , 2, 0 , o, o, 4 , o, o, o, 0 , o, o, 2 8 , 2, 0 , 0 , o, 0 , o, 0 , o, 0 , o, 0, o, 0 , 1 6,

o, 0 , 1 , 0 , o, 0 , 0 , 0 , o, 0 , 0 , 0 , 0, 0 , 0, 2, o, 0 , o, 0 , o, 0 , 0 , 11 , o, o, o, 0 , o, 0 ,

o, 0 , 2 , o, o, 0 , o, 0 , 2 4 , 3 2, 2 , o, 0 , o, o, 0, 6, o, 0 , 0 , 0 , o, o, o, o, o, 0 , o, o, 0 ,

0 , 0 , 0 , o, 0 , 0 , 3 6 , 3 6, 0 , 0 , 1 , 0 , 0 , o, o, 0 , 11 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

4 , o, o, o, 0 , 36, 0 , 3 6, o, o, 1 , 0 , o, o, o, 0 , 11, 0 , 0 , 0 , o, 0 , o, 0 , o, o, 0 , 0 , 0, o,
0 , 0 , 0 , 0 , 0 , 36 , 36 , 0 , 0 , 0 , 1 , 0 , o, 0 , 0 , 0 , 11 , 0 , 0 , 0 , 0 , 0 , 0 , o, 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 4, 0 , 24, 0 , 0, 0 , 0, 25 , 1 , 0 , 0 , 0 , 0 , 4, 5, 0 , o, 0, 0, 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 32, 0 , 0 , 0 , 25, 0 , 2, 0 , 0 , 0 , o, 0 , 5, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0, 0 , 0 , (

o, o, o, 0 , 2, 1, 1 , 1 , 1 , 2 , 0 , o, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , o, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , o, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 38 , 0 , 0 , 0 , 0 , 0 , 0, 0 , 0 , 0 , 0, 1 , 0 , 0 , 0 , 0 , 0 , 3 , 0

0 , o, o, o, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 3 8 , 0 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0, 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0

0 , o, 0 , 0 , o, o, o, o, 0 , 0 , 0 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 10 , 8 , 6, 1 4, (

0 , o, 0 , 0 , o, o, o, o, 0 , 0 , 0 , 0 , o, 0 , 0 , 0 , 0 , 3 3 , 2 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 5, 2 0 ,

29 , 2S , 2 8 , 2 , 0 , 0 , o, 0 , 4 , o, o, o, o, o, o, 0 , o, 0 , 0 , o, o, 0 , 0 , 10, o, 41 , 1 , 1 , 9,

5, 5 , 2, o, 6 , 11 , 11 , 11 , 5, 5 , o, 0, 0, o, 0 , 0 , 0 , 0, 0 , 0 , 0, 0 , 0, 0 , 0 , 0, 0, 0 , 0 , 1,

0 , 0 , 0 , 0 , 0 , o, 0 , 0 , o, 0 , o, 0 , 0 , 0 , 33 , o, o, o, 2 , o, 2 , 0 , o, 0 , 0 , 0 , 0, 0 , 5 , 20 ,

o, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , o, 2 , 0 , 9 , 1 , 4 , 0 , 0 , 0 , o, o, o, 11 , 0 , 0

0 0 o. 0 0 o. o. 0 0 o. 0 0 0 0 0 0 0 0 9 0 1 8 3 0 0 0 0 0 13 0 0

Figure 4.6 conflictMatrix.txt

ConflictMatrix.txt shows which exams is crash against which exam, as well as its

penalty value. These exams shouldn't be scheduled at the same time because student

can't sit for two exams at the same time.

TWOINAROW, 9

TvlOI ADAY, 5

3 PERIODSPREAD, 2

~ OID4IXEDDURATIONS, 1

5 F ON OAD, 5 , 10, 5

Figure 4. 7 institutiona!Weight.txt

The penalty value of soft constraints are all shown in institutionalWeight.txt.

