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lV 

Membangunkan ap likasi ramalan aras air boleh membantu pengurusan sumber air 
yang cekap dan optimum serta dapat meminimumkan kerosakan akibat banj ir. Pada 
masa ini, rangkaian neural tiruan atau artificial neural network (ANN) telah berjaya 
diuji dalam banyak kajian ramalan, termasuk aliran sungai . Waiau bagaimanapun, 
ketepatan dan kebolehpercayaan ramalan aliran sungai berasaskan ANN memerlukan 
penyelidikan yang berterusan. Dalam konteks tersebut, kajian ini adalah bertujuan 
untuk membangunkan model rama lan yang berketepatan tinggi dan yang boleh 
dipercayai berasaskan model ANN untuk meramal aras air khususnya untuk kes aras 
air yang tinggi. Tujuan ini dicapai dengan memperkenalkan empat pendekatan baru 
dalam permodelan berasaskan ANN. Pertama, arkitektur dalaman ANN 
dipertingkatkan dengan penggunaan pekali kecuraman yang optimum (OSC) dalam 
fungsi sigmoid. Kedua, arkitektur luaran ANN di tambah baik dengan menggunakan 
pendekatan pengezonan sepadan (ZMA) di mana data yang dipilih untuk latihan ANN 
adalah berdasarkan aras air yang di sasarkan dalam ramalan. Ketiga, penilaian 
ketepatan keputusan ramalan model di tingkatkan dengan pendekatan kejuruteraan di 
mana ralat dengan kadar yang dibenarkan digunakan untuk mengesahkan ketepatan 
keputusan ramalan tersebut. Keempat, ramalan t urun/naik aras air yang betul di 
perkenalkan untuk menilai keupayaan ramalan dan kebolehpercayaan model ANN. 
Kawasan kajian adalah stesen Rantau Panjang di sungai Johor di mana data bagi 
setiap jam aras air yang direkodkan sejak tahun 1964 sehingga 2008 digunapakai 
untuk ramalan aras air bagi kes-kes ramalan aras air sehari dan beberapa jam 
sebelumnya. Hasil kajian ini menunjukkan bahawa penggunaan teknik OSC dan ZMA 
bukan sahaja meningkatkan ketepatan model ANN berbanding pendekatan ANN yang 
biasa dipakai tetapi juga mencapai keputusan ramalan dengan ketepatan yang tinggi. 
Selain itu, penilaian berdasarkan ralat yang dibenarkan serta penilaian ramalan 
turun/naik aras air berjaya memperkayakan penilaian ketepatan dan kebolehpercayaan 
model ramalan. Kesan kaj ian ini ialah teknik-teknik yang diperkenalkan bo leh 
menjadi asas pendekatan yang baru dalam permodelan ramalan berasaskan ANN 
khususnya dalam memantau kejadian banjir. 
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ABSTRACT 

Reliable water level forecasting can help achieve efficient and optimum use of water 
resources and minimize flooding damage. Currently, artificial neural network (ANN) 
has been successfully tested in many forecasting studies, including river flow. 
However, the accuracy and reliability of the river flow forecasting in such application 
requires continuous research. In this context, this study aims at developing a high 
accuracy and reliable forecasting model using the ANN to predict high water level 
events. The aim is achieved by introducing four new approaches in the ANN 
modeling. Firstly, the internal architecture of ANN is enhanced by utilization of 
optimal steepness coefficient (OSC) in sigmoid function. Secondly, the external 
architecture of ANN is improved by applying zoning matching approach (ZMA) 
where data training selected is based on the target water level to be forecasted. 
Thirdly, model evaluation of forecasting results is improved by engineering approach 
where allowable offset errors are used to demonstrate the accuracy of forecasting 
results. Lastly, the correct prediction of up/down of water level is a new evaluation 
model to evaluate forecasting capability and reliability of the ANN model. A case 
study has been applied at the Rantau Panjang station at Johor River where hourly 
water level data dated from 1963 to 2008 have been examined to forecast daily and 
several hourly intervals lead-times. The result showed that the use of the OSC and 
ZMA techniques had not only improved the accuracy of ANN models compared to 
standard approach (SA) but also achieved high accuracy forecasting results. The 
allowable offset errors and up/down prediction measures have enriched measures in 
evaluating forecasting model 's accuracy and reliability. The impact of the study is that 
the techniques can be the basis of future development approach in ANN based data 
forecasting model specially in monitoring flood events. 
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CHAPTER I 

