MULTI-USERS WORKSTATIONS

MICHAEL LING CHEE SIANG

REPORT SUBMITTED IN FULFILMENT OF THE DEGREE OF COMPUTER SCIENCE (COMPUTER SYSTEM AND NETWORKING)

FACULTY OF COMPUTER SYSTEMS & SOFTWARE ENGINEERING,
UNIVERSITY MALAYSIA PAHANG

2015
ABSTRACT

The Multi-Users Workstations is special designed for the industry with purpose to minimum the use of the computer on a work place. It also used to improve the computer functionality from a single user to multi-users on one computer on the same time. In order to design a Multi-users workstations for Sati Wealth Consultancy Sdn. Bhd, Rapid Application Development (RAD) has been chosen. RAD has several characteristics that are suitable for the development of Multi-users Workstations. This system is more on configuration to make it work properly. This system was tested with functionality testing, and user acceptance test. The results show the functionality of the system is passed which users satisfy with the system.
ABSTRAK

Abstract—The multi-user workstation is design to make human more easier to interact with the computer. This system is to make a computer can be uses by multi user on the same time. In order to develop a multi-touch workstation Rapid Application Development (RAD) has been chosen. RAD has several characteristics that are suitable for development of this multi-user workstation. That are many type of methodology can be uses in order to develop the project, such as RAD, waterfall and etc. Those methodology are the platform of implemented the project using the certain way. The methodology that has been applied could be reliable and applicable with the system and project that are developed.

I. INTRODUCTION

In this age, technology is constantly become more high technology and moden. The computer is no an exception too. The development of new technologies have realized and focused on the interaction between computer and human.

Multi-user workstation can be the new thing to be uses on a computer. The function of the Multi user workstation is to make a computer can be use by two people on the same time. This system may need the support from the virtual machine to complete the task. This multi-user workstation can be the new direction for the people to build the advanced device and system that can support many user on the same time.

For my final project, I will make a multi-user workstation to use by multi user simultaneously by using the some equipment like virtual machine and s others. This idea I get from last time project which did by my senior and my client requirement. My client request to make a computer that can uses by multi user simultaneously.

II. PROBLEM STATEMENT

Problem statement are the list why there is the need of multi-user workstations. This does mean that the existing of the computer still can be improve. Problem that arise are:
- Workstation can uses by one person in one time.
- One computer just has one desktop interface.
- Not all computer can use multi-keyboard and mouse on one computer.

III. OBJECTIVE

The following are the objective will be developed according to the development plan and it is to overcome the problem which are like workstation can uses by one person in one time, one computer only has one desktop interface, and not all computer can use multi-keyboard and mouse on one computer.
- To create a workstation to be used by multi-people simultaneously.
- To customize two desktop in one computer.
- To make a computer can use more than one keyboards and mouse on the same time.

IV. SCOPE

The following are the scope that will be cover according to the development plan.
- The User scope of the system:
 - Multi-user able to use the system simultaneously.
- Computer lab scope of the system:
 - System can minimize the costing on computer lab.
V. METHODOLOGY

The software development model that I will use to develop my system is the Rapid Application Development Model (RAD) which I had mentioned and explain in another chapter. The phases of the RAD model contain:

A) Requirement/Planning
B) System Design
C) Development
D) Cutover

VI. CONCLUSION

Multi-user workstations can improve the interaction between human and the computer system. This system provides multi-user system on a computer.

One of the advantage of this system is that user can run more than one desktop interface. So by mean a computer can be uses by multi-user on one time.

The disadvantage of this system is, it needs a huge computer storage to run the system.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERVISOR'S DECLARATION</td>
<td>2</td>
</tr>
<tr>
<td>STUDENT'S DECLARATION</td>
<td>3</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>5</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>6</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>7</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>11</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>11</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Objectives</td>
<td>12</td>
</tr>
<tr>
<td>1.4 Scope</td>
<td>13</td>
</tr>
<tr>
<td>1.5 Thesis Organization</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>14</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Review on Existing System</td>
<td>14</td>
</tr>
<tr>
<td>2.1.1 Window Virtual PC</td>
<td>14</td>
</tr>
<tr>
<td>2.1.2 VirtualBox</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3 QEMU</td>
<td>15</td>
</tr>
<tr>
<td>2.1.4 Summary of existing system</td>
<td>15</td>
</tr>
<tr>
<td>2.2 Software Development Methodology</td>
<td>16</td>
</tr>
</tbody>
</table>
6.2. Result analysis .. 35

