
PERPUSTAKAAN UMP

I	 111111111111111111111
00001 03239

TEST CASE GENERATOR BASED ON UML ACTIVITY DIAGRAM

LOH KHA BEE

This report is submitted in partial fulfillment of requirement for the

Bachelor Degree of Computer Science (Software Engineering)

Faculty of Computer System and Software Engineering

Universiti Malaysia Pahang

111

December 2014

vii

ABSTRACT
Software testing serves to identify and report bugs exist in system. Test case is

required to aid the process of testing by giving the event that can and should be verified.
Nowadays, there are testing tool that required tester to enter system execution script.
This can affect the quality of test due to lack of experience of tester or human mistakes.
In this project, test case generator based on Unified Modeling Language (UML)
Activity Diagram is developed. With generating of flow graph from UML Activity
Diagram, test cases are able to be output. Therefore, the test case number of particular
UML Activity Diagram can be determined.

viii

ABSTRAK
Pengujian perisian berfungsi untuk mengenal pasti dan melaporkan pepijat yang

wujud dalam sistem. Kes ujian diperlukan untuk membantu dalam proses ujian dengan
memberi acara yang boleh dan harus disahkan. Kini, terdapat alat ujian yang
memerlukan penguji skrip untuk memasukkan ship pelaksanaan sistem. Hal mi boleh
menjejaskan kualiti ujian disebabkan kekurangan pengalaman penguji atau kesilapan
manusia. Dalam projek i, penjana kes ujian berdasarkan UML Activity Diagram
dibina. Dengan menjana graf aliran dari UML Activity Diagram, kes-kes ujian dapat
dijana. Oleh itu, bilangan kes ujian dalam UML Activity Diagram tertentu boleh
dikenalpasti.

ix

TABLE OF CONTENTS
BORANG PENGESAHAN STATUS TESIS . ii

STUDENTDECLARATION..iv

SUPERVISOR DECLARATION...v

ACKNOWLEDGEMENT...vi

ABSTRACT.. vii

ABSTRAK...

TABLEOF CONTENTS ix

LISTOF TABLES..

LISTOF FIGURES ..xiii

LISTOF ABBREVIATION .. xiv

LISTOF APPENDICES ... xv

CHAPTER1 ...1

INTRODUCTION.. 1

	

1.1	 PROBLEM STATEMENT..1

	

1.2	 OBJECTIVE ...2

	

1.3	 SCOPE...2

	

1.4	 THESIS ORGANIZATION 2

CHAPTER2...3

LITERATUREREVIEW...3

	

2.1	 UML ACTIVITY DIAGRAM...3

	

2.2	 TEST CASE GENERATOR.. 5

	

2.3	 CYCLOMATIC COMPLEXITY 5

2.4 FIVE TECHNIQUES ON GENERATING TEST CASE BASED ON UML
ACTIVITY DIAGRAM...7

	

2.4.1	 Test case generation with input output explicit activity diagram (lOAD) 7

	

2.4.2	 Test case generation with Condition-Classification Tree Method.............7

	

2.4.3	 Test case generation with sub activity diagram..8

	

2.4.4	 Test case generation for user acceptance testing..8

2.4.5	 Test case generation with enhanced technique...8

2.5	 IMPLEMENTATION OF THE FIVE TECHNIQUES.....................................8

2.5.1	 lOAD technique on generating test cases...9

2.5.2	 Condition-Classification Tree Method on generating test cases 10

2.5.3	 Sub activity diagram on generating test cases .. 11

2.5.4	 User acceptance testing on generating test cases...................................... 12

2.5.5	 Enhanced technique on generating test cases ... 13

2.6	 COMPARISON OF THE FIVE TECHNIQUES... 16

2.7	 PROPOSED TECHNIQUE ... 18

CHAPTER3 ... 20

METHODOLOGY... 20

3.1	 METHODOLOGY... 20

3.2	 HARDWARE AND SOFTWARE .. 25

3.3	 GANTT CHART.. 28

CHAPTER4... 29

DESIGN AND IMPLEMENTATION ... 29

4.1	 FRAMEWORK AND MODEL ... 29

4.1.1	 UML Activity Diagram Converter Algorithm.. 30

4.1.2	 Test Case Generator Algorithm.. 33

4.1.3	 The flow chart of TCGenerator .. 36

CHAPTER 5... 37

RESULTS AND DISCUSSION... 37

5.1	 PROPOSED MODEL ACTUAL OUTPUT.. 37

5.2	 PROPOSED MODEL ALGORITHM EXPLANATION................................ 38

5.3	 COMPARISON OF PROPOSED MODEL WITH REVIEWED
TECHNIQUES... 39

5.4	 RESULT ANALYSIS.. 41

5.4.1	 Test hypotheses... 42

5.5	 REAL LIFE IMPLEMENTATION OF TCGENERATOR............................. 43

xi

5.6 RESEARCH CONSTRAINTS	 .53

5.7	 SUGGESTION AND ENHANCEMENT OF PROJECT................................54

	

5.7.1	 Contribution of project..54

	

5.7.2	 Enhancement of project.. 55

CHAPTER6...56

CONCLUSION...56

6.1	 CONCLUSION OF RESEARCH.. 56

6.2	 OBJECTIVES ACHIEVEMENT ..56

6.3 METHODOLOGY AND RESEARCH IMPLEMENTATION56

6.4	 FUTURE SUGGESTION AND ENHANCEMENT.......................................57

APPENDIXA... 58

GanttChart 58

APPENDIXB...60

TumitinReport ...60

APPENDIXC...61

TCGeneratorSource Code..61

APPENDIXD...64

UserManual..64

REFERENCES...66

xii

LIST OF TABLES
Table 1: Symbols of UML Activity Diagram..4

Table2 : ADT of Case Study..13

Table 3 Comparison of Techniques..16

Table 4: Hardware Description.. 25

 Table 5 : Software Description...26

Table 6: Activity and Respective Numeric Representation...31

Table 7: Comparison of Proposed Model with Reviewed Techniques 39

Table 8: Activity and Respective Numeric Representation of ATM............................. 45

 Table 9: Test Case of UML Activity Diagram of ATM (Withdraw Money)................48

xlii

LIST OF FIGURES
Figure 1: Control Flow Subgraphs...6

Figure2:	 Steps in CCTM...7

Figure 3 : Example Activity Diagram for Case Study..9

Figure 4: Activity Diagram Based on lOAD ... 10

Figure 5 : Condition-Classification Tree Tables of Case Study 11 /

Figure 6: Sub Activity Diagram for "Check availability" Activity in Case Study 11

Figure 7 : IFD of Case Study ... 12

Figure 8 : ADG before Reduction of the ADT Table 2.. 14

Figure 9: ADG after Reduction of the ADT Table 2... 15

Figure 10 : Flow Chart of Research Framework .. 21

Figure 11: Framework of Proposed Test Case Generator.. 29

Figure 12: Illustration of Flow Graph Generated .. 32

Figure 13 : Flow Chart of TCGenerator... 36

Figure 14: Output of TCGenerator .. 37

Figure 15: Adjacency Matrix ... 38

Figure16	 :	 ArrayList .. 38

Figure 17: Increment of Activity Depth ... 42

Figure 18: j Indicates Depth Value.. 43

Figure 19: UML Activity Diagram of ATM (Withdraw Money).................................. 44

Figure 20: CFG of UML Activity Diagram of ATM (Withdraw Money)..................... 46

Figure 21: Out 	 of UML Activity Diagram of ATM (Withdraw Money) 47

LIST OF ABBREVIATION
ABBREVIATION MEANING

ADT Activity Dependency Table

ADG Activity Dependency Graph

ATM Automatic Teller Machine

CCTM Condition-Classification Tree Method

CFG Control Flow Graph

DFS Depth First Search

GUI Graphical User Interface

IFD Interaction Flow Diagram

IFG Interaction Flow Graph

lOAD Input Output Explicit Activity Diagram

ISO International Organization for Standardization

IT Information Technology

MGS Modified Graph Search

PIN Personal Identification Number

UML Unified Modeling Language

xlv

xv

LIST OF APPENDICES
APPENDIX A Gantt Chart... 58

APPENDIX B Turnitin Report...60

APPENDIX C TCGenerator Source Code...61

APPENDIX D : User Manual..64

CHAPTER 1

INTRODUCTION

Software is written by fallible human. Therefore, existing of defects in .the

software products is inevitable. These defects can cause risks of failure when system

execution [8]. However, the level of these risks of failure can be reduced through testing

to uncover the bugs or any anomalies in the system. Then, the identified bugs and

anomalies can be removed through debugging. For testing to be carried out, test cases

are required to determine the test condition to be covered during the test. Tester needs to

design the test case by own and this may affect the quality of test result due to lack of

experience or human mistakes. This thesis covers research on methodology to generate

test cases based on UML Activity Diagram.

1.1 PROBLEM STATEMENT

Testing is needed to be performed by tester to verify and validate the input data

fulfil the requirement of a software functionality. Therefore, test case is needed. The

demand for automated test has grown drastically over the years. Current tool on

automate the test execution has grown in line with the existence of automated tool.