INTRODUCTION 

1.1 INTRODUCTION 

Water is an essential resource to sustain the lives in this planet. This is described in 

the Al-Quran about 1400 years ago in chapter 23 verse 30 - "We made from water 

every living thing. Will they not then believe?" (Ali 2001 ). Water defines the 

landscape of a region and it is important to the earth eco-system. Water covers 70% of 

the earth surface and it is continously moving below, above and on the surface of the 

earth. This movement of water is called the water cycle. The ocean locates where 

ninety percent of water on earth is and eighty percent of global evaporation occurs. 

Water stores in the atmosphere in a form of clouds and in the process of precipitation, 

water falls on the land and on the sea. Most water that fall on the land will either 

become surface water such as lakes and streams and others infiltrate into the ground 

that become ground water. Evaporation also occurs on the surface water. The water 

that moves to the land is either cycle back to the ocean or evaporate to the atmospere. 

The balance of the water on earth has been constant although the water changes to 

different states and moves to different locations over time. 

The scarcity of water in the current time underscores the needs for better water 

management. The water scarcity even occurs in the areas where there is plenty of 

rainfall or freshwater. This could be due to poor management of the water resources. 

The situation is getting worse as the needs for water rise along with population 

growth, urbanization, and increases in household and industrial uses. Some countries 

already have made an attempt to find water in other planets as so lution to the problem 

of water scarcity. One of the main sources of water is the river and effective 
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management of the river resources has become very important to resolve or to 

minimize the effect of water scarcity problem. 

Another concern regarding water resources is flooding. Historically, flooding 

events have been a major concern over many generations due to the loss of lives and 

damage to properties caused by flooding. Flooding events normally occur when there 

is a heavy rainfall over a short period of time or when there is an extensive rainfall 

over a long period of time in flood plain areas. Besides rainfall, poor maintenance of 

drainage networks, deforestation and inappropriate development in the area are the 

human factors contributing to the causes of flooding. These human factors are 

preventive which means that it should be handled accordingly to minimize the effects 

of flooding. The common area of the flooding events occur in the coastal regions and 

low level areas where a high tide can slow or stop the water flow from river stream to 

the sea. Nowadays, the city is also a common area of flooding which could be due to 

deforestation, inappropriate development of the area, and poor maintenance of 

drainage networks. Global warming is another big factor to the causes of flooding 

events where excessive rainfall is recorded in many countries. Many current flooding 

events have recorded high in the past hundred years and the excessive flooding events 

occur more frequently. 

1.2 MOTIVATION 

To manage the river resources effectively, river flow forecasting is essential because it 

can help facilitate the management of water resources, thereby optimizing the use of 

water. The ability to forecast flooding events is hugely important, since it can help 

predict the occurrence of future flooding, to enable better preparation of flood events 

which is to avoid the loss of lives and to minimize the damages to property. 

One of the approaches for developing modeling river flow and flood 

forecasting is based on a hydraulic design using hydrological parameters that affect 

river flow. This means that many physical factors of a river, such as the cross 

sectional area, soil types along the banks, sedimentation, elevation, geographical area, 

and rainfall need to be determined. This approach is not only complex, but also 
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requires data coordination in real-time, which can be very costly and complex to 

engineers and water authorities. Other approaches, such as regression, have failed 

because the river flow patterns are neither constant, nor can they be predicted by fixed 

regression lines. 

Currently, artificial neural network (ANN) based models have been 

successfully applied in many river flow forecasting studies. Extensive reviews on 

ANN applications in hydrological simulation and forecasting have been reported in 

ASCE (2000a,b) . An ANN-based model does not presuppose a detailed understanding 

of the river's physical characteristics, nor does it require an extensive data of pre

processing (Dawson et al. 2002). Instead, the ANN uses a sample or historical dataset 

ofriver flow to establish the forecast model. The distinct function of an ANN is that it 

can find hidden patterns in the sample dataset, the knowledge from which is used in 

the data forecasting. The first neural model was introduced by McCulloch & Pitts 

(1943) to simulate neurons in the human brain. The use of error propagation and 

computer to simulate the neural processes (Rumelhart & McClelland 1986) has 

popularized the use of ANN in many forecasting and data classification studies in 

recent years. ANNs have been used in many studies, including engineering, science, 

mathematics, social science, and business studies, for data classification, data 

forecasting, data mining, robotics, and data processing. In water resources, ANNs 

have been applied in forecasting river flow, water leve ls, flood events, hydrograph, 

sedimentation, and water quality. 