6.3. Advantage and Disadvantages ... 36

CHAPTER 7 .. 37

CONCLUSION ... 37

7.1. Conclusion ... 37
CHAPTER 1

INTRODUCTION

This chapter briefly discuss on the overview of the project into three parts. The first part discusses on the problem statement discovered in real situation and findings. Next, the project objective is determined by project's goal and aim; follow by the project scope where the boundary limit is enclosed.

1.1 Introduction

In this age, technology is constantly become more high technology and modern. The computer is no an exception too. The development of new technologies have realized and focused on the interaction between computer and human.

Multi-user workstation can be the new thing to be uses on a computer. The function of the Multi-user workstation is to make a computer can be used by two people on the same time. This system may need the support from the virtual machine to complete the task. This multi-user workstation can be the new direction for the people to build the advanced device and system that can support many user on the same time.

For my final project, I will make a multi-user workstation to use by multi user simultaneously by using the some equipment like virtual machine and so others. This idea I get from last time project which did by my senior and my client requirement. My client request to make a computer that can uses by multi user simultaneously
1.2 Problem Statement

In this age, the computer become more powerful and modern, the hardware and the software using is more far greater from the past time. Even though, computer become more modern or using the high specification but so far computer just can uses by one person in one time and not all software can operate the workstation uses by multi-users simultaneously, normally all work is depend on the hardware to make it operate multi-user workstation.

Besides that, computer now only has one desktop and use it directly. The computer still don't have the ability to operate two desktop to work on one screen for multi-user uses simultaneously. Even, now already got software that can operate multi operating system on a computer but the computer still not able to work simultaneously.

Furthermore, not all computer can use multi-keyboard and multi-mouse on one computer. Almost all the computer just able to run one mouse and keyboard on the same time. Without the virtual machine, the computer may have face the problem on connecting with the multi-mouse and keyboard.

1.3 Objectives

The following are the objective will be developed according to the development plan and it is to overcome the problem which are like workstation can uses by one person in one time, one computer only has one desktop interface, and not all computer can use multi-keyboard and mouse on one computer.

- To create a workstation to be used by multi-people simultaneously.
- To customize two desktop in one computer.
- To make a computer can use more than one keyboards and mouse on the same time.
1.4 Scope

The following are the scope that will be cover according to the development plan:

- **User**
 Multi-users able to use the system simultaneously.

- **Computer lab**
 This system can minimize the costing on computer lab.

1.5 Thesis Organization

This thesis is disjointed into two chapters where each chapter denotes different details in this project. Below displays a brief summary of the content for each respective chapters.

i. Chapter 1
 Introduction of the project background follow with the project problem statement, project objectives and project scopes.

ii. Chapter 2
 Research and literature review relevant to the project.

iii. Chapter 3
 Project analysis, design and methodology are presented.

iv. Chapter 4
 Design of the diagram presented.

v. Chapter 5
 Discuss on the system implementation phase.

vi. Chapter 6
 The testing result of the system and discussion on the result are presented.

vii. Chapter 7
 Conclusion of the thesis presented.
 CHAPTER 2

LITERATURE REVIEW

In this part, the existing and current system, operation environment, regards to this project is reviewed as research finding output. This chapter will also review on the software development methodology of the project concisely.

2.1 Review on Existing System

2.1.1 Window Virtual PC

Windows XP Mode works in two ways both as a virtual operating system and as a way to open programs within Windows 7. It runs in a separate window on the Windows 7 desktop, much like a program, except it's a fully-functional, fully-licensed version of Windows XP. In Windows XP Mode, you can access your physical computer's CD/DVD drive, install programs, save files, and perform other tasks as if you were using a computer running Windows XP.