TWOINAROW means when two consecutive exams is scheduled, 9 will be counted as

penalty and added into quality measurement. TWOINADAYpenalty is applied when

student take more than one exam in the same day. PERIODSPREAD is applied if the

exams taken by a student were not spread as far as possible. NOMIXEDDURA TIONS

penalty is applied when different exam with different duration assigned into same

timeslot. Finally, FRONTLOAD consists of 3 numeric data. First number is the largest

number of exam, second number represents the number of last periods and last number

represents penalty value.

4.1.2 Coding

42

The programming language chosen for develop the project is Java. The Netbeans

IDE is tht} tool of dt}Vt}lopmt}nt. Befort} manipulating th0 data ofiTC2007; all the

information of txt file is read and stored for usage later.

public class LoaGultipletzt {

public static void •ain String[] args) thro s IOException
String target_dir =
File dir = ne File ·target_dir :

File[] files= dir.listFiles

for File f : files
if f.isFile

BufferedReader inputStream = null :

try {

inputStream = new BufferedReader
ne FileReader (f);

String line :

int count = 1:

Figure 4.8 Coding for txt file loading

4.1.2.1 Calculate the information

dataset 1

Before scheduling the timetable, some essential variable have to be calculated.

These variable includes "total number of exams", "total number of student enrollment",

"total number of times lot" and "total number of room".

Dataset 1 has been l oaded :

Total number of exam : 607

Total number of enro lment : 32380

Total number of t i mes lot . 54

Total number of room : 7

Figure 4. 9 the information of dataset 1 after calculated

43

System. out.println f Dataset

SystPm. out.println Total n ber of e am:

System. out.println Total number of enroll

System. out.println Total n

System. out.println

has been loaded :

Figure 4.10 coding of displaying the dataset information .

44

When the txt files were loading, calculation is done at the same time and the value

will be stored into variable such as 'numOfExam', 'numOfEnrollment' and others.

4.1.2.2 Calculate conflict matrix, matrix density, number of exam conflicts and

student conflicts

The conflict density represent the difficulty of scheduling a timetable. The higher

the conflict density the more difficult to schedule the timetable.

Number of conflict exam and number of conflict student is calculated before

calculating conflict density.

4.1.2.3 Sorting Exams with LE; LWD and LD

There are 4 sorting method to schedule the timetable which are Largest

Enrollment (LE), Largest Degree (LD), Largest Weight Degree (L WD) and random.

LE is to sort the exam according to the number of student that take the exam. This

mean the exam with highest number of student will assigned into certain timeslot first,

then exam with second highest and follows.

LD sorts the exam according to exam conflict. This mean the exam that most

conflict against other exam will be assigned first.

L WD sorts the exam according to the number of student who involved in conflict.

Exam . 103 LE . 259 .
'

.

Exam . 167 LE . 258
'

.

Exam . -!37 LE . 256 .
'

.

Exam . 443 LE . 255 .
'

.

Exam . 131 LE . 253 .
'

.

Exam . 1 LE . 251 . .

Exam . 32 LE . 240 . .

Exam . 198 LE . 237 . .

Exam . 569 LE . 228 . .

Exam . 447 LE 226 . .
Exam . 6 LE . 219 . .

Figure 4.11 Exam sorted with ascending LE

In figure 4.11, exams were sorted according to number of student that has

enrolled. The LE were listed in ascending order.

Exam . 426 LD 108 .
'

Exam . 198 LD . 99
'

Exam . 6 LD . 96 .

Exam . 221 LD . 95 . .

Exam . '299 LD 94 .

Exam . 427 LD 93 .

Exam . 425 LD . 91 . .

Exam . 303 LD . 90 .
'

.
Exam . 8 LD . 89 . .
Exam 300 LD . 88 .

'
.

