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ABSTRACT 
Software testing serves to identify and report bugs exist in system. Test case is 

required to aid the process of testing by giving the event that can and should be verified. 
Nowadays, there are testing tool that required tester to enter system execution script. 
This can affect the quality of test due to lack of experience of tester or human mistakes. 
In this project, test case generator based on Unified Modeling Language (UML) 
Activity Diagram is developed. With generating of flow graph from UML Activity 
Diagram, test cases are able to be output. Therefore, the test case number of particular 
UML Activity Diagram can be determined.
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ABSTRAK 
Pengujian perisian berfungsi untuk mengenal pasti dan melaporkan pepijat yang 

wujud dalam sistem. Kes ujian diperlukan untuk membantu dalam proses ujian dengan 
memberi acara yang boleh dan harus disahkan. Kini, terdapat alat ujian yang 
memerlukan penguji skrip untuk memasukkan ship pelaksanaan sistem. Hal mi boleh 
menjejaskan kualiti ujian disebabkan kekurangan pengalaman penguji atau kesilapan 
manusia. Dalam projek i, penjana kes ujian berdasarkan UML Activity Diagram 
dibina. Dengan menjana graf aliran dari UML Activity Diagram, kes-kes ujian dapat 
dijana. Oleh itu, bilangan kes ujian dalam UML Activity Diagram tertentu boleh 
dikenalpasti.
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CHAPTER 1

INTRODUCTION 

Software is written by fallible human. Therefore, existing of defects in .the 

software products is inevitable. These defects can cause risks of failure when system 

execution [8]. However, the level of these risks of failure can be reduced through testing 

to uncover the bugs or any anomalies in the system. Then, the identified bugs and 

anomalies can be removed through debugging. For testing to be carried out, test cases 

are required to determine the test condition to be covered during the test. Tester needs to 

design the test case by own and this may affect the quality of test result due to lack of 

experience or human mistakes. This thesis covers research on methodology to generate 

test cases based on UML Activity Diagram. 

1.1 PROBLEM STATEMENT 

Testing is needed to be performed by tester to verify and validate the input data 

fulfil the requirement of a software functionality. Therefore, test case is needed. The 

demand for automated test has grown drastically over the years. Current tool on 

automate the test execution has grown in line with the existence of automated tool. 

Oracle OATS, HP, and IBM Rational Test Workbench are among the automated tools 

used by software industry. However, these automated tools are not able to generate test 

cases based on software specification specified. The tools are made to provide tester to 

enter system execution script. Thus, quality of test result is highly affected by the 

quality of script produced by the tester due to lack of experience or human mistakes. 

Another, poor verification process occurs when the test case result is traceable to the 

system output that has been prepared before. 

Although lots of diagram has been created such as UML Activity Diagram 

during software analysis and design, tester still designs the test case based on the



software requirement specification. By generating test case based on the UML Activity 

Diagram can bridge the gap between the requirement specification and test case design. 

1.2 OBJECTIVE 

The objectives of the research are to: 

i. Convert UML Activity Diagram into a McCabe flow graph. 

ii. Modify Depth First Search (DFS) algorithm to generate test cases based 

on McCabe flow graph. 

iii. Develop a prototype that can automatically generate the test cases based on a 

UML Activity Diagram without user interference of the process. 

1.3 SCOPE 

The scopes of the thesis are: 

i. Research on test case generator based on Unified Modeling Language 

(UML) Activity Diagram. Test basis is limited to activity diagram. 

ii. Produce the test case in a form of flow of execution which similar to test script 

but the generator will not produce the test data. 

1.4 THESIS ORGANIZATION 

This thesis consists of six chapters. Chapter 1 will discuss on introduction to 

research. Chapter 2 will discuss on the literature review of existing research or system 

and the technique/ method/ hardware/ technology currently exists. Chapter 3 will 

discuss on the overall approach and framework of research. Chapter 4 will cover the 

framework and model development through flow work. Chapter 5 will give the results 

and discussion of the research. Lastly, Chapter 6 will conclude the entire research work.



