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ABSTRACT 

Recycling polymer has become an important field in a polymer research especially in recent 
years. This is because, by recycling the polymer, we can prevent pollution from happen. In 
this research, thermoplastic elastomer (TPE) is used, TPE is a class of copolymers or a 
physical mix of polymers usually a plastic and a rubber which consist of materials with both 
thermoplastic and elastomeric properties. The dog-bone shape mould with standard size 
ASTM D638 designed by using AutoCAD software and fabricated by using electrical 
discharge machining machine and milling machine to be used as a specimen. The virgin TPE 
come from raw material of TPE in the resin form where as the recycled TPE come from 
injection moulded virgin dog-bone shape specimens that have been crushed by using crusher 
machine. After that, recycled TPE and virgin TPE are then mixed according to the desired 
mixing ratio and injection moulded by using injection moulding machine. Then, the 
specimens undergo tensile strength test by using universal testing machine in order to 
determine which mixing ratio produce highest tensile strength. As a result, the mixing ratio 
that produce highest tensile strength is 100% virgin TPE and the second highest is 100% 
recycled TPE. This is due to the ability of material mix together and produces strong bonding 
within each other. 
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ABSTRAK 

Kitar semula polimer telah menjadi satu bidang penting dalam penyelidikan polimer 
terutamanya pada tahun-tahun kebelakangan ini. Ini adalah kerana, dengan kitar semula 
polimer, kita boleh mengelakkan pencemaran daripada berlaku. Dalam kajian ini, 
"thermoplastic elastomer" (TPE) digunakan, TPE adalah kelas kopolimer atau campuran 
fizikal polimer biasanya plastik dan getah yang terdiri daripada bahan-bahan dengan kedua­
dua termoplastik dan sifat-sifat elastomer. Acuan bentuk "dog-bone" dengan saiz standard 
ASTM D638 direka dengan menggunakan perisian AutoCAD dan dibuat dengan 
menggunakan "electrical discharge machining machine" dan "milling machine"untuk 
digunakan sebagai spesimen. TPE tulen datang dari bahan mentah TPE dalam bentuk resin di 
mana sebagai TPE yang dikitar semula datang dari suntikan dibentuk spesimen tulen "dog­
bone" yang telah dihancurkan dengan menggunakan mesin penghancur. Selepas itu, TPE 
yang dikitar semula dan TPE tulen dicampur mengikut nisbah yang dikehendaki pergaulan 
dan suntikan acuan dengan menggunakan mesin pengacuan suntikan. Kemudian, spesimen 
menjalani ujian kekuatan tegangan dengan menggunakan mesin ujian universal untuk 
menentukan nisbah pencampuran menghasilkan kekuatan tegangan yang tinggi. Hasilnya, 
nisbah campuran yang menghasilkan kekuatan tegangan tertinggi adalah 100% dara TPE dan 
kedua tertinggi adalah I 00% dikitar semula TPE. Ini adalah kerana keupayaan campuran 
bahan bersama-sama dan menghasilkan ikatan yang kuat dalam satu sama lain. 
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CHAPTERl 

INTRODUCTION 

1.1 PROJECT BACKGROUND 

Currently, a large number of companies consider recycling of materials as an 

opportunity to maximize profits and to reduce the environmental impact generated by 

these materials after they are disposed.(1] However, there is a strong constraint on the 

use of recycled materials mainly due to the lack of technical and scientific information 
' 

which would relate their physical properties to their recycling cycle.[1] 

Therefore, the recycling cycle of materials is a tool that provides scientific and 

technical support in the selection of materials.[1] It uses the information related to the 

mechanical properties of the materials as a parameter for product design.[1] 

For this project, the study is about the effect of recycled thermoplastic elastomer 

(TPE) mixing ratio on the mechanical properties of TPE. The type of TPE used in this 

study is styrenic block copolymers (TPE-S) or also known as (SBS) which is based on 

two-phase block copolymers with hard and soft segments.[2] The styrene end blocks 

provide the thermoplastic properties and the butadiene mid blocks provides the 

elastomeric properties.(2] SBS is commonly used in footwear, adhesives, bitumen 

modification and lower specification seals and grips, where resistance to chemicals and 

aging a lower priority.[2] 
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The recycled TPE mixed with virgin TPE to know which composition produced 

the optimum result. The recycled TPE come from the virgin dog-bone shape specimens 

that have been crushed where as the virgin TPE come from the resin form. 

The tensile strength of the specimens test is perform by using Universal Testing 

Machine (UTM). 