There is little doubt that ANNs have the potential to be a useful tool for the 

prediction and forecasting of water resources variables (Maier & Dandy 2000). The 

primary focus should be on achieving good results, rather than statistical optimality 

(Maier & Dandy 2000). Future research efforts should also be directed towards the 

extraction of the knowledge that is contained in the connection weights of trained 

ANN models (Maier & Dandy 2000). The scope for improving the way the ANN 

models are evaluated by applying various measures in a consistent and informed 

manner should be given attention (Dawson et al. 2007). Not the least is an attention to 

good practice in model development as it is vitally important in all modeling efforts 

(Jakeman et al. 2006; Robson et al. 2008; Welsh 2008). 
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1.3 RESEARCH QUESTIONS 

Various approaches have been developed in the ANN based modeling studies to 

improve the basic modeling capability of ANN so that high forecasting accuracy can 

be achieved with suitable lead-time. The study of improving forecasting accuracy of 

river flow is a continuous research that contributes positively to the science society 

and the public. Based on the modeling approaches reviewed, there seems always 

computation and/or modeling approaches that can always be explored to improve 

forecasting accuracy. The question is can the ANN model still be improved by 

working on new approach in the way data are modeled in ANN or the way the 

computing algorithm or parameters are used? 

Many data forecasting studies for extreme events such as monitoring flood 

events still lag of accuracy. This could be due to the approach that one fits all 

approach where all data are used to forecast different sections or zones of data to be 

forecasted. Recently, more studies have used hybrid ANN model to utilize the self

organized maps to improve the forecasting at the extreme events. The hybrid approach 

is complex and time consuming since adjustment is needed to categorize the data for 

training and forecasting. Is there a simpler approach and practice to produce high 

accuracy or even better at the extreme events? 

How does one assess the reliability of the ANN model? The forecasting 

accuracy should have boundary or confidence limit but current studies do not define 

this limit. Most studies have used common statistical measure and relative errors to 

describe the reliability of the model developed. It is important to the water authorities 

to determine the probability of the fail conditions of forecasting model and the range 

of errors in making decisive decisions. In engineering design, there is always safety 

factor and probability of failure so as to show the fai l condition. The issue is can these 

factors be associated with the ANN model? 

Convincing the water authorities on the capability of the ANN based model in 

making predictions has not been easy. Many engineers or water authorities are not 

familiar with ANN forecasting based on historical data and non-physical conditons of 
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river. Many forecasting results are based on fitness of fit by common statistical 

measure which demonstrate the accuracy value of the performance index, not the 

predictable capability of the ANN model. Is there a way to demonstrate that the ANN 

based model has the ability to make the data prediction? This is a challenge that needs 

to be addressed so that the developed ANN models are not only used for scientific 

studies but also use in practice by the water authorities and water engineers. These are 

the issues and questions examined in this study. 

1.4 RESEARCH AIMS & OBJECTIVES 

The general aim of this study is to develop high accuracy and reliable forecasting 

model that is based on Artificial Neural Network (ANN) to forecast flooding events in 

Johor River specifically Rantau Panjang station & also to elevate the confidence leve l 

in the developed model. 

The general aims are achieved by the following specific a ims: 

1. Improve ANN internal architecture by studying the computing part of the 

ANN model; 

2. Improve ANN external architecture by exploring different ways data are 

modelled in the ANN; 

3. Improve ANN performance evaluation by evaluating the current approach 

and exploring other approaches that can verify the accuracy and reliability 

of the ANN model. 

The success in this study hopefully can provide the water authorities the tools 

that are not only accurate but also reliable in the forecasting of water level specifically 

to monitor flood events. 
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1.5 SCOPE OF THE RESEARCH 

The scope of this study is to improve ANN based modeling in the forecast of high 

water level events specifically for the case of monitoring flood events at Rantau 

Panjang station. The modeling tool used is a multi-layer perceptron neural network, 

which is the most commonly use of the ANN based model type. The lead-times tested 

in the foreacasting are hourly and daily. 