CHAPTER 2

LITERATURE REVIEW 

This chapter gives explanation regarding to generating test cases based on IIML 

Activity Diagram. There are seven sections in this chapter. Section 2.1 describes about 

the UML activity diagram, section 2.2 describes about the test case generator, section 

2.3 explains about what is Cyclomatic Complexity, section 2.4 gives five techniques on 

generating test cases based on UML Activity Diagram, section 2.5 shows the 

implementation of the techniques with case study, section 2.6 gives the comparison of 

the techniques, and section 2.7 is the proposed technique on test case generator. 

2.1 UML ACTIVITY DIAGRAM 

UML are commonly used as the design blueprints. It was created in the year 

1990 by the three famous amigos named Grady Booch, Ivar Jacobson, and James 

Rumbaugh. In year 2000, UML was approved by the International Organization for 

Standardization (ISO) as a standard modelling language. Now, it is used by the industry 

as a standard language in modelling object-oriented software system. Since UML has 

the capability in modelling requirements, it becomes the important sources for test case 

generation. One of the diagrams is the UML Activity Diagram. Unlike other diagrams 

in the UML, activity diagram does not show clear origins in the previous work of the 

three famous amigos. It combines the elements from several techniques such as the 

event diagrams of Jim Odell, workflow modelling, and also the Petri nets. UML 

Activity diagram is suitable to be used to describe system behaviour since it has the 

capability to capture business process, workflow, and interaction scenarios [5]. Another, 

the activity dependencies are clearly depicted through the activity diagrams. Therefore, 

it is worth to study the generation of test case from the activity diagram. The following 

Table 1 gives the symbols used to model the system behaviour by activity diagram.



Table 1 : Symbols of UML Activity Diagram 

Symbol Name Function 

Start state Indicates the beginning of the activities. 

100
End state Indicates the end of the flow of activities. 

Decision, Merge For	 decision,	 one	 transition	 line	 will 

connect to the diamond shape and with 

multiple transition lines coming out from 

the diamond shape. 

For merge, multiple transition lines will 

connect to the diamond shape and then 

only a single transition line coming out 

from it. The transition line will be labelled 

with guard condition indicates with 

Activity Show the action in the diagram. 

Swim lane A vertical column that used to model the 

activity's	 procedural	 flow	 of	 control 

between	 the	 objects	 that	 execute	 the 

action.	 The	 object	 can	 be	 person, 

organizations, or any responsible entities. 

Transition An arrow that indicates the flow from one 

action to another action.
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Fork The fork represents two action sequences 

that are done in parallel. 

\ / Join The join represents two actions are rejoin, 

back to a single action sequence.

2.2 TEST CASE GENERATOR 

Test case generator is in high demand especially in this rapid Information 

Technology (IT) developing era. The complexity and size of software systems keep on 

expanding and this has caused the manual testing becomes error-prone. Therefore, the 

developing of automatic test case generator is believed to make the process of testing 

becomes more efficient as well as to reduce the numbers of errors and faults [7]. Model-

based approaches are usually used in test case generation [13]. There are many existing 

test case generator developed with UML diagrams as the source to obtain software 

system requirements specification. Among them is the activity diagram where system 

behaviour is clearly shown. This is the key that determines the efficiency of the 

generator in producing the test cases as the quality of test cases depend on how much 

functionalities of system under test can be covered. A test case generator should fulfil 

the functionality of producing test case with full test coverage. In this project, flow 

graph which represents the UML Activity Diagram will be used as input to generate the 

test cases. 

2.3 CYCLOMATIC COMPLEXITY 

Cyclomatic Complexity serves as the software metric that measures the number 

of basic path in a program. Cyclomatic Complexity is developed by Thomas J. McCabe, 

Sr. in 1976 [2]. The software metric can be used to validate the number of test case 

generated. By defining the number of independent path in a system, the level of 

complexity of a program can be indicated. Cyclomatic complexity is implemented 

through the control flow graph which is a type of graph that uses the graph notations 



such as directed arrow that connects two vertices to show the paths travelled by the 

system during execution. The vertex is represented with circle labelled with activity. By 

converting an activity diagram into the control flow graph, the complexity of a program 

can be calculated using the formula. 

Flow graph consist of vertices and edges [2]. Each vertex is connected by the 

edge. Basic flow of the flow graph [9] is listed in Figure 1. 