1.2 PROBLEM STATEMENT 

TPE are durable and degrade very slowly, the chemical bonds that make plastic 

so durable make it equally resistant to natural processes of degradation. [3] Since 1950s, 

one billion tons of TPE have been discarded and may persist for hundreds or even 

thousands of years .[3] This characteristic of TPE make it harmful to the environment 

and living things. 

The industry which is the biggest contributor to this problem must reduce the 

waste of TPE. They can reduce the waste by recycling it and used it again to produce 

the new product. 

However, not many study done on the mechanical properties of recycled TPE 

leave a loophole on the performance of recycled TPE product produced. 

1.3 OBJECTIVES 

The main objectives of this project are: 

i. To design and fabricate dog-bone shape mould according to ASTM D638 to be 

use as a specimens. 
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11. To study the effects of mixing percentage of recycled TPE with virgin TPE to 

the tensile strength by carrying out tensile strength test on the specimens using 

UTM. 

111. To determine the optimum mixing percentage of recycled TPE with virgin TPE 

in terms of highest tensile strength. 

1.4 PROJECT SCOPE 

The main scopes of this project are: 

i. Prepare the recycled TPE from the virgin dog-bone shape specimens and virgin 

TPE from the raw material in the resin form. 

11. Analyze the mechanical properties of recycled TPE and virgin TPE by using 

UTM. 

ni. Performed the project at FKP laboratory. 
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CHAPTER2 

LITERATURE REVIEW 

2.1 POLYMER 

A polymer is a chemical compound or mixture of compounds consisting of 

repeating structural units created through a process of polymerization.[3] The term 

derives from the ancient Greek word, polus which means many or much and meros 

which means parts, and refers to a molecule whose structure is composed of multiple 

repeating units, from which originates a characteristic of high relative molecular mass 

and attendant properties.(3] 

Polymerization is the process of combining many small molecules known as 

monomers into a covalently bonded chain network.(3] During this process, some 

chemical groups may be lost from each monomer.(3] There are two important 

polymerization processes which are condensation polymerization and addition 

polymerization. In condensation polymerization (Figure 2.1 ), polymers are produced by 

the formation of bonds between two types of reacting mers. [ 4] A characteristic of this 

reaction is that reaction by-product such as water is condensed out. [ 4] In addition 

polymerization (Figure 2.2), bonding takes place without reaction by-product, but an 

initiator is added to open the double bond between two carbon atoms, which begin the 

linking process by adding many more monomers to a growing chain.[4] 
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The sum of the molecular weights of the mers in a representative chain is known 

as the molecular weight of the polymer. [ 4] The higher the molecular weight of a given 

polymer, the greater the average chain length.[4] Most commercial polymers have a 

molecular weight between 10,000 and 10,000,000.[4] Because polymerization is a 

random event, the polymer chains produced are not all equal length, but the chain 

lengths produced fall into a traditional distribution curve. [ 4] The average molecular 

weight of a polymer is determined on a statistical basis by averaging.[4] The spread of 

the molecular weight in a chain is referred to as the molecular weight distribution 

(MWD).[4] A polymer's molecular weight and its MWD have strong influence on its 

properties.[4] For example, the tensile and the impact strength, the resistance to 

cracking, and the viscosity in molten state of the polymer all increase with increasing 

molecular weight (Figure 2.3).[4] 

Degree of polymerization (DP) is the ratio of the molecular weight of polymer to 

the molecular weight of the repeating unit.[5] In terms of polymer processing, the 

higher the DP, the higher is the polymer's viscosity (Figure 2.3).[5] High viscosity 

adversely affects the ease of shaping and, thus, raises the overall cost of processing. [5] 
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Figure 2.3: Effect of Molecular Weight and Degree of Polymerization on the Strength 
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During polymerization, the monomers are linked together by covalent bonds, 

forming a polymer chain.(5] Because of their strength, covalent bonds also are called 

primary bonds.[5] The polymer chains are, in turn, held together by secondary bonds, 

such as van der Waals bonds, hydrogen bonds, and ionic bonds.[5] Secondary bonds are 

weaker than primary bonds by one to two orders of magnitude.[5] In a given polymer, 

the increase in strength and viscosity with molecular weight is due to the fact that the 

longer the polymer chain, the greater is the energy needed to overcome the combined 

strength of the secondary bonds.[5] 

The chain-like polymers are called linear polymers because of their sequential 

structure (Figure 2.4).(5] However, a linear molecule is not necessarily straight in 

shape.(5] Generally, a polymer consists of more than one type of structure, thus, a linear 

polymer may contain some branched and cross-linked chains.[5] As a result of 

branching and cross linking, the polymer's properties are changed significantly.[5] 