1.6 STRUCTURE OF THESIS 

The thesis is composed of six chapters. Chapter I introduces the motivation, research 

questions, aims and objectives, scope of of the study, and the structure of the thesis. 

Chapter 2 covers the literature review on the research topic. The literature covers the 

current and previous studies in river flow forecasting in the areas of extreme events, 

activation transfer functions that are used and studied in the ANN model, the 

importance of data type in the ANN model, the importance of lead-times, confidence 

limit and level. Chapter 3 is the methodology used in the study. Th is includes the 

modeling approach, the modeling tools, the improvement to the modeling approach 

and the set-ups conducted in the study. Four set-ups were conducted and studied 

where they evolved from one set-up to another and eventually leading to the fourth 

set-up. Chapter 4 describes the case study area and its relevance to the future study of 

flood monitoring at Kota Tinggi, Johar. Chapter 5 is the ANN performance evaluation 

on data training and forecasting results with discussion on the four test set-ups 

conducted. Chapter 6 is the conclusion on each of the four test set-ups and a summary 

of the conclusions. The in-text citations in the thesis are referred to in the references 

section and appendices include the co mputer codes in the ANN program and list of 

publications . 

In general the topics in the chapters are; 

1. Introduction; 

2. Research Background; 

3. Methodology; 
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4. Case Study Areas; 

5. Results & Discussion; 

6. Conclusion. 



CHAPTER II 

LITERATURE REVIEW 

2.1 INTRODUCTION 

River flow forecasting is essential in water resources management since it can help 

optimize the usage of water. Flood forecasting is necessary in flood management to 

avoid the loss of lives and to minimize damages to properties. In both areas, 

forecasting with high accuracy and reliability are very important. 

One of the approaches for developing flood forecasting model is based on a 

hydraulic design using hydrological parameters that affect the river flow. The 

parameters that can effect the modeling are sedimentation, dam operation, soil type, 

cross sectional area of the river, and rainfall. This means that many of the physical 

factors of the river need to be considered where this can lead to many undetermined 

relationship between the dynamic processes of the river flow. This approach is not 

only complex, but also requires data coordination in real-life situations, which can be 

very costly. Currently, ANN based model is a popular modeling tool for the river flow 

forecasting where it does not relied in physical properties of the study area but instead 

relied on historical data events in the area. 

In the data forecasting study, the target is to find the best fo recasting model 

that can provide high accuracy and reliable forecasting results. Many approaches have 

been tested in the ANN based model to improve the target forecasting of the model 

developed and these approaches are discussed in the following sections. 
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2.2 IMPORTANCE OF ANN 

Artificial Neural Network (ANN) is a computing model that can so lve non-linear 

problems from the time-series data that the ARMA based model or traditional 

statistical models cannot provide. Other problems such as regression, classification, 

prediction, system identification, feature extraction and data clustering can also be 

so lved through ANN computing. In water resources studies, ANN has become a well 

established research area over the past 15 years for the prediction and forecasting of 

water resources variables (Maier et al. 2010). ANNs are applied in forecasting daily 

river flows (Atiya et al. 1999; Coulibaly et al. 2000; Ahmed & Sarma 2007; Wu et al. 

2009), water level (Alvisi et al. 2006; Bustami et al. 2007; Chang & Chen 2003; 

Leahy et al. 2008; Romanowicz et al. 2008), flood events (Tareghian & Kashefipour, 

2007; Kerh & Lee, 2006), rainfall-runoff patterns (Chiang et al. 2004; Agarwal & 

Singh 2004; Rahnama & Barani 2005), optimization (Cancelliere et al. 2002; 

Chandramouli & Deka 2005) and sedimentation (Krishnaswamy et al. 2000; 

Raveendra & Mathur 2008). Based on the study by Maier et al. (2010), 230 papers 

were published in high ranking journals that are within the water resources studies up 

to 2008. ln the previous study conducted by Maier et al. (2000), about 43 papers were 

published. This shows that the popularity of ANN based models have grown due to 

the simplicity and flexibility to manage the model and its ability to produce data 

forecasting on the non-linear and dynamic data pattern. 

Many early studies tried to develop forecasting model by determining the 

pattern in historical time series data. This means that the prediction of future events is 

based on past events. Most time-series techniques traditionally used modeling water 

resources series fall within the framework of the auto-regressive moving average 

(ARMA) class of linear stochastic processes (Toth et al. 2000). However, the inability 

of an ARMA-type model to account for a non-linear relationship between the various 

aspects of the dynamic process, non-linear statistical models have been used for the 

analysis of real-world temporal data. Nevertheless, the formulation of reasonable the 

non-linear models is an extremely difficult task (Chakraborty et al. 1990). Time 

series forecasting can also be based on statitistical models. Such models include 

simple linear regression, projection pursuit regression, polynomia l regression, non-
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parametric regression, logistic regression, linear discriminant functions, classification 

trees, finite mixture models, kernel regression, and smoothing splines (Cheng & 

Titterington, 1994; Sarle, 1994 ). However, they often emphasized certain rules or 

limitations which restrict the condition of data forecasting. This is due to the data 

pattern that is non-linear and stochastic in nature. ANN modelling approaches have 

been embraced enthusiastically by practitioners in water resources, as they are 

perceived to overcome some of the difficulties associated with traditional statistical 

approaches. (Maier & Dandy 2000). The differences in the modeling approach 

between artificial intelligence (AI) and traditional statistical models, coupled with a 

lack of strict rules governing the development of the former, are probably the major 

reasons for the increased popularity of neural networks and ANNs have placed such 

sophisticated models within the reach of practitioners (Maier & Dandy 2000). It is 

necessary to consider the alternative models that have skills to disseminate the non-

1 inearity and non-stationarity nature of the inflow data series (El-Shafie et al. 2008a). 

2.3 ACCURACY AND RELIABILITY STUDIES IN ANN 

The objective in data forecasting study is to find the best forecasting model 

that can give accurate forecasting results, if possible. In the ANN based model, the 

approach is by improving the generalization of the network model in data training. 

Modification to essential parameters in the ANN model during data training could 

achieve the results. These essential parameters are the number and type of data inputs, 

the number of hidden layer, the number of hidden neurons in each ANN layer, type of 

activation transfer function used in the neurons, and the optimization method of 

finding the weight in the ANN model. 

In river flow forecasting, data inputs can be based on historical river flow data, 

rainfall, precipitation, and sedimentation. El-Shafie (2007, 2008b) had conducted a 

river flow forecasting study in the Nile River, using river flow data from a single 

station. Turan & Yurdusev (2009) used a multiple upstream river flow station for 

forecasting the river flow. Chiang et al. (2004) and Rahnama & Barani (2005) had 

included rainfall and run-off data for river flow forecasting, and Zealand et al. (1999) 

included precipitation, rainfall, and flow data in their forecasting study. Fernando et 
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al. (2005) had suggested several methods to identify the proper inputs to a neural 

network. Other studies (Alvisi et al. 2006; Toth & Brath 2007) had investigated the 

effects of the number and type of inputs on the ANN performance. 

Once data inputs have been determined, the selection of the number of hidden 

layers and neurons plays a vital role in achieving the best forecasting performance. 

Forecasting studies, in determining the number of layers and neurons, have been based 

on trial and error approach (Coulibaly et al. 2000; Joorabchi et al. 2007; Solaimani & 

Darvari 2008; Turan & Yurdusev 2009). For the number of hidden layers, many 

studies have shown that one hidden layer is enough. Hornik et al. (1989) had shown 

that the multilayer feed forward network with one hidden layer is capable of 

approximating to any desired degree of accuracy provided the sufficient hidden units 

are available based on universal approximation theorem. Zhang et al. (1998) had 

produced a synthesis of published research papers on ANN, showing that a single 

hidden layer is the most popular and widely used in layer selection. Two hidden layers 

are also able to produce best forecasting performance in certain problems (Barron 

1994). However, for the selection of the number of ANN neurons, the method has 

been based on trial and error approach (Chauhan & Shrivastava 2008). 

Activation transfer function (A TF), the main computing element of ANN, 

plays an important role in achieving the best forecasting performance. The most 

common type of ATF is sigmoid function (Zhang et al. 1998). However, several 

studies had used different types of A TF within the ANN to improve forecasting 

performance. Shamseldin et al. (2002) used logistic, bipolar, hyperbolic tangent, arc

tan and scaled arc-tan to explore the potential improvement of ANN forecasting. 

Joorabchi et al. (2007) applied log-sigmoid and hyperbolic tangent sigmoid transfer 

functions to produce their output. Han et al. (1996) introduced optimization of variant 

sigmoid function using genetic algorithm to optimize ANN convergence speed and 

generalization capability. 

Many researchers had studied the ANN's exterior architecture using trial and 

error approach. Others had studied the ANN's interior architecture, but had been 

limited to testing different types of ATF in the ANN architecture. Sigmoid function, 
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which is the most commonly computing function for ATF, has been widely used 

because of its ability to affect the performance of ANN. The objective of this study is 

to evaluate the effectiveness of steepness coefficient in sigmoid function in improving 

ANN data training and forecasting in a river flow study. The second objective is to 

investigate the effectiveness of the optimal steepness coefficient approach, compared 

to traditional approach based on trial and error on the exterior architecture in river 

flow forecasting. The improved performance of ANN water level forecasting could 

assist water authorities in managing water resources. 

Another approach in improving the generalization of network model is the 

extrapolation method especially in the case of missing data or small dataset for 

learning process. Cigizoglu (2003) used scaling of data training in the range of 0.2 to 

0.8 to predict flows beyond the training range. The forecasting results in the study 

were within 20% .error bound, which is still high even though it is a better channel 

than the conventional statistical and stochastic models that are used in the study. 

Coulibaly et al. (2001) also used the extrapolation strategy with the use of time delay 

dynamic neural network to improve multi-layer perceptron based data forecasting. 

Imrie et al. (2000) improved generalization during training by applying cubic 

polynomial function in the output layer which may be necessary for ANNs to capture 

extreme values but not necessarily in other cases since the function is correlated to 

data training pattern of the extreme events. Hu et al. (2005) successfully applied what 

is called goal programming (GP) neural network in improving generalization. 

Giustolisi and Laucelli (2005) suggested using avoiding over-fitting technique that 

may be a helpful approach to increase the generalization performance of ANNs. 

Improved performance in extreme events in water level forecasting utilizing 

ANN model is quite important since the extreme event is the critical point in 

providing effective flood monitoring and preventive measures. A common problem is 

the under-estimation of river flow (Alvisi et al. 2006; Shrestha et al. 2005; 

Thirumalaiah & Deo 1998). The reasons given for this under-estimation include the 

lack of water level events in the sample dataset (Toth et al. 2000). This is true for 

several highest points of water level during big flooding events, although it is not true 

for water level events that are within the flood water level. Several studies had 
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analyzed extreme events in different approaches such as spiking of the calibration 

data, data partitioning, and extrapolation. 

Shrestha et al. (2005) attempted to overcome the problem of under-estimation 

by multiplying the high flow events a factor of 1.5. This approach could be suitable in 

a specific case study, but may not work in others. Cheung et al. (1990) suggested the 

use of spiking of the calibration data to improve the learning speed and generalization 

ability of back-propagation ANN based model especially in extreme events. However, 

the study by Maier et al. (1998) found that the use of the spiking method did not 

improve the generalization. Instead, Maier et al. (1998) suggested the application of 

appropriate learning rate and momentum with continuous evaluation of forecasting 

performance at each small interval of data training to reach the best network 

generalization. The approach described in this study, however, is time consuming 

where during each change of training interval, the learning rate and momentum are 

modified and the network performance is evaluated. 

Self-organizing map (SOM) is a data partitioning/splitting, which is a novel 

approach to improve the generalization of the network model (May et al. 20 I 0). 

Various techniques have been utilized to improve the SOM based model since it has 

the potential to perfect the generalization of the network model. Among the studies, 

May et al. (2010) surveyed the SOM-based stratified sampling approach in data 

splitting for the development of the ANN model. SOM is an un-supervised type of 

ANN-based model that can hide the pattern from sample dataset without specifying 

sample data output. SOM organized sample dataset into groups of dataset that have 

similar data pattern as output. In ten-iis of river forecasting, SOM organizes the flow or 

water level into groups of similar flow or water level pattern in the testing and 

validation datasets, which can be used as hybrid model with the ANN-based model. 

Jain & Srinivasulu (2006) suggested two approaches in data partitioning using rainfall 

run-off data for river flow forecasting. First is the data partitioning by segmenting the 

rising and falling of the effective rainfall run-off data using statistical measures by 

trial and error. The other is the partitioning of the data based on the high, medium, and 

low flows using SOM method. The study concluded that forecasting is improved by 

the partitioning of the rainfall run-off data but the processes of the development of the 