If then	
Do	 Repeat else	

while	 until 

Figure 1 : Control Flow Subgraphs 

The complexity M is defined as following: 

M=E—N+2P 

Where E = Number of edges 

N = Number of vertices 

P = Number of exit vertices 

For graph with the condition where the exit point is directed back to the entry point [1] 

or graph with closed region, the complexity M is defined as following: 

M = R + 1 

Where R = Number of closed region 

McCabe proposed the Basis Path Testing which tests the linearly independent path of 

the program [2]. The testing technique would produce the same result as the Cyclomatic 

Complexity.
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2.4 FIVE TECHNIQUES ON GENERATING TEST CASE BASED ON UML 
ACTIVITY DIAGRAM 

The following gives the description of five test case generation techniques. 

2.4.1 Test case generation with input output explicit activity diagram 
(lOAD) 

The test case generation with lOAD emphasizes only on the external interaction 

of the system. The internal processing of the system is not taking in consideration [8] , 

The test paths are constructed based on the input of data by user and also the feedback 

produced to user. The lOAD method of test case generation can minimize the numter of 

test cases. For implementation, 110 explicit activity diagram is first constructed based 

on the main activity diagram. Then, it is transformed into a directed graph. The test case 

derived is applying the single stimulus principle to avoid state explosion problem for a 

concurrent system [12]. 

2.4.2 Test case generation with Condition-Classification Tree Method 

Condition-Classification Tree Method (CCTM) is the extended version of the 

Classification-Tree Method (CTM) [11]. This method uses the conditional branches to 

mark as to which test case covers which of the branches of the conditions in the activity 

diagram [8]. Figure 2 illustrates the three steps involved in CCTM. 

Activity 
Diagram 

['rest Case J
cieneratlng	 1.	 j Condition-	 I 1 Condition-	 j Classification 1 1 I ClassificatiOn Trees 

Creating Test Case 
Table 

0eneratlng Test Cases --------- - __jjJ 

Figure 2: Steps in CCTM 

In step of generating condition-classification trees, the decision points and their 

respective guard conditions are extracted to be used in constructing the condition-

classification tree. hi step of creating test case table, the number of guard conditions 

related to the decision point in consideration is counted. The number is used to
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determine the arrangement of the decision points from left to right in ascending order. 

After arranging all the decision points, a table in grid form is drawn under each decision 

points where the column is correspond to the guard conditions and the row is 

correspond to the potential test cases [11]. In step of generating test cases, option vertex 

that has relationship with the vertices from correspond left trees is marked together on 

the same row. The operation of marking starts from left to right [11]. 

2.4.3 Test case generation with sub activity diagram 

The sub activity diagram method gives a particular activity a more in depth view. 

The selected activity is further expanded into more details and is presented as separate 

activity diagram from the main activity diagram where it is derived. Then, a round-robin 

strategy is used to integrate all the test case at different level activity diagram into a test 

case for the whole system [12]. 

2.4.4 Test case generation for user acceptance testing 

For user acceptance test, real user group are chosen to test the system. For the 

user to show interest and understand what they need to do with the system to be tested, 

the activity diagram is converted into Interaction Flow Diagram (IFD) [8]. The IFD 

shows the input or output related to the actions and also the role that performs the action. 

The activity performed by the system itself is excluded from the IFD. Then, Interaction 

Flow Graph (IFG) is derived based on the IFD. Each loop is traversed once and Depth 

First Search (DFS) is used to generate all valid paths for test case. 

2.4.5 Test case generation with enhanced technique 

With the enhanced technique, the complexity of activity diagram is reduced by 

first converting the details in the diagram into an Activity Dependency Table (ADT) [6]. 

Then, the Activity Dependency Graph (ADG) is derived from the ADT by including all 

the activity. Test path is then generated from the graph by using path coverage criterion 

with DFS. Then, activities in loop are grouped together in order to minimize the test 

paths [8]. 

2.5 IMPLEMENTATION OF THE FIVE TECHNIQUES 

In this section, the case study by Khurana et al [8] is used to show the 

implementation of each technique. It is an activity diagram that shows the activity flow



of a shipping company. The process cover form firstly customer placing their orders till 

the last step of receiving is generated. Through the example, explanations are given on 

the workflow of each techniques and how the test cases are generated. 