Oracle OATS, HP, and IBM Rational Test Workbench are among the automated tools

used by software industry. However, these automated tools are not able to generate test

cases based on software specification specified. The tools are made to provide tester to

enter system execution script. Thus, quality of test result is highly affected by the

quality of script produced by the tester due to lack of experience or human mistakes.

Another, poor verification process occurs when the test case result is traceable to the

system output that has been prepared before.

Although lots of diagram has been created such as UML Activity Diagram

during software analysis and design, tester still designs the test case based on the

software requirement specification. By generating test case based on the UML Activity

Diagram can bridge the gap between the requirement specification and test case design.

1.2 OBJECTIVE

The objectives of the research are to:

i. Convert UML Activity Diagram into a McCabe flow graph.

ii. Modify Depth First Search (DFS) algorithm to generate test cases based

on McCabe flow graph.

iii. Develop a prototype that can automatically generate the test cases based on a

UML Activity Diagram without user interference of the process.

1.3 SCOPE

The scopes of the thesis are:

i. Research on test case generator based on Unified Modeling Language

(UML) Activity Diagram. Test basis is limited to activity diagram.

ii. Produce the test case in a form of flow of execution which similar to test script

but the generator will not produce the test data.

1.4 THESIS ORGANIZATION

This thesis consists of six chapters. Chapter 1 will discuss on introduction to

research. Chapter 2 will discuss on the literature review of existing research or system

and the technique/ method/ hardware/ technology currently exists. Chapter 3 will

discuss on the overall approach and framework of research. Chapter 4 will cover the

framework and model development through flow work. Chapter 5 will give the results

and discussion of the research. Lastly, Chapter 6 will conclude the entire research work.

CHAPTER 2

LITERATURE REVIEW

This chapter gives explanation regarding to generating test cases based on IIML

Activity Diagram. There are seven sections in this chapter. Section 2.1 describes about

the UML activity diagram, section 2.2 describes about the test case generator, section

2.3 explains about what is Cyclomatic Complexity, section 2.4 gives five techniques on

generating test cases based on UML Activity Diagram, section 2.5 shows the

implementation of the techniques with case study, section 2.6 gives the comparison of

the techniques, and section 2.7 is the proposed technique on test case generator.

2.1 UML ACTIVITY DIAGRAM

UML are commonly used as the design blueprints. It was created in the year

1990 by the three famous amigos named Grady Booch, Ivar Jacobson, and James

Rumbaugh. In year 2000, UML was approved by the International Organization for

Standardization (ISO) as a standard modelling language. Now, it is used by the industry

as a standard language in modelling object-oriented software system. Since UML has

the capability in modelling requirements, it becomes the important sources for test case

generation. One of the diagrams is the UML Activity Diagram. Unlike other diagrams

in the UML, activity diagram does not show clear origins in the previous work of the

three famous amigos. It combines the elements from several techniques such as the

event diagrams of Jim Odell, workflow modelling, and also the Petri nets. UML

Activity diagram is suitable to be used to describe system behaviour since it has the

capability to capture business process, workflow, and interaction scenarios [5]. Another,

the activity dependencies are clearly depicted through the activity diagrams. Therefore,

it is worth to study the generation of test case from the activity diagram. The following

Table 1 gives the symbols used to model the system behaviour by activity diagram.

Table 1 : Symbols of UML Activity Diagram

Symbol Name Function

Start state Indicates the beginning of the activities.

100
End state Indicates the end of the flow of activities.

Decision, Merge For	 decision,	 one	 transition	 line	 will

connect to the diamond shape and with

multiple transition lines coming out from

the diamond shape.

For merge, multiple transition lines will

connect to the diamond shape and then

only a single transition line coming out

from it. The transition line will be labelled

with guard condition indicates with

Activity Show the action in the diagram.

Swim lane A vertical column that used to model the

activity's	 procedural	 flow	 of	 control

between	 the	 objects	 that	 execute	 the

action.	 The	 object	 can	 be	 person,

organizations, or any responsible entities.

Transition An arrow that indicates the flow from one

action to another action.

5

Fork The fork represents two action sequences

that are done in parallel.

\ / Join The join represents two actions are rejoin,

back to a single action sequence.

2.2 TEST CASE GENERATOR

Test case generator is in high demand especially in this rapid Information

Technology (IT) developing era. The complexity and size of software systems keep on

expanding and this has caused the manual testing becomes error-prone. Therefore, the

developing of automatic test case generator is believed to make the process of testing

becomes more efficient as well as to reduce the numbers of errors and faults [7]. Model-

based approaches are usually used in test case generation [13]. There are many existing

test case generator developed with UML diagrams as the source to obtain software

system requirements specification. Among them is the activity diagram where system

behaviour is clearly shown. This is the key that determines the efficiency of the

generator in producing the test cases as the quality of test cases depend on how much

functionalities of system under test can be covered. A test case generator should fulfil

the functionality of producing test case with full test coverage. In this project, flow

graph which represents the UML Activity Diagram will be used as input to generate the

test cases.

2.3 CYCLOMATIC COMPLEXITY

Cyclomatic Complexity serves as the software metric that measures the number

of basic path in a program. Cyclomatic Complexity is developed by Thomas J. McCabe,

Sr. in 1976 [2]. The software metric can be used to validate the number of test case

generated. By defining the number of independent path in a system, the level of

complexity of a program can be indicated. Cyclomatic complexity is implemented

through the control flow graph which is a type of graph that uses the graph notations

such as directed arrow that connects two vertices to show the paths travelled by the

system during execution. The vertex is represented with circle labelled with activity. By

converting an activity diagram into the control flow graph, the complexity of a program

can be calculated using the formula.

Flow graph consist of vertices and edges [2]. Each vertex is connected by the

edge. Basic flow of the flow graph [9] is listed in Figure 1.

If then	
Do	 Repeat else	

while	 until

Figure 1 : Control Flow Subgraphs

The complexity M is defined as following:

M=E—N+2P

Where E = Number of edges

N = Number of vertices

P = Number of exit vertices

For graph with the condition where the exit point is directed back to the entry point [1]

or graph with closed region, the complexity M is defined as following:

M = R + 1

Where R = Number of closed region

McCabe proposed the Basis Path Testing which tests the linearly independent path of

the program [2]. The testing technique would produce the same result as the Cyclomatic

Complexity.

7

2.4 FIVE TECHNIQUES ON GENERATING TEST CASE BASED ON UML
ACTIVITY DIAGRAM

The following gives the description of five test case generation techniques.

2.4.1 Test case generation with input output explicit activity diagram
(lOAD)

The test case generation with lOAD emphasizes only on the external interaction

of the system. The internal processing of the system is not taking in consideration [8] ,

The test paths are constructed based on the input of data by user and also the feedback

produced to user. The lOAD method of test case generation can minimize the numter of

test cases. For implementation, 110 explicit activity diagram is first constructed based

on the main activity diagram. Then, it is transformed into a directed graph. The test case

derived is applying the single stimulus principle to avoid state explosion problem for a

concurrent system [12].

2.4.2 Test case generation with Condition-Classification Tree Method

Condition-Classification Tree Method (CCTM) is the extended version of the

Classification-Tree Method (CTM) [11]. This method uses the conditional branches to

mark as to which test case covers which of the branches of the conditions in the activity

diagram [8]. Figure 2 illustrates the three steps involved in CCTM.

Activity
Diagram

['rest Case J
cieneratlng	 1.	 j Condition-	 I 1 Condition-	 j Classification 1 1 I ClassificatiOn Trees

Creating Test Case
Table

0eneratlng Test Cases --------- - __jjJ

Figure 2: Steps in CCTM

In step of generating condition-classification trees, the decision points and their

respective guard conditions are extracted to be used in constructing the condition-

classification tree. hi step of creating test case table, the number of guard conditions

related to the decision point in consideration is counted. The number is used to

8

determine the arrangement of the decision points from left to right in ascending order.

After arranging all the decision points, a table in grid form is drawn under each decision

points where the column is correspond to the guard conditions and the row is

correspond to the potential test cases [11]. In step of generating test cases, option vertex

that has relationship with the vertices from correspond left trees is marked together on

the same row. The operation of marking starts from left to right [11].

2.4.3 Test case generation with sub activity diagram

The sub activity diagram method gives a particular activity a more in depth view.

The selected activity is further expanded into more details and is presented as separate

activity diagram from the main activity diagram where it is derived. Then, a round-robin

strategy is used to integrate all the test case at different level activity diagram into a test

case for the whole system [12].

2.4.4 Test case generation for user acceptance testing

For user acceptance test, real user group are chosen to test the system. For the

user to show interest and understand what they need to do with the system to be tested,

the activity diagram is converted into Interaction Flow Diagram (IFD) [8]. The IFD

shows the input or output related to the actions and also the role that performs the action.

The activity performed by the system itself is excluded from the IFD. Then, Interaction

Flow Graph (IFG) is derived based on the IFD. Each loop is traversed once and Depth

First Search (DFS) is used to generate all valid paths for test case.

2.4.5 Test case generation with enhanced technique

With the enhanced technique, the complexity of activity diagram is reduced by

first converting the details in the diagram into an Activity Dependency Table (ADT) [6].

Then, the Activity Dependency Graph (ADG) is derived from the ADT by including all

the activity. Test path is then generated from the graph by using path coverage criterion

with DFS. Then, activities in loop are grouped together in order to minimize the test

paths [8].

2.5 IMPLEMENTATION OF THE FIVE TECHNIQUES

In this section, the case study by Khurana et al [8] is used to show the

implementation of each technique. It is an activity diagram that shows the activity flow

of a shipping company. The process cover form firstly customer placing their orders till

the last step of receiving is generated. Through the example, explanations are given on

the workflow of each techniques and how the test cases are generated.

Authorized?	 _-	 No

Place order

Type of Oelwerg

Qieck avaitabily

	

Available? }	 No fShow nonaveibFity ' 	 (Normal	 (Jigent

	

)

	 (Enter shpiig choice9	 ___________

Show t1l	
(—Prepare forshipping

Receive payment

Auttre payment

Figure 3 : Example Activity Diagram for Case Study

2.5.1 lOAD technique on generating test cases

By using lOAD technique, activity diagram is converted into a form where all

the internal processing by the system is excluded 8]. The user interaction is emphasized

in the new converted diagram as shown in Figure 4 where "I" stands for input and "0"

stands for output.

10

Figure 4: Activity Diagram Based on lOAD

The following shows the four test cases resulted by using the single stimulus principle:

P1: 11-02-12-13-14-03-05

P2:11-01-02-12-13-14-03-05

P3:11-02-I3-12-14-04-05

P4: 11-02-13-12-02-13-12-14-04-05

2.5.2 Condition-Classification Tree Method on generating test cases

Based on the steps in Figure 2, three decision points are extracted together with

their guard conditions. The Condition-Classification tree table is drawn to mark the

vertex that has relationship to each other as shown in Figure 5. The number of test case

generated is shown at the left hand side of the table. In this example, four test cases are

generated.

Test case

1

2

3

4

I

Availability of	 Authorization of	 Delivery type
items	 payment

Available I I Not available I I I Authorized I I Not authorized I I Normal I I Urgent

Figure 5 : Condition-Classification Tree Tables of Case Study

2.5.3 Sub activity diagram on generating test cases

From the case study, it is found that the activity "Check availability" can be

further expands to more details. Therefore, the sub activity diagram is generated as

shown in Figure 6.

Figure 6: Sub Activity Diagram for "Check availability" Activity in Case Study

Three paths are generated from the sub activity diagram. By using all path

combination technique for the four paths of ordinary activity diagram and three paths of

13

2.5.5 Enhanced technique on generating test cases

The enhanced technique first transfer all activities found in the activity diagram

into an ADT as shown in Table 2. The ADT table records all the details of activity

diagram including the merge, join, fork, and decision so as all functionalities and

behaviour of the system are covered.

Table 2: ADT of Case Study

Activity No Reduction Reduction
Join

Place order B B

Check availability C C

Decision 1 D

Show non-availability E E

Merge F F

Fork G

Enter shipping choice H H

Prepare for shipping I I

Process billing J J

Show bill K K

Receive payment L L

Authorize payment M M

Join N

Decision 2 0

Decision 3 P

Normal Q Q

Urgent R R

Merge 2 S

Generate receiving • T T

14

Return	 H	 H

The enhancement in this technique refers to the activities before and after

reduction where the reduction done increases the readability of the ADG and at the

same time all important functionalities from the ordinary activity diagram are remained.

Another, the minimal test paths are obtained through reducing the generated test paths

by combining each test path that will be used to test a loop. Each of the combined paths

has the input, pre-conditions, post conditions, and the output [6]. Figure 8 and Figure 9

show the ADG before and after reduction respectively.

Figure 8: ADG before Reduction of the ADT Table 2

Figure 9: ADG after Reduction of the ADT Table 2

By applying DFS on the Figure 9, four test paths are generated as following:

Test path 1: B-C-B-C-U

Test path 2: B-C-HIJKLM-HIJKLM-U

Test path 3: B-C-HIJKLM-Q-T-U

Test path 4: B-C-HIJKLM-R-T-U

From the generated test paths, minimization is done using reduction for loop technique.

The final test paths number generated is two as following:

Test path 1: B-C-B-C-HIJKLM-Q-T-U

Test path 2: B-C- HIJKLM- HIJKLM-R-T-U

15

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