2.1.2 VirtualBox

VirtualBox was designed to be modular and flexible. The Virtual Box service process which always runs in the background. This process is started automatically by the first Virtual Box client process (the GUI, VBoxManage, VBoxHeadless, the web service or others) and exits a short time after the last client exits. The service is responsible for bookkeeping, maintaining the state of all VMs, and for providing communication between Virtual Box components. VirtualBox consists of many more or less separate components.
2.1.3 QEMU

QEMU is an open source emulator capable of running another operating system in a window. QEMU is faster than most emulators because it uses dynamic recompilation, meaning it translates entire pages and keeps the translated pages around (sort of like a Java JIT compiler, or Transmeta's code morphing layer). The translation overhead is similar to the pause fetching code from disk, or the latency of copying DRAM into L2 cache. It occurs exactly at the places systems are already slow, and thus the places any modern software that cares about performance is optimized to do as little as possible.

2.1.4 Summary of existing system

The existing system that have been review in the previous subchapter above are related to the system that will be design and configure for the company Sati Wealth consultancy sdn. Bhd. Table 0.1 shows the comparison between the Window Virtual PC, VirtualBox and QEMU.

<table>
<thead>
<tr>
<th>System Name</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window virtual PC</td>
<td>- Easy installation</td>
<td>- Complexity.</td>
</tr>
<tr>
<td></td>
<td>- Low cost</td>
<td></td>
</tr>
<tr>
<td>VirtualBox</td>
<td>- Simple, menu-driven screens</td>
<td>- High cost</td>
</tr>
<tr>
<td></td>
<td>- Create and sequence standard</td>
<td></td>
</tr>
<tr>
<td>QEMU</td>
<td>- Using dynamic recompilation</td>
<td>- System work slow</td>
</tr>
<tr>
<td></td>
<td>- Open source emulator</td>
<td></td>
</tr>
</tbody>
</table>

Table 0.1 Comparison between 3 Systems
2.2 Software Development Methodology

2.2.1 Waterfall Model Overview

The Waterfall Model was first Process Model to be introduced. It is also referred to as a linear-sequential life cycle model. It is very simple to understand and use. In a waterfall model, each phase must be completed fully before the next phase can begin. At the end of each phase, a review takes place to determine if the project is on the right path and whether or not to continue or discard the project. In waterfall model phases do not overlap.

![Waterfall Model Design](image)

Figure 1 Waterfall Model Design
Waterfall Model Five Phases

i. Requirements
Requirements of a user are gathered, analysed and documented for preparation in the development process.

ii. Design
The requirements gathered in the above phase are evaluated and a proper implementation strategy is formulated according to the software environment. The design phase is further categorized into two sections, i.e. system design and component design. The system design contains details and specifications of the whole system and explains how each component of the system will interact with others. The component design contains specifications as to how each component will work separately and how results from one component will travel to another. Individual coders are usually assigned to develop each component.

iii. Implementation
Now is the time to actually start creating the components. The information gathered in the first two phases is applied in this step to create the actual working parts of the system. The design generated in the above phase is converted into machine language that the computers can actually understand and process.

iv. Testing
The testing phase is where the software is checked for any errors or discrepancies. The testing of the software actually starts after the code is finished which is usually in the ending stages of implementation phase. Various different tools, software and strategies are used for testing the solution in order to make sure that it is error free.

v. Maintenance
Maintenance is an ongoing process which may stretch from a few months to many years. It is a fact that all software has bugs no matter how cautiously it has
been developed and tested. Furthermore, with the passage of time, requirements will also change and modifications or additions will be required to keep it effective. All this work comes under the umbrella term - maintenance.

Waterfall Model Pros and Cons

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple and easy to understand and use</td>
<td>No working software is produced until late during the life cycle.</td>
</tr>
<tr>
<td>Easy to manage due to the rigidity of the</td>
<td>High amounts of risk and uncertainty.</td>
</tr>
<tr>
<td>model. Each phase has specific deliverables</td>
<td></td>
</tr>
<tr>
<td>and a review process.</td>
<td></td>
</tr>
<tr>
<td>Phases are processed and completed one at a</td>
<td>Poor model for long and ongoing projects</td>
</tr>
<tr>
<td>time.</td>
<td></td>
</tr>
<tr>
<td>Works well for smaller projects where</td>
<td>Not suitable for the projects where requirements are at a moderate to</td>
</tr>
<tr>
<td>requirements are very well understood.</td>
<td>high risk of changing. So risk and uncertainty is high with this process</td>
</tr>
<tr>
<td></td>
<td>model.</td>
</tr>
<tr>
<td>Clearly defined stages.</td>
<td>It is difficult to measure progress within stages.</td>
</tr>
<tr>
<td>Well understood milestones.</td>
<td>Cannot accommodate changing requirements.</td>
</tr>
</tbody>
</table>

2.2.2 Rapid Application Development (RAD) Model

RAD Model Overview

RAD model is Rapid Application Development model. It is a type of incremental model. In RAD model the components or functions are developed in parallel as if they were mini projects. The developments are time boxed, delivered and then assembled into a working prototype. This can quickly give the customer
something to see and use and to provide feedback regarding the delivery and their requirements.