Figure 2.4: Linear Structure of Polymer 
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The branched polymers (Figure 2.5), side-branch chains are attached to the main 

chain during the synthesis of the polymer.[6] Branching interferes with the relative 

movement of the molecular chains. [ 6] As a result, their resistance to deformation and 

stress cracking is increased.(6] The density of branched polymers is lower than that of 

linear-chain polymers, because the branches interfere with the packing efficiency of 

polymer chains.[6] 

Figure 2.5: Branched Structure of Polymer 

The behaviour of branched polymers can be compared to that of linear-chain 

polymers by making an analogy with a pile of tree branches (branched polymers) and a 

bundle of straight logs (linear polymers).(6] It is more difficult to move a branch within 

the pile of branches than to move a log within its bundle.(6] The three dimensional 

entanglements of branches make movements more difficult, a phenomenon akin to 

increased strength. [ 6] 

Generally three dimensional in structure, cross linked polymers have adjacent 

chains linked by covalent bonds (Figure 2.6).[6] Polymers with a cross-linked chain 

structure are called thermosetting plastic.[6] Cross-linking has a major influence on the 

properties of polymers, generally imparting hardness, strength, stiffness, brittleness and 

better dimensional stability as well as vulcanization of rubber.[6] 

Figure 2.6: Cross-linked Structure of Polymer 

Network polymers consist of spatial (three-dimensional) networks of three or 

more active covalent bonds (Figure 2.7).[6] A ·highly cross-linked polymer also is 

considered a network polymer.[6] Thermoplastic polymers that already have been 
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formed or shaped can be cross-linked to obtain higher strength by subjecting them to 

high-energy radiation, such as ultraviolet light, x-rays, or electron beams.[6] However, 

excessive radiation can cause degradation of the polymer.[6] 

Figure 2.7: Network Structure of Polymer 

Homopolymer is the same type of repeating units in a polymer chain. [6J 

However, as with solid-solution metal alloys, two or three different types of monomers 

can be combined to develop certain special properties and characteristics, such as 

improved strength, toughness, and formability of the polymer.[7] Copolymers contain 

two types of polymers, for example, styrene-butadiene, which is used widely for 

automobile tires.[7] Terpolymers contain three types, for example, acrylonitrile­

butadiene-styrene (ABS), which is used for helmets, telephones, and refrigerator 

liners.[7] 

Polymers such as polymethylmethacrylate, polycarbonate, and polystyrene are 

generally amorphous, that is, the polymer chains exist without long-range order.[8] The 

amorphous arrangement of polymer chains often is described as being like a bowl of 

spaghetti or like worms in a bucket (all interwined with each other).[8] In some 

polymers, however, it is possible to impart some crystallinity and thereby modify their 

characteristics.[8] This arrangement may be fostered either during the synthesis of the 

polymer or by deformation during its subsequent processing. [8] 

The crystalline regions in polymers are called crystallites (Figure 2.8).[8] These 

crystals are formed when the long molecules arrange themselves in orderly manner, 

similar to the folding of a fire hose in a cabinet or of facial tissues in a box. [8] A 

partially crystalline polymer can be regarded as a two-phase material, one phase being 

crystalline and other amorphous. [8] 
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Figure 2.8: Amorphous and Crystalline Region in a Polymer 

By controlling the rate of solidification during cooling and the chain structure, it 

is possible to impart different degrees of crystallinity to polymers, although never 

100%.[8] Crystallinity ranges from an almost complete crystal (up to about 95% by 

volume in the case of polyethylene) to slightly crystallized (mostly amorphous) 

polymers.[8] The degree of crystallinity also is affected by branching.[8] A linear 

polymer can become highly crystalline, but a highly branched polymer cannot, although 

it may develop some low level of crstallinity.[8] It will never achieve high crystallite 

content because the branches interfere with the alignment of the chains into a regular 

crystal array.[8] 

The mechanical and physical properties of polymers are greatly influenced by 

the degree of crystallinity, as crystallinity increases, polymers become stiffer, harder, 

less ductile, less dense, less rubbery, and more resistant to solvent and heat.[9] The 

increase in density with increasing crystallinity is called crystallization shrinkage and is 

caused by a more efficient packing of the molecules in the crystal lattice. [9] 

Optical properties of polymers also are affected by the degree of crystallinity.[9] 

The reflection of light from the boundaries between the crystalline and the amorphous 

regions in the polymer causes opaqueness. [9] Furthermore, because of the index of 

refraction is proportional to density, the greater the density difference between the 

amorphous and crystalline phases, the greater is the opaqueness of the polymer.[9] 

Polymers that are completely amorphous can be transparent, such as polycarbonate and 

acrylics. [9] 
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Although amorphous polymers do not have a specific melting point, they 

undergo a distinct change in their mechanical behaviour across a narrow range of 

temperature.[9] At low temperatures, they are hard, rigid, brittle, and glassy, where as at 

high temperatures, they are rubbery or leathery.[9] The temperature at which a 

transition occurs is called the glass-transition temperature (Tg), also called the glass 

point or glass temperature. [9] The term glass is used in this description because glasses, 

which are amorphous solids, behave in the same manner.[9] Although most amorphous 

polymers exhibit this behaviour, an exception is polycarbonate, which is neither rigid 

nor brittle below its Tg.[9] Polycarbonate is tough at ambient temperatures and is used 

for safety helmets and shields. [9] 

To determine Tg, the specific volume of the polymer is determined and plotted 

against temperature, and marked by a sharp change in the slope of the curve (Figure 

7.9).[9] In the case of highly cross-linked polymers, the slope of the curve changes 

gradually near Tg, and hence, it can be difficult to determine Tg for these polymers.[9] 

The glass-transition temperature varies with different polymers (Table 2.1).[10] For 

example, room temperature is above Tg for some polymers and below it for the 

others.[10] Unlike amorphous polymers, partly crystalline polymers have distinct 

melting point, (Tm), (Figure 2.9, Table 2.1).[10] Because of the structural changes (first 

order changes) occurring, the specific volume of the polymer drops suddenly as its 

temperature is reduced. [ 1 O] 
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Table 2.1: Glass Transition and Melting Temperatures of Some Polymers 

M:ut"rial T,(~'C) T.,.(°C) 

?-.1ylon 6,6 51 .!6~ 

Poly<.a rbona tc J50 lt-5 
Pol>'C'Stcr -3 165 
Polycmyknc: 

High density - YO 1r 
Lo'4· density - 110 115 

PoJymcthyJmi;th.l'1yla ~ 105 
Polyrropylmc - 14 1-6 
Poly.styrene 100 .!39 
Pol)"tt'trafluorocthrlC'nt -90 32-
Polyvanyl chloride 87 2J.! 
Rublxr - -l 

2.1.1 Thermoplastic 

Thermoplastic is a polymer that becomes pliable or mouldable above a specific 

temperature, and returns to a solid state upon cooling. [ 11] This is happen because of the 

increased temperature weakens the secondary bonds and adjacent chains.[12] 

When the temperature of a thermoplastic is raised above its Tg, it first becomes 

leathery and then, with increasing temperature, rubbery.[12] Finally, at higher 

temperatures, it becomes a viscous fluid, its viscosity decreases with increasing 

temperature.[12] At still higher temperatures, the response of a thermoplastic can be 

linked to ice cream, it can be softened, moulded into shapes, refrozen, resoftened, and 

remoulded a number of times.[13] In practice, however, repeated heating and cooling 

cause degradation, or thermal aging, of thermoplastic. [ 13] 

The typical effect of the temperature on the strength and elastic modulus of 

thermoplastics is similar to that of metals, with increasing temperature, the strength and 

the modulus of elasticity decrease and the toughness increases (Figure 2.10).[13] 
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The behaviour of thermoplastics is similar to the strain-rate sensitivity of metals, 

indicated by the strain-rate sensitivity exponent m equation cr = Ccm .[14] In general, 

thermoplastics have high m values, indicating that they can undergo large uniform 

deformation in tension before fracture (Figure 2.11).[14] Note how the necked region 

elongates considerably.[14] This phenomenon easily can be demonstrated by stretching 

a piece of the plastic holder for a 6-pack of beverages cans.[14] This characteristic 

enables the thermoforming of thermoplastics into such complex shapes as meat trays, 

lighted signs, and bottles for soft drinks.[14] 
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Figure 2.11: Load-Elongation Curve for Polycarbonate (Thermoplastic) 
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Orientation is the process when the long chain molecules tend to align in the 

general direction of the elongation when the thermoplastics are deformed 

(stretching).[14] As in metals, the polymer becomes anisotropic, so the specimen 

becomes stronger and stiffer in the elongated (stretched) direction than in its transverse 

direction.[14] Stretching is an important technique for enhancing the strength and 

toughness of polymers.[14] 

Because of their viscoelastic behaviour, thermoplastics are particularly 

susceptible to creep and stress relaxation and to a larger extent than metals.[14] The 

extent of these phenomena depends on the polymer, stress level, temperature, and 

time.[14] Thermoplastic exhibit creep and stress relaxation at room temperature, most 

metals do so only at elevated temperatures.[14] 

Some thermoplastic, such as polystyrene and polymethylmethacrylate, when 

subjected to tensile stresses or to bending, develop localized, wedge-shaped, narrow 

regions of highly deformed material, called crazing.[14] Although they may appear to 

be like cracks, crazes are spongy material, typically containing about 50% voids. [14] 

With increasing tensile load on the specimen, these voids coalesce to form a crack, 

which eventually can lead to a fracture of the polymer.[14] Crazing has been observed 

both in transparent, glassy polymers and in other types.[15] The environment, 

particularly the presence of solvents, lubricants, or water vapour can enhance the 

formation of crazes, environmental-stress cracking and solvent crazing.[15] Residual 

stresses in the material also contribute to crazing and cracking of the polymer, radiation 

especially ultraviolet radiation can increase the crazing behaviour in certain 

polymers. [15] 

A phenomenon related to crazing is stress whitening.[15] When subjected to 

tensile stresses, such as those caused by folding or bending, the plastic becomes lighter 

in colour, a phenomenon usually attributed to the formation of rnicrovoids in the 

material.[15] As a result, the material becomes less translucent (transmits less light) or 

more opaque.[15] This behaviour easily can be demonstrated by bending plastic 

components commonly found in coloured binder strips for report covers, household 

products, and toys.[15] 
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An important characteristic of some polymers, such as nylons, is their ability to 

absorb water.[15] Water acts as a plasticizing agents, it makes the polymer more 

plastic.[15] In a sense, it lubricates the chains in the amorphous region.[15] With 

increasing moisture absorption, the glass-transition temperature, the yield stress, and the 

elastic modulus of the polymer typically are lowered severely.[15] Dimensional changes 

also occur, especially in a humid environment.[15] 

Compared to metals, plastics generally are characterized by low thermal and 

electrical conductivity, low specific gravity (ranging from 0.90 to 2.2), and a high 

coefficient of thermal expansion.[15] Because most polymers have low electrical 

conductivity, they can be used for insulators and as packaging material for electrical 

components. [ 15] 

The electrical conductivity of some polymers can be increased by doping, 

introducing impurities, such as metal powders, salts, and iodides, into the polymer.[16] 

Discovered in the late 1970s, electrically conducting polymers include polyethylene 

oxide, polyacetylene, polyaniline, polypyrrole, and polythiophene. [16] The electrical 

conductivity of polymers increases with moisture absorption, their electronic properties 

also can be changed by irradiation.[16] Applications for conducting polymers include 

adhesives, microelectronic devices, rechargeable batteries, capacitors, catalysts, fuel 

cell, fuel-level sensors, deicer panels, radar dishes, antistatic coatings, and 

thermo actuating motors. [ 16] 

Thermally conducting polymers also are being developed for applications 

requiring dimensional stability and heat transfer as well as for reducing cycle times in 

moulding and processing of thermoplastics.[16] These polymers are typically 

thermoplastics, such as polypropylene, polycarbonate and nylon, and are embedded 

with non-metallic thermally conducting particles which their conductivity can be as 

much as 100 times that of conventionally.[16] 
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2.2 THERMOPLASTIC ELASTOMER 

TPE, sometimes referred to as thermoplastic rubber, are a class of copolymers or 

a physical mix of polymers, usually a plastic and a rubber which consist of materials 

with both thermoplastic and elastomeric properties.[17] 

Besides TPE, there is another type of elastomer called thermosetting elastomer. 

The principal difference between TPE and thermosetting elastomer is the type of 

crosslinking bond in their structures.[17] Crosslin.king is a critical structural factor 

which contributes to impart high elastic modulus.[17] The crosslink in TPE is a weaker 

dipole or hydrogen bond or takes place in one of the phases of the material, where as the 

crosslink in thermosetting elastomer is a covalent bond created during the vulcanization 

process. [ 17] 

In order to qualify as TPE, a material must have these three characteristics.[17] 

The characteristics are processable as a melt at elevated temperature, absence of 

significant creep and the ability to be stretched to moderate elongations and upon the 

removal of stress, return to something close to its original shape. [17] 

TPE can be divided into two main types which are block copolymer TPE (Figure 

2.12) and blended TPE (Figure 2.13).[18] 

Figure 2.12: Molecular Structure of TPE Block Copolymer 