Exam . 199
'

LD 86
T"\T~-rY '9"'o. ,._.,. - ~T I

Figure 4.12 Exam sorted with ascending LD

45

In figure 4.12, exams were sorted according to number of exam conflict with

another exam. The LD were listed in ascending order.

Exam : 437 L ~ : 1523
'

Exam : 6 , LWD : 1396

Exam : 447 L D : 1386

Exam : 198 , LWD : 1240

Exam : 5 , LV.~ : 1094

Exam : 4 , LV.~ : 1094

Exam · 443 L~~ : 901

Exam : 533 L~~ : 899

Exam : 3 , LV.~ : 881

Exam : 531 LV.~ : 881

Exam : 535 , L\\~ : 851

Figure 4.13 Exam sorted with ascending LWD

In figure 4.13, exams were sorted according to number of conflict student. The

L WD were listed in ascending order.

4.1.2.4 Sorting method

46

The method used for sorting LE, LD and L WD were quicksort algorithm. It is an

efficient and fast algorithm. Below is sample coding of QuickSort function.

I
public class Quicksort

private int [] n hers :

private int n er :

public void sort int [] values
,.. . . e y

if values ==null I I values. ength==O
return :

this. n ers = values :I
n er = values. len&th :
quicksort (O, n er - 1

private void quicksort int low, int high

int i = low, j = high :

Figure 4.14 QuickSort class

public void setUp) thro s Exception

n b~rs = new int [SIZE] :
Random generator = ne Random ():

for int i= 0 : i < nuabers. length : i++
nuabers [i] = generator.next!nt ~y :

public void SortLD

Quicksort sorter = new Quicksort
sorter.sort LD :

Figure 4.15 Calling quicksort function to sort LD

47

48

Solving 2007

In my research, we will schedule an initial solution (timetable) using graph

heuristic method. The timetable must fulfil all the hard constraints and soft constraints of

lTC 2007. However, the quality of the timetable that generated by graph heuristic is quite

low. Hence, PSO will be used as a method of improving the quality of that timetable.

4.2.1 Initialization of timetable with graph heuristic

The sequence of exam to be inserted into timetable in graph heuristic can be

divided into 4 types: largest enrolment (LE), largest degree (LD), largest weight degree

(L WD) and random. The explanations of each types has already mentioned in previous

section.

First, we should inserts all the exams that has hard constraints. This is because if

we inserts those exams after majority normal exam, there is a high chance that all the

timeslot left were not suitable. Then, we will inserts other normal exams into timetable

according to the sorting method until every exam is fitted into the timetable.

In this progress, we will choose the random timeslot (combination of room and

period) for each exam. If the room capacity is fitted, we will have that exam located in

that room. Then, we check if the period will cause any clashing of any other exams. Only

if these 2 conditions are satisfied, the exam is assigned to that particular times lot.

Otherwise, we have choose another timeslot until suitable timeslot is found.

Not to forget lTC 2007 allows more than one different exams run in the same

timeslot. Hence, we also have to check if the sum of all exams in timeslot exceed the

room capacity.

The progress continues until all the exams were fitted into timetable. Hence, the

initial solution (timetable) is generated.

49

Inserts an exam

Choose random timeslot

NO

YES

YES

NO

Calculate penalty value

Figure 4.16 Flowchart of generating an ITC 2007 timetable by using graph heuristic.

50

After the timetable has been generated, we will calculate the penalty value of the

timetable. The penalty value is determined by the violation of soft constraints. The more

number of soft constraints that haven't fulfilled; the higher the penalty value.

There are 7 types of soft constraints in ITC 2007. Every soft constraints has its

own institution weight for penalty value calculation. For example, "Two exams in a row"

is to count the occurrences where two exams were taken by same student appears after

one another. If the number of occurrences was 10 and the institution weight for "Two

exam in a row" is 7, then penalty value for this soft constraints is 10 x 7 = 70. The sum

up of 7 soft constraints penalty value is the overall penalty value for that timetable. Every

institution weight value is depends on the dataset ITC 2007.

Due to timeslot was chosen randomly, the penalty value will be different for every

generating of timetable by graph heuristic.

4.2.2 Improving the quality of initial solution by PSO

The initial solution timetable will have a high penalty value for sure. This mean

the timetable is feasible but the quality is not good enough. We should pursue a better

timetable. Hence, PSO is used to improve the quality of the timetable. Figure on next

page is the flowchart ofPSO and we will have explanation as follows.

Try to improve the fitness of current particle
by inserting a random exam from global

timetable to current particle timetable

Calculate current particle's fitness

YES

Undo insertion

Choose 2 random exams in current particle
and swap them

YES

51

52

Figure 4.17 Flowchart of timetable quality improvement by using PSO

PSO is a population technique that requires many particles (timetable) in order to

execute algorithm. Therefore, we should decide the number of particle (p) first. For

example, if we set p = 10 then we should have graph heuristic generates us 10 timetables.

Notice that higher number of p will helps produce better timetable but costs more

processing time.

Next, we will calculate the penalty value (pBest) for each particle. This mean we

will have 10 different penalty value. The timetable that has lowest value (current best

timetable) will become global particle and its penalty value will be gBest. The use of

gBest I global particle is as model of other particle. All the other particles will mimics

global particle in order to become better timetable.

So, we copy the pattern of global particle to current particle by inserting random

exam from global particle at the same timeslot. For example, global particle has an exam

356 at room 6th period 15th. We will try to insert exam 356 at room 6th period 15th at

current particle, and the original exam 356 at current particle will be deleted. Of course,

the chosen exam and timeslot shouldn't cause any hard constraints violation and clashing

problem. Otherwise, we will re-choose another exam and timeslot.

Then, we should take count of the new penalty value for current particle. If the

value decreased (improved), we will update the particle and its pBest. If the value

increased, we will undo the insertion and re-choose another exam and timeslot. In other

word, the process keep repeating until suitable exam assigned into suitable timeslot and

the quality of timetable enhanced.

After the insertion, we will perform 'swap'. Just as its name implies, swap will

choose 2 random exam and swap their times lot. Same as insertion, if the times lot will

causes any hard constraints violation or clashing problem the 'swap' will not be

implemented until suitable 2 exam and their times lot is found. After swap, if the quality

of timetable is enhanced we will update the pBest once again. If the quality dropped we

will undo the swap

quality of timetable.

swap can actually improve

Notice that we have 10 particles (as mentioned in example). The 'insertion' and

'swap' will be executed on every particle. After every particle has been inserted and

swapped; we should update the gBest because the pBest might have surpassed gBest.

Therefore again, we will have the highest pBest set as new gBest.

Every update on gBest is counted as one generation (iteration). The

number of generation is dependent. The higher the number of generation will produce

better timetable but it costs more execution time. After certain number of iteration, the

execution ofPSO will stopped and the improved best timetable shall be chosen.

4.3 Conclusion

This chapter discusses the design and the implementation of the research. First,

we discussed the lTC 2007 and the information contained. Next, we discussed usage of

graph heuristic for generating an initial solution (timetable). Finally, we discussed the

improvement of timetable quality by using Particle Swarm Optimization.

53

54

CHAPTERS

RESULT & DISCUSSION

In this chapter, we will discuss on the penalty value from different exam sorting

method. We will also evaluate on the performance of Particle Swarm Optimization with

different population size.

5.1 Result of penalty value from different exam sorting method

As mentioned before, the initial solution was generated by graph heuristic with

different exam sorting method which are LE, LD, L WD and random. We will only

compare the result of LE and LD since L WD couldn't 100% successfully generate a

timetable and random method doesn't have any comparability. Below is the result of 10

times running graph heuristic timetable initiation and their statistical view table.

55

Running LE LD

1 38050 43914

2 37558 47410

3 45198 47020

4 46936 43995

5 46486 39544

6 41020 48806

1 46645 43422

8 46183 43697

9 42181 42425

10 45126 45212

Average 43538 44544

Table 5.1 Result of penalty value from different sorting method

Average Stdev Var Min Max

bargest Enrollment 43538 3593.5783 12913804.6778 37558 46645

(LE)

Largest Degree 44544 2683.902 7235572.5 39544 48806

(LD)

Table 5.2 Statistical view of LE and LD

Stdev =Standard Deviation, Var =Variance, Min= Minimum, Max= Maximum

From the above result, we can tell LE is slightly better than LD in term of

producing higher quality timetable. This is because LE could've produce timetable that

has penalty value below 40000 while the upper range is within 47000. LD has produced a

result 39544 once but according to its Stdev, that was an abnormal result.

However, the advantage of LE compared to is very little.

In this section, we analyse the performance of PSO by check its impact to the

penalty value deduction. The tested dataset was 2, 5 and 7. The population size test for

each set was 2 and 8. Below is the result of performance test and its statistical view.

Dataset
Population size

')
.,(..- 8

Before After ImproYed Before After unproved

24170 9552 60.48o/o 35954 13094 63.58~--o

31160 10400 66.62~/o 32579 13478 58.63~'o

2 35830 16815 53&07~-~ 28045 11016 60.72~~~

35365 21525 39.13~/o 34786 13963 59.86o/o

35730 15886 55.53~-~ 42158 64.55~'o

88517 27846 68.54~'o 79842 2 014 73.68o/o
82464 22659 72.52~-~ 84265 70.54%)

5 76406 21611 72~/o 80456 19591 75.65~'0

80694 20344 74. 78o/o 77865 26139 66.43~~

87654 25834 70.52~~ 86548 24857 71.28~1o

39031 19968 48.84~~ 48218 25290 47.55o/o
46566 27129 4L74o/o 38951 20340 47.78~~

7 36795 22322 39.33~b 49685 22848 54.01~~

41790 27020 35.34~~ 37895 19205 49.32~'o

44562 24656 44.67o/o 48952 22581 53.87~b

Table 5.3 Result of performance test for PSO

Population size Average stdev var Min Max

2 56.18867 14.02607 196.73067 35.34 74.78

8 61.16333 9.33206 87.08741 47.55 75.65

Table 5.4 Statistical view of performance test for PSO

Stdev = Standard Deviation, Var = Variance, Min = Minimum, Max = Maximum

56

From the table above, we found that population size '8' can improved the

timetable quality better than population size '2'. The average improvement for

population size '2' is only 56% while average improvement for population size '8' is

61%.

57

However, we also found out that the execution time is longer with '8' at the same

iteration number as '2'. Hence, we have conclude the performance ofPSO in term of

different population size : the higher the population size , the better the quality of

timetable but costs more time ; the lower the population size, the execution time required

is short but the quality of timetable will be dragged down.

5.3 System overview

The implementation of graph heuristic is able to generate a feasible timetable but

the quality is so bad. Therefore we have Particle Swarm Optimization to improve the

quality of that timetable. Testing of the system shown that PSO is capable of improve the

quality by 50% to 60%.

The population size of PSO will give huge impact to the performance of PSO

improvement. The more population size will increase the improve rate of timetable but it

costs the system more time. In opposite, the lesser population size make the system

produce improved timetable fast but the quality is not that good.

The input of the system is the number of particle and iteration number. When

these variables is decided and system started doing improvement, the system will start

doing improvement until the iteration ends.

The output from the system is the display of the improved timetable. More than

that, system will create a txt file that contains timetable information. The txt file can be

used for validation by uploading it to lTC 2007 website.

Conclusion

In this chapter, we compared the penalty value of timetable that generated by

and LD. LEis slightly better than LD but advantage doesn't leading so much.

58

Next, we looked over the performance of the PSO in term of different population

size. The higher the population size the better the timetable quality; the lower the

population size the faster the system produce timetable.

Last, we discussed the system overview.

59

CHAPTER6

CONCLUSION

In this chapter, we will make a conclusion for all the work in this thesis. Section

6.1 describes the overall introduction for this thesis. Section 6.2 is the result analysis and

Section 6.3 talks about future work.

6.1 Introduction

From the study of different timetabling dataset, we found out that different

educational institutions have different requirement for their examination timetable. lTC

2007 is an outstanding dataset because it considered the room capacity compared to other

dataset. More than that, lTC 2007 is a very comprehensive dataset. It has a lot of

constraints such as 'exam A must be after exam B ', 'exam C must be in room D' and all

these constraints causes challenge to the researcher.

With the help of graph heuristic technique and Particle Swarm Optimization, we

successfully solved this dataset fulfilling all the hard constraints and reduce the soft

constraints violation as much as possible.

6.2 Result analysis

From the result, we can say that the research is successful and we managed to

achieve all the objectives of this project, which are:

1. To study on the examination track of the Second International Timetabling

Competition (ITC2007).

60

2. To implement Particle Swarm Optimization method in solving the examination

timetabling problem that satisfies all the constraints.

3~ To validate and verify the solution produced using Particle Swarm Optimization

whether it satisfies all the constraints.

We have studied the information contains in lTC 2007 examination track. We listed

the hard constraints and soft constrains of lTC 2007. We read about penalty value

calculation of ITC 2007.

Particle Swarm Optimization has been implemented successfully in our system.

The implementation didn't cause any hard constraints violation and fulfilled as much soft

constraints as possible.

6.3 Future Work

After proving PSO is capable of solving ITC 2007 examination timetabling

problem, we will try to use same proposed technique to solve other dataset. More than that,

we will also try to modify PSO and try if it can produce way better result than the current

one.

61

REFERENCE

L Russell C. Eberhart; Yuhui Shi; James Kennedy; 2001; Swarm Intelligence.
Morgan Kaufmann.

2. Tassopoulos, I. and Beligiannis, G. (2012). Using particle swarm optimization
to solve effectively the school timetabling problem. Soft Computing, 16(7),
pp.1229--1252

3. Chu, S. and Fang, H. (1999). Genetic algorithms vs. tabu search in timetable
scheduling. pp.492--495.

4. Chu, S., Chen, Y. and Ho, J. (2006). Timetable scheduling using particle swarm
optimization. 3, pp.324--327.

5. Cs.nott.ac.uk, (n.d.). Benchmark Exam Timetabling Datasets. [online]
Available at: http://www.cs.nott.ac.ukl---rxq/data.htm [Accessed 15 Mar. 2014].

6. Cs.qub.ac.uk, (n.d.).lnternational Timetabling Competition. [online] Available
at: http://www.cs.qub.ac.uk/itc2007/ [Accessed 26 Mar. 2014].

7. Kumar, A., Singh, K. and Sharma, N. (n.d.). AUTOMATED TIMETABLE
GENERATOR USING PARTICLE SWARM OPTIMIZATION.

8. Poli, R., Kennedy, J. and Blackwell, T. (2007). Particle swarm optimization.
Swarm intelligence, 1(1), pp.33--57

9. Tassopoulos, I. and Beligiannis, G. (2012). Using particle swarm optimization
to solve effectively the school timetabling problem. Soft Computing, 16(7),
pp.1229--1252.

10. Web.ist.utl.pt, (2010). Artificial Life by example!. [online] Available at:
http://web.ist.utl.ptlgdgp/V A/pso.htm [Accessed 15 Mar. 2014].

11. Burke, E. and Ross, P. (1996). Practice and theory of automated timetabling. 1st
Berlin: Springer.

62

12. Burke, E., McCollum, B., Meisels, A., Petrovic, S. and Qu, R. (2007). A graph­
based hyper-heuristic for educational timetabling problems. European Journal
of Operational Research, 17 6(1), pp.177 192.

13. Davis, L. (1987). Genetic algorithms and simulated annealing. Pitman.

14. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE
Transactions on, 6(2), pp.l82--197.

15. Dorigo, M. and St\"utzle, T. (2003). The ant colony optimization metaheuristic:
Algorithms, applications, and advances. Springer, pp.250--285.

16. Dorigo, M. (2007). Ant colony optimization. Scholarpedia, 2(3), p.l461.

17. Glover, F. and Laguna, M. (1997). Tabu sea-n.~h. 1st ed. Boston: Kluwer
Academic Publishers.

18. Houck, C., Joines, J. and Kay, M. (1995). A genetic algorithm for function
optimization: a Matlab implementation. NCSU-IE TR, 95(09).

19. Ingber, L. (1996). Adaptive simulated annealing (ASA): Lessons learned.

20. Mahanti, A. and Bagchi, A. (1985). AND/OR graph heuristic search methods.
Journal ofthe ACM (JACM), 32(1), pp.28--51.

21. Mitchell, M., Holl, Forrest, S. and others, (1993). When will a genetic
algorithm outperform hill climbing?. pp.51--58.

22. Nahas, N., Khatab, A., Ait-Kadi, D. and Nourelfath, M. (2008). Extended great
deluge algorithm for the imperfect preventive maintenance optimization of
multi-state systems. Reliability Engineering\& System Safety, 93(11), pp.1658-
--1672.

23. Noah, S., Abdullah, A., Arshad, H., Abu Bakar, A., Othman, Sahran; S.,
Omar, N. and Othman, (n.d.). Soft computing applications and intelligent
systems. 1st ed.

63

24. Ogata, H., Fujibuchi, W., Goto, S. and Kanehisa, M. (2000). A heuristic graph
comparison algorithm and its application to detect functionally related enzyme
clusters. Nucleic acids research, 28(20), pp.4021--4028.

25. Phys.org, (2014). From chaos to order: How ants optimize food search. [online]
Available at: http:/ /phys. org/news/20 14-05 -chaos-ants-optimize-food.html
[Accessed 13 Apr. 2014].

26. Pillay, N. (2012). Hyper-heuristics for educational timetabling. pp.316--340.

27, Renders, J. and Bersini, H. (1994). Hybridizing genetic algorithms with hill­
climbing methods for global optimization: two possible ways. pp.312--317.

28. Schaerf, A. and Di Gaspero, L. (200 1). Local search techniques for educational
timetabling problems. pp.13--23.

29. Sivanandam, S. and Deepa, S. (2007). Introduction to genetic algorithms. 1st
ed. Berlin: Springer.

30. Szu, H. and Hartley, R. (1987). Fast simulated annealing. Physics letters A,
122(3), pp.157--162.

31. Taibi, E. (2009). Metaheuristics. 1st ed. Hoboken, NJ: Wiley.

32. Unitime.org, (2014). UniTime I University Timetabling. [online] Available at:
http://www.unitime.org/ [Accessed 20 Apr. 2014].

33. Xiao, W. and Dunford, W. (2004). A modified adaptive hill climbing MPPT
method for photovoltaic power systems. 3, pp.1957--1963.

34. Yaseen, S. and AL-Slamy, N. (2008). Ant colony optimization. IJCSNS, 8(6),
p.351.

APPENDIX

Pm1iclc Swami Op«itni7~otion to sol\'c the lTC 2007 cxmnin:otion timctal~ing Jlrohlem

NAME: EE JUN JIANG

TIIESIS SUIIMrr nm IN FlJI.LI'II.LMENT OF Ti lE DEGREE OF COMPUTER

SCIENCE

64

- - ~ --~

OLJTUO