Professor Clifford Kettleborough of Whitehead College, University of Redlands, defines Rapid Application Development as "an approach to building computer systems which combines Computer-Assisted Software Engineering (CASE) tools and techniques, user-driven prototyping, and stringent project delivery time limits into a potent, tested, reliable formula for top-notch quality and productivity. RAD drastically raises the quality of finished systems while reducing the time it takes to build them."

RAD Model Design

![RAD Model Diagram](image)

Figure 2 RAD Model

RAD Model Four Phases

1. **Requirements planning phase**

 In requirements planning phase, it combines elements of the system planning and systems analysis phases of the Systems Development Life Cycle (SDLC). Users, managers, and IT staff members discuss and agree on business needs, project scope, constraints, and system requirements. It ends when the team agrees on the key issues and obtains management authorization to continue.
ii. User design phase
During this phase, users interact with systems analysts and develop models and prototypes that represent all system processes, inputs, and outputs. The RAD groups or subgroups typically use a combination of Joint Application Development (JAD) techniques and CASE tools to translate user needs into working models. User Design is a continuous interactive process that allows users to understand, modify, and eventually approve a working model of the system that meets their needs.

iii. Construction phase
This phase focuses on program and application development task similar to the SDLC. In RAD, however, users continue to participate and can still suggest changes or improvements as actual screens or reports are developed. Its tasks are programming and application development, coding, unit-integration and system testing.

iv. Cutover phase
Cutover phase resembles the final tasks in the SDLC implementation phase, including data conversion, testing, changeover to the new system, and user training. Compared with traditional methods, the entire process is compressed. As a result, the new system is built, delivered, and placed in operation much sooner.
RAD Model Pros and Cons

Table 2 RAD Model Pros and Cons

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changing requirements can be accommodated.</td>
<td>Dependency on technically strong team members for identifying business requirements.</td>
</tr>
<tr>
<td>Progress can be measured.</td>
<td>Only system that can be modularized can be built using RAD.</td>
</tr>
<tr>
<td>Iteration time can be short with use of powerful RAD tools.</td>
<td>Requires highly skilled developers/designers.</td>
</tr>
<tr>
<td>Productivity with fewer people in short time.</td>
<td>High dependency on modeling skills.</td>
</tr>
<tr>
<td>Reduced development time.</td>
<td>Inapplicable to cheaper projects as cost of modeling and automated code generation is very high.</td>
</tr>
<tr>
<td>Increases reusability of components</td>
<td>Management complexity is more.</td>
</tr>
<tr>
<td>Quick initial reviews occur</td>
<td>Suitable for systems that are component based and scalable.</td>
</tr>
<tr>
<td>Encourages customer feedback</td>
<td>Requires user involvement throughout the life cycle.</td>
</tr>
</tbody>
</table>

2.2.3 Prototyping Model

Prototyping Model Overview

The basic idea here is that instead of freezing the requirements before a design or coding can proceed, a throwaway prototype is built to understand the requirements. This prototype is developed based on the currently known requirements. By using this prototype, the client can get an “actual feel” of the system, since the interactions with prototype can enable the client to better understand the requirements of the desired system. Prototyping is an attractive idea for complicated and large systems for which there is no manual process or existing system to help determining the requirements. The
prototype is usually not complete systems and many of the details are not built in the prototype. The goal is to provide a system with overall functionality.

Prototyping Model Design

Figure 3 Prototyping Model
Prototyping Model Phases

i. Requirements gathering and analysis
 A prototyping model begins with requirements analysis and the requirements of the system are defined in detail. The user is interviewed in order to know the requirements of the system.

ii. Quick design
 When requirements are known, a preliminary design or quick design for the system is created. It is not a detailed design and includes only the important aspects of the system, which gives an idea of the system to the user. A quick design helps in developing the prototype.

iii. Build prototype
 Information gathered from quick design is modified to form the first prototype, which represents the working model of the required system.

iv. User evaluation
 Next, the proposed system is presented to the user for thorough evaluation of the prototype to recognize its strengths and weaknesses such as what is to be added or removed. Comments and suggestions are collected from the users and provided to the developer.

v. Refining prototype
 Once the user evaluates the prototype and if he is not satisfied, the current prototype is refined according to the requirements. That is, a new prototype is developed with the additional information provided by the user. The new prototype is evaluated just like the previous prototype. This process continues until all the requirements specified by the user are met. Once the user is satisfied with the developed prototype, a final system is developed on the basis of the final prototype.

vi. Engineer product
 Once the requirements are completely met, the user accepts the final prototype. The final system is evaluated thoroughly followed by the routine maintenance on regular basis for preventing large-scale failures and minimizing downtime.
Prototyping Model Pros and Cons

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased user involvement in the product</td>
<td>Risk of insufficient requirement analysis</td>
</tr>
<tr>
<td>even before implementation</td>
<td>owing to too much dependency on prototype</td>
</tr>
<tr>
<td>Since a working model of the system is</td>
<td>Users may get confused in the prototypes</td>
</tr>
<tr>
<td>displayed, the users get a better</td>
<td>and actual systems.</td>
</tr>
<tr>
<td>understanding of the system being</td>
<td>Practically, this methodology may increase the</td>
</tr>
<tr>
<td>developed.</td>
<td>complexity of the system as scope of the system may</td>
</tr>
<tr>
<td>Reduces time and cost as the defects can</td>
<td>expand beyond original plans.</td>
</tr>
<tr>
<td>be detected much earlier.</td>
<td>Developers may try to reuse the existing prototypes</td>
</tr>
<tr>
<td></td>
<td>to build the actual system, even when it’s not</td>
</tr>
<tr>
<td></td>
<td>technically feasible</td>
</tr>
<tr>
<td>Quicker user feedback is available leading</td>
<td>Missing functionality can be identified</td>
</tr>
<tr>
<td>to better solutions.</td>
<td>easily</td>
</tr>
<tr>
<td></td>
<td>The effort invested in building prototypes may be</td>
</tr>
<tr>
<td></td>
<td>too much if not monitored properly</td>
</tr>
<tr>
<td></td>
<td>Confusing or difficult functions can be</td>
</tr>
<tr>
<td></td>
<td>identified</td>
</tr>
</tbody>
</table>
2.3 Tools Used

2.3.1 Microsoft Word 2013

Microsoft Word 2013 is a word processing software used to manage document contents including text, images, and videos material. This software is included inside Microsoft Office Professional 2013 suite installed in my workplace computer.

2.3.2 Microsoft PowerPoint 2013

Microsoft PowerPoint 2013 is a slide presentation software used to manage slide deck contents and allow user to customize the slide design. This software is included inside Microsoft Office Professional 2013 suite installed in my workplace computer.

2.3.3 Microsoft Project 2013

Microsoft Project 2013 is a project management tool used to produce timeline-based diagrams for instance, Gantt chart, etc. This software is included inside Microsoft Office Professional 2013 suite installed in my workplace computer.

2.4 Conclusion

This chapter is discuss the existing system and development methodology. There are pros and cons in each part and included explanation on development methodology. Based on the explanation, it could help us to make the better solution and decision for develop the system.
CHAPTER 3

METHODOLOGY

This chapter discusses the overall approach and framework of research which covers the method, technique, or approach to be used. The first part discusses on the selected methodology during the development of research and explained about the method, techniques, tools, instruments, etc. which were used in this research. The second part defines both the hardware and software that are used in this project. Also, justification on the importance of selected hardware and software. The last part includes a Gantt chart to illustrate the phases' projection till project completion with estimated duration for each phase.

3.1 Methodology

The software development model that I will use to develop my system is the Rapid Application Development Model (RAD) which I had mentioned and explain in another chapter. The phases of the RAD model contain:

A) Requirement Planning
B) User Design
C) Construction
D) Transition / Cutover