Authorized?	 _-	 No 

Place order

Type of Oelwerg 

Qieck avaitabily 

	

Available? }	 No fShow nonaveibFity ' 	 ( Normal	 (Jigent 

	

)

	 (Enter shpiig choice9	 ___________ 

Show t1l	
( —Prepare forshipping 

Receive payment 

Auttre payment

Figure 3 : Example Activity Diagram for Case Study 

2.5.1 lOAD technique on generating test cases 

By using lOAD technique, activity diagram is converted into a form where all 

the internal processing by the system is excluded 8]. The user interaction is emphasized 

in the new converted diagram as shown in Figure 4 where "I" stands for input and "0" 

stands for output.
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Figure 4: Activity Diagram Based on lOAD 

The following shows the four test cases resulted by using the single stimulus principle: 

P1: 11-02-12-13-14-03-05 

P2:11-01-02-12-13-14-03-05 

P3:11-02-I3-12-14-04-05 

P4: 11-02-13-12-02-13-12-14-04-05 

2.5.2 Condition-Classification Tree Method on generating test cases 

Based on the steps in Figure 2, three decision points are extracted together with 

their guard conditions. The Condition-Classification tree table is drawn to mark the 

vertex that has relationship to each other as shown in Figure 5. The number of test case 

generated is shown at the left hand side of the table. In this example, four test cases are 

generated.



Test case 

1 

2 

3 

4

I  

Availability of	 Authorization of	 Delivery type 
items	 payment 

Available I I Not available I I I Authorized I I Not authorized I I Normal I I Urgent 

Figure 5 : Condition-Classification Tree Tables of Case Study 

2.5.3 Sub activity diagram on generating test cases 

From the case study, it is found that the activity "Check availability" can be 

further expands to more details. Therefore, the sub activity diagram is generated as 

shown in Figure 6. 

Figure 6: Sub Activity Diagram for "Check availability" Activity in Case Study 

Three paths are generated from the sub activity diagram. By using all path 

combination technique for the four paths of ordinary activity diagram and three paths of



13 

2.5.5 Enhanced technique on generating test cases 

The enhanced technique first transfer all activities found in the activity diagram 

into an ADT as shown in Table 2. The ADT table records all the details of activity 

diagram including the merge, join, fork, and decision so as all functionalities and 

behaviour of the system are covered. 

Table 2: ADT of Case Study 

Activity No Reduction Reduction 
Join  

Place order B B 

Check availability C C 

Decision 1 D 

Show non-availability E E 

Merge F F 

Fork G 

Enter shipping choice H H 

Prepare for shipping I I 

Process billing J J 

Show bill K K 

Receive payment L L 

Authorize payment M M 

Join N 

Decision 2 0 

Decision 3 P 

Normal Q Q 

Urgent R R 

Merge 2 S 

Generate receiving • T T
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Return	 H	 H 

The enhancement in this technique refers to the activities before and after 

reduction where the reduction done increases the readability of the ADG and at the 

same time all important functionalities from the ordinary activity diagram are remained. 

Another, the minimal test paths are obtained through reducing the generated test paths 

by combining each test path that will be used to test a loop. Each of the combined paths 

has the input, pre-conditions, post conditions, and the output [6]. Figure 8 and Figure 9 

show the ADG before and after reduction respectively. 

Figure 8: ADG before Reduction of the ADT Table 2



Figure 9: ADG after Reduction of the ADT Table 2 

By applying DFS on the Figure 9, four test paths are generated as following: 

Test path 1: B-C-B-C-U 

Test path 2: B-C-HIJKLM-HIJKLM-U 

Test path 3: B-C-HIJKLM-Q-T-U 

Test path 4: B-C-HIJKLM-R-T-U 

From the generated test paths, minimization is done using reduction for loop technique. 

The final test paths number generated is two as following: 

Test path 1: B-C-B-C-HIJKLM-Q-T-U 

Test path 2: B-C- HIJKLM- HIJKLM-R-T-U

15
